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Abstract. Given any poset P and chain ϕ in P, we define the (P, ϕ)-Tamari lattice. We
study in depth these lattices and prove in particular that they are join-semidistributive,
join-congruence uniform and left modular. We prove that the lattices of higher tor-
sion classes of the higher Auslander and Nakayama algebras of type A are examples
of (P, ϕ)-Tamari lattices and thus they inherit their properties. We also give general
results related to left modular, extremal and congruence normal lattices.
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1 Introduction

The Tamari lattice is familiar to many in combinatorics. It is perhaps most simply de-
scribed as the lattice of planar binary trees ordered by tree rotation. For our purposes,
it is also important to point out that it arises as the lattice of torsion classes for the
type An linearly oriented path algebra. Our goal is to present a certain combinatorial
generalization of the Tamari lattice which we call the (P, ϕ)-Tamari lattice, where P is a
poset and ϕ is a chain in P. We establish certain properties for these lattices, including
join-semidistributivity, join-congruence uniformity, and left modularity.

The reason that we were inspired to formulate the definition of the (P, ϕ)-Tamari
lattices is that they include, as a very special case, certain lattices which recently ap-
peared in representation theory. For any finite-dimensional algebra, its torsion classes
ordered by inclusion form a lattice. These have attracted considerable interest [5, 13].
One property in particular of interest is that they are all semidistributive. There is a gen-
eralization due to Jørgensen of torsion classes [7] in the setting of higher homological
algebra, known as d-torsion classes. Recently the authors of [1] showed that Jørgensen’s
definition is equivalent to being closed under d-extensions and d-quotients, thus yielding
a lattice ordered by inclusion on these d-torsion classes. They obtained a combinatorial
description of the d-torsion classes for the higher Auslander and Nakayama algebras
of type A, which are the two main examples where we are able to compute in higher
homological algebra. They noticed that the lattices of d-torsion classes of these alge-
bras are not semidistributive in general, but we prove that they are a special case of our
construction. Thus they inherit the properties of the (P, ϕ)-Tamari lattices.
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While working on these lattices, we developed a new way to prove the left modu-
larity of a lattice using edge-labellings (Theorem 3.2), and gave necessary and sufficient
conditions on the doublings of a congruence normal lattice to be extremal or left modu-
lar (Proposition 3.5 and Theorem 3.7). These results might be useful to others working
on lattices.

In Section 2 we give some background on posets and lattices. Section 3 presents new
tools to study left modular, congruence normal and extremal lattices. In Section 4 we
define and study the (P, ϕ)-Tamari lattices. The generalities are given in Section 4.1,
proving in particular that they are join-semidistributive (Proposition 4.6) and in Sec-
tion 4.2 we prove that they are left modular (Theorem 4.14), join-congruence uniform
(Theorem 4.17) and we study their congruences. Finally, in Section 5 we give the main
examples: Section 5.1 for P a chain, and Sections 5.2 and 5.3 for the d-torsion classes of
the higher Auslander and Nakayama algebras of type A.
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2 Background on posets and lattices

We denote by |E| the cardinality of a set E. For a positive integer n, denote [n] :=
{1, 2, . . . , n}. By k < n we will mean k ∈ {0, 1, . . . , n − 1}.

If a partially ordered set (poset) (P,≤) has a minimum, it is denoted 0̂, and 1̂ for the
maximum. The cover relations of P are denoted x ⋖ y and we say that y covers x or x is
covered by y. They form the set E(P) of the edges of its Hasse diagram, which is draw
with smaller elements at the bottom. The interval of P between x and y is denoted by
[x, y]. Its Möbius function is written µ(x, y). A subset C of P is convex if for all x and y in
C, we have [x, y] ⊆ C. An order ideal of a poset P is a subset I such that for all x, y ∈ P, if
y ≤ x and x ∈ I, then y ∈ I. Dually, an order filter is a subset F such that for all x, y ∈ P,
if y ≥ x and x ∈ F, then y ∈ F. The order ideal generated by a subset C is denoted by
IP(C) := {y ∈ P | ∃x ∈ C, y ≤ x}. If C = {x}, IP({x}) is a principal order ideal and
is denoted by IP(x). The poset ordered by inclusion on the order ideals of a poset P is
denoted J(P). The number of order ideals of P, which is also its number of order filters,
is |J(P)|. We denote by Cn the chain 0 < 1 < · · · < n − 1. We also call chains the totally
ordered subsets of P. Equivalently, they are the image of an injective order preserving
map ϕ : {0, 1, . . . , n} → P, and we will use ϕ : ϕ(0) < ϕ(1) < · · · < ϕ(n) to denote
them. In this case, the length of this chain is n. If we cannot add elements to a chain, it
is called a maximal chain. The length of a poset, denoted ℓ(P), is the maximum length
of a chain in P. The chains of length ℓ(P) are called longest chains. The spine of a poset
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is the subset of the elements that lie on any chain of longest length. A linear extension
of a poset (P,≤) is a total order ≺ on P such that x ≤ y implies x ≺ y. If P and Q are
two posets, then the direct product P × Q is the poset on the cartesian product P × Q
defined by (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′.

A lattice L is a poset such that any pair of elements {x, y} admits a least upper bound,
called the join and written x∨ y, and a greatest lower bound, called the meet and written
x ∧ y. We will denote Tamn the Tamari lattice of size n which has cardinality 1

n+1(
2n
n ).

All posets and lattices considered in this extended abstract are assumed to be finite, thus
the following definitions are given for a finite lattice L. A join-irreducible j ∈ L is an
element that covers a unique element, denoted j∗, and a meet-irreducible m ∈ L is one
that is covered by a unique element. The sets of these elements are respectively denoted
J Irr(L) and MIrr(L). An edge-labelling of L is a map γ : E(L) → P where P is a poset.
It is well known that in a lattice, an element is always the join of the join-irreducibles
below it, and it follows that ℓ(L) ≤ |JIrr(L)| (or |MIrr(L)|).

Definition 2.1. A lattice L is join-extremal if ℓ(L) = |JIrr(L)|, meet-extremal if ℓ(L) =
|MIrr(L)| and extremal if it is both join and meet-extremal.

Definition 2.2. A lattice L is join-semidistributive (JSD) if for all x, y, z ∈ L, we have
x ∨ y = x ∨ z =⇒ x ∨ (y ∧ z) = x ∨ y. It is meet-semidistributive if for all x, y, z ∈ L, we
have x ∧ y = x ∧ z =⇒ x ∧ (y ∨ z) = x ∨ y. It is semidistributive (SD) if it is both join and
meet-semidistributive.

Lemma 2.3 ([6]). A lattice L is SD if and only if L is JSD and |JIrr(L)| = |MIrr(L)| .

Lemma 2.4. A lattice L is JSD if and only if for all covers b ⋖ c, the set IL(c) \ IL(b) has a
minimum element. In this case, the minimum is a join-irreducible element.

Thus by Lemma 2.4, if L is JSD then γ : E(L) → JIrr(L) that sends a cover b ⋖ c to
min(IL(c) \ IL(b)) is a well defined edge-labelling.

Definition 2.5. An element a ∈ L is left modular if for all b < c in L, we have (b ∨ a) ∧ c =
b ∨ (a ∧ c). A maximal chain made of left modular elements is called a maximal left modular
chain. The lattice L is left modular if there exists a maximal left modular chain.

We refer the reader to [2] for details related to the following topological notions.
Denote L := L \ {0̂, 1̂}. The order complex ∆(P) of a poset P is the simplicial complex of
vertex set P whose faces are the chains of P. An EL-labelling of a lattice L is an edge-
labelling such that in any interval, when reading the labels following the chains from
bottom to top, there is a unique maximal increasing chain and the label word of the
increasing chain lexicographically precedes the label word of any other maximal chains.
If L admits an EL-labelling, then its order complex ∆(L) is shellable and homotopy
equivalent to a wedge of spheres. Moreover, for all x and y in L we have that µ(x, y) is
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given by the difference between the number of even length maximal decreasing chains
and the number of odd length maximal decreasing chains. Thus if L has at most one
maximal decreasing chain in any interval, then µ(x, y) ∈ {−1, 0, 1} for all x, y ∈ L and
the order complex of each non-empty open interval ]x, y[ has the homotopy type of either
a sphere or a point. Any left modular lattice admits an EL-labelling (see Remark 3.3).

Definition 2.6. Let C be a convex subset of L. The doubling L[C] is the subposet of L × C2
consisting of the subset

(
IL(C)× {0}

) ⊔ [(
(L \ IL(C)) ∪ C

)
× {1}

]
. It is in fact a lattice.

See Figure 2 for examples of the doubling construction. A subset C is a lower pseudo-
interval if C is a union of intervals sharing the same minimum element. A lattice L is
congruence normal if it is obtained from the one element lattice by successive dou-
blings of convex subsets [4]. If at each step we double a lower pseudo-interval then L
is join-congruence uniform (often called lower-bounded in the literature). If we use only
doublings of intervals, L is called congruence uniform.

A (lattice) congruence on L is an equivalence relation ≡ on L such that for all
x1, x2, y1, y2 in L, we have that x1 ≡ x2 and y1 ≡ y2 imply both x1 ∧ y1 ≡ x2 ∧ y2 and
x1 ∨ y1 ≡ x2 ∨ y2. We identify the congruences ≡ with the set of join-irreducibles j that
they contract, meaning j∗ ≡ j (two congruences are the same exactly when these sets are
the same). Let D, called the join dependency relation, be the binary relation on JIrr(L)
defined by pDq if p ̸= q and there exists x ∈ L such that p ≤ q ∨ x and p ̸≤ q∗ ∨ x. A
D-cycle is a sequence of elements a1, a2, . . . , ak with k ≥ 2 such that a1Da2D · · · DakDa1.

Proposition 2.7 ([6]). The lattice L is join-congruence uniform if and only if it contains no
D-cycles. In this case, the congruences of L correspond to the subsets T ⊆ JIrr(L) such that if
aDb and b ∈ T, then a ∈ T.

3 New results on lattices

In this section, we give some general results on lattices. First about left modular lattices.
Here the edge-labellings are maps from E(L) to N.

Definition 3.1. Let L be a lattice. Denote ϕ : 0̂ = x0 < · · · < xk = 1̂ a chain containing
0̂ and 1̂. For j ∈ JIrr(L), denote δ(j) := min{i | j ≤ xi}. For m ∈ MIrr, denote β(m) :=
max{i |m ≥ xi−1}. We define 4 edge-labellings; for a cover relation b ⋖ c (see Figure 1a)

γ1(b ⋖ c) := min{δ(j) | j ∈ JIrr(L), j ≤ c, j ̸≤ b}, γ2(b ⋖ c) := min{i | b ∨ xi ≥ c},
γ3(b ⋖ c) := max{β(m) |m ∈ MIrr(L), m ≥ b, m ̸≥ c}, γ4(b ⋖ c) := max{i | c ∧ xi−1 ≤ b}

Theorem 3.2. For any lattice L, we have γ2 = γ3 ≤ γ1 = γ4. Moreover γ2 = γ4 if and only if
for all i, xi is left modular.
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because of b ⋖ c.
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(b) The elements of the blue maximal chain ϕ are
all comparable to at least one element in C.

Figure 1

Remark 3.3. S.-C. Liu proved in [8], for the case of a longest chain ϕ, that γ2 ≤ γ1 and that if
for all i, xi is left modular, then γ2 = γ1. He also proved that the equal labellings that we obtain
starting from a maximal left modular chain is an EL-labelling. What we add to the story, other
than an easier proof, is a way to use these labellings to prove that lattices are left modular.

Using this approach, we get a simpler proof of the following.

Corollary 3.4 ([11, Theorem 1.4]). Semidistributive extremal lattices are left modular.

Proof. Since L is extremal, the choice of any longest chain ϕ : 0̂ = x0 ⋖ · · ·⋖ xn = 1̂ gives
a numbering of the join and meet-irreducibles j1, j2, . . . , jn and m1, m2, . . . , mn such that
xi = j1 ∨ · · · ∨ ji = mi+1 ∧ · · · ∧ mn. The semidistributivity condition gives two equal
labellings of the cover relations γ(b ⋖ c) := i if min(IL(c) \ IL(b)) = ji or equivalently if
max(FL(b) \ FL(c)) = mi. These two labellings are respectively γ1 and γ3. Thus γ1 = γ3
and using Theorem 3.2 we obtain that L is left modular.

We now turn our attention to congruence normal lattices, characterizing those that
are extremal or left modular by necessary and sufficient conditions on each doubling.

Proposition 3.5. Let L be a congruence normal lattice. Then L is join-extremal if and only if
it is join-congruence uniform and at each doubling step we double a lower pseudo-interval that
contains an element of the spine. The lattice L is extremal if and only if it is congruence uniform
and at each doubling step we double an interval that contains an element of the spine.

In the sequel C is a convex subset of L and smaller and bigger refer to weak relations.
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Figure 2: We represent 3 successive doublings. The left modular elements are the blue
dots. The thick red edges form the convex subsets C that we double and we circled the
elements of H(C).

Definition 3.6. Let us call the heart of C, written H(C), the set of elements of C that are smaller
than all the maximal elements of C and bigger than all the minimal elements of C.

Theorem 3.7. Let L be a congruence normal lattice. Then L is left modular if and only if at each
doubling step by C we have that H(C) has an element that lies on a maximal left modular chain.

We give the two main ingredients (Lemmas 3.8 and 3.9) that lead to a proof of Theo-
rem 3.7, that are interesting in their own right. See Figure 2 for an example of Lemma 3.8
and Figure 1b for a counter-example to Lemma 3.9 when L is not a lattice.

Lemma 3.8. We have (b, 0) ∈ L[C] is left modular if and only if b ∈ L is left modular and b is
smaller than all the maximal elements of C. We have (b, 1) ∈ L[C] is left modular if and only
if b ∈ L is left modular and b is bigger than all the minimal elements of C. Thus (b, 0)⋖ (b, 1)
with b ∈ C are two left modular elements if and only if b ∈ L is left modular and b ∈ H(C).

Lemma 3.9. All the maximal chains that do not intersect C contain an element that is neither
smaller than all the maximal elements of C nor bigger than all its minimal elements.

Lemma 3.10. The elements of the spine of an extremal congruence uniform lattice are left mod-
ular.

Using Theorem 3.7 and Lemma 3.10 we obtain

Corollary 3.11. Join-congruence uniform left modular lattices are join-extremal. For congruence
uniform lattices, extremality and left modularity are equivalent.

Remark 3.12. Lemma 3.10 is a special case of combining results of [12, 11], but is proved in our
context by a simple induction. The first statement of Corollary 3.11 is a special case of Theorem
3.2 of [9], as these lattices are JSD. Combining this with Corollary 3.4 gives, as was observed in
[9], a generalization of the last statement of Corollary 3.11 to all SD lattices.
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4 The (P, ϕ)-Tamari lattices

In this extended abstract we restrict ourselves to finite posets P with a minimum 0̂ and
chains ϕ : ϕ(0) = 0̂ < ϕ(1) < · · · < ϕ(n − 1) (an exception is made in Section 5.1). In
the sequel, let us fix such a poset P and chain ϕ in P.

4.1 Definition and first properties of (P, ϕ)-Tamari

For all k < n, denote Ck := IP(ϕ(k))× {k}. The poset Ck is called the kth component of
the poset Cϕ

P :=
⊔

k<n Ck. We will later consider on Cϕ
P another partial order ≤prod, called

the product order, defined by (x, i) ≤prod (y, j) if and only if x ≤ y and i ≤ j. We denote
ai,j := (ϕ(j − i), j) for all i < j < n. In Ck these elements satisfy a0,k > a1,k > · · · > ak,k
and a0,k and ak,k are respectively the maximum and minimum elements of Ck.

Definition 4.1. Let F be an order filter of Cϕ
P . Then F is torclosed if for all i and j such that

i < j < n, we have that (x, i) ∈ F together with (ϕ(i + 1), j) ∈ F implies that (x, j) ∈ F.
We call (P, ϕ)-Tamari the poset ordered by inclusion on the torclosed subsets of Cϕ

P . Since
the intersection of torclosed subsets is torclosed, it is a lattice with meet given by intersection,
that we denote Tam (P, ϕ).

Remark 4.2. See Figure 3 for an example and Propositions 4.8 and 5.2 for a justification of the
name. The name torclosed for F comes from the analogy with the torsion classes ; in special cases
(see Section 5.2) F being an order filter means closed by quotients, and the other condition means
closed by extensions.

Proposition 4.3. Tam (P, ϕ) has a minimum element ∅ and a maximum element Cϕ
P . Its atoms

and coatoms are respectively {(ϕ(k), k)} and Cϕ
P \ Ck, for any k < n.

Lemma 4.4. Let b ⋖ c be a cover of Tam (P, ϕ). Then there exists k < n such that c \ b ⊆ Ck
and it has a maximum element.

Proposition 4.5. The join-irreducibles of Tam (P, ϕ) are the non-empty principal order filters
of Cϕ

P . Thus | JIrr(Tam (P, ϕ)) | = |Cϕ
P |. The meet-irreducibles are in one to one correspondence

with the pairs of elements ((x, k), a) where (x, k) ∈ Cϕ
P and a = (0̂, k) or a = aj,k where x is

incomparable to aj,k. For such a pair ((x, k), a), denote l := min{i | x ∈ IP(ϕ(i))}; then the

meet-irreducible is
( ⋃

i<l−1

Ci

) ⋃ ( ⋃
l≤i≤k

{(y, i) ∈ Cϕ
P | y ̸≤ x, (y, k) ̸≤ a}

) ⋃ ( ⋃
k<i<n

Ci

)
.

Proposition 4.6. Tam (P, ϕ) is join-semidistributive. Moreover Tam (P, ϕ) is semidistributive
if and only if all the elements of IP(ϕ(n − 1)) are comparable to all the elements of the chain ϕ.
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Figure 3

Proof. The first statement follows from Lemmas 2.4 and 4.4. The second statement from
Lemma 2.3 and Proposition 4.5.

See Figure 3 for the smallest counter-example to semdistributivity.

Proposition 4.7. The spine and chains of longest length of Tam (P, ϕ) correspond respectively
to the order filters and linear extensions of the poset (Cϕ

P ,≤prod). Thus ℓ(Tam (P, ϕ)) = |Cϕ
P |

and with Proposition 4.5 it is a join-extremal lattice.

Proposition 4.8. The induced subposet of Tam (P, ϕ) on the torclosed subsets that are order
filters generated by some of the ai,j is a sublattice and is isomorphic to Tamn+1.

Example 4.9. In Figure 3b, forgetting the torclosed subsets {1, 2}, {1, 2, 3}, {1, 2, 7} and
{1, 2, 3, 5} gives the sublattice Tam4.

Denote mϕ
P := |Tam (P, ϕ)| and Ii := IP(ϕ(i)) for all i < n. Proposition 4.8 gives

mϕ
P ≥ 1

n+2(
2n+2
n+1 ). Counting torclosed subsets with elements in only one component gives

another lower bound ∑i<n |Ii| − (n − 1). An obvious upper bound is |I0| × |I1| × · · · ×
|In−1|. If ϕ has one element then mϕ

P = 2 and if ϕ has 2 elements then mϕ
P = 2 + |J(I1)|.

Proposition 4.10. If ϕ has 3 elements then mϕ
P = 1+ |J(I1)|+

∣∣J( (Cϕ
P , ≤prod)

)∣∣+ |J(I2 \ I1)|.

Example 4.11. For Figure 3b, Proposition 4.10 gives mϕ
P = 1 + 3 + 11 + 3 = 18 elements.

Question 4.12. Can we find a general formula for the number of elements of Tam (P, ϕ) ?
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4.2 Edge-labellings and congruences

The choice of any linear extension L : x1 ≻ x2 ≻ · · · ≻ x|Cϕ
P |

of
(
Cϕ

P ,≤prod
)

gives, by

Proposition 4.7, a longest chain ψL : ∅ ⋖ {x1}⋖ {x1, x2}⋖ · · ·⋖ {x1, x2, . . . , x|Cϕ
P |
}⋖ Cϕ

P

of Tam(P, ϕ). Moreover, L defines a numbering of the elements of Cϕ
P by assigning i

to the element xi. Thus, by Proposition 4.5 we get a numbering of JIrr(Tam(P, ϕ)); the
join-irreducible generated by xi being denoted by i. Using Lemma 4.4, we know (see Sec-
tion 2) that we have an edge-labelling of Tam (P, ϕ) that sends b⋖ c to the join-irreducible
generated by max(c \ b). Thus we get an edge-labelling ωL defined by ωL (b ⋖ c) := i
where max(c \ b) = xi. Then using the chain ψL in Definition 3.1, we obtain

Proposition 4.13. We have γ1 = ωL. We have γ2 = ωL if and only if L satisfies (x, j) ≻ (y, i),
for all j > i, and if (x, k) ̸≤ ai,k then (x, k) ≻ ai,k, for all (x, k) ∈ Ck and i ≤ k. Such linear
extensions exist.

Fix a linear extension L as described in Proposition 4.13. See Figure 3a for an example
with the associated numbering of Cϕ

P , and the edge-labelling ωL for Figure 3b is max(c \
b) for covers b ⋖ c. From Proposition 4.13, Theorem 3.2, and Remark 3.3 we can obtain

Theorem 4.14. Tam(P, ϕ) is left modular. The edge-labelling ωL is an EL-labelling such that
any interval has at most one decreasing chain. Thus for all intervals [x, y] of Tam(P, ϕ), we have
µ(x, y) ∈ {−1, 0, 1}.

We now turn our attention to the congruences of Tam(P, ϕ). The next result gives a
characterization of the D relation, where (x, k) represents the join-irreducible generated
by (x, k). With Proposition 2.7 it implies Theorem 4.17.

Proposition 4.15. We have (x, i) D (y, i) if and only if there exists k ≤ i such that y = ϕ(k)
and y ̸≤ x. For all i ̸= j, we have (x, j) D (y, i) if and only if i < j, y ≤ x, ϕ(i + 1) ̸≤ x and
there is no y′ ≤ ϕ(i) such that y < y′ ≤ x.

Example 4.16. In Figure 3a, the D relations between elements in the same component are
6D5, 4D3, 4D1, 3D1, 2D3, 2D1 and the others relations are 6D7, 4D7, 2D7, 4D6, 3D5, 2D5.

Theorem 4.17. Tam(P, ϕ) is join-congruence uniform.

Definition 4.18. Let K := (K0, K1, . . . , Kn−1) be a non-decreasing sequence of non-negative
integers such that Ki ≤ i for all i < n. Denote RK := {(x, i) ∈ Cϕ

P | x ≥ ϕ(Ki)}. On Tam(P, ϕ)
we define the Kupisch equivalence relation F ≡K F′ if and only if F ∩ RK = F′ ∩ RK.

Using Propositions 2.7 and 4.15 we obtain

Proposition 4.19. A Kupisch equivalence relation is a lattice congruence of Tam(P, ϕ).
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5 Main examples

5.1 The case of the chains

We assume that P = Cn is a chain and ϕ is a chain of Cn. In this case, we also consider
chains ϕ of P such that ϕ(0) ̸= 0 and we can prove that we still get a lattice Tam(Cn, ϕ).
The components Ck for k < n are themselves chains, and we identify a torclosed subset F
as the word on non-negative integers u = u1u2 . . . un where for all i ∈ [n], ui := |Ci−1 ∩ F|.
Lemma 5.1. The word u corresponds to a torclosed subset if and only if for all i ∈ [n], ui ≤
ϕ(i − 1) + 1, and for all i ∈ [n] and k ∈ [n − i], we have that ui+k > ϕ(i + k) − ϕ(i + 1)
together with ui ̸= 0 implies ui+k ≥ ui + ϕ(i + k)− ϕ(i).

Let p be a positive integer. For simplicity, we assume that P = Cnp and ϕ(i) =
(i + 1) p − 1 for all i < n. For all i ∈ [n], draw a segment from (i − 1, 0) to (i − 1, ui) in
the Cartesian plane. Then Lemma 5.1 says that one can draw lines of slope p passing
through the x-axis and the top of each segment without crossing any segment. For p = 1
we recover a well-known description of the Tamari lattice due to Pallo.

Proposition 5.2 ([10]). Tam(Cn, Cn) = Tamn+1.

Combe and Giraudo [3] also obtained similar, but different, generalizations of the
Tamari lattice called δ-canyon lattices. The tools that they have developed can be used
in our model. We obtain

Proposition 5.3. Tam(Cn, ϕ) is a congruence uniform left modular lattice.

5.2 d-torsion classes of the higher Auslander algebras of type A

Let d and n be positive integers. Let osd
n be the set of non-decreasing d-sequences of

elements of {0, 1, . . . , n − 1}. Let ≤prod be the product order on osd
n. The d-torsion classes

of the higher Auslander algebras of type A are identified with the subsets I ⊆ osd+1
n

that satisfy conditions (1) and (2) of Theorem 5.13 of [1]. Denote Ld
n the lattice of these

d-torsion classes ordered by inclusion. Using elementary techniques, we obtain

Lemma 5.4. Conditions (1) and (2) of Theorem 5.13 of [1] are equivalent to conditions (1) and

(2′) : ∀j > i,
(
(x1, x2, . . . , xd, i), (i + 1, . . . , i + 1, j)

)
∈ I2 implies (x1, x2, . . . , xd, j) ∈ I.

Theorem 5.5. Ld
n = Tam

(
(osd

n,≤prod), ϕ
)

with ϕ defined by ϕ(k) = (k, k, . . . , k) for all k < n.

Proof. As they are both posets ordered by inclusion, we just have to prove that the d-
torsion classes I are the torclosed subsets. Recall the definition of Cϕ

P in Section 4.1.
Condition (1) says that for any i < n, the subset {x ∈ I | xd+1 = i} is an order filter of
{x ∈ osd+1

n | xd+1 = i} for the product order ([1, Remark 5.14]). Thus I is an order filter
of Cϕ

P . Since (ϕ(i + 1), j) = (i + 1, . . . , i + 1, j), the result follows from Lemma 5.4.
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Corollary 5.6. The lattice Ld
n inherits all properties of Tam (P, ϕ). In particular it is a join-

semidistributive lattice, and is semidistributive if and only if n ≤ 2 or d = 1. The spine of Ld
n is

J(osd+1
n ). We have ℓ(Ld

n) = |JIrr(Ld
n)| = (n+d

d+1) and

|MIrr(Ld
n)| =

(
n + d
d + 1

)
+

n−1

∑
i=0

i

∑
j=0

i−j−1

∑
k=0

j

∑
l=1

(
d + i + l − j − k − 2

d − 2

)
.

Proposition 5.7. We have an isomorphism of posets between osd
n and osn−1

d+1 , thus |J(osd
n)| =

|J(osn−1
d+1)|. We have that |J(osd

n)| is the number of totally symmetric d-dimensional partitions
which fit in an d-dimensional box whose sides all have length n. We deduce that |J(osd

3)| = 2d+1

and |J(osd
4)| = ad+1 where a is sequence A005157 of OEIS.

Proposition 5.8. For all d ≥ 1, |Ld
3| = d + 3 + 5 × 2d. Denote by K1 := [0 · · · 022, 13 · · · 3],

K2 := [0 · · · 023, 13 · · · 3] and K3 := {x ∈ osd+1
4 | x ̸≥ 1 · · · 13} three subposets of osd+1

4 . Then

|Ld
4| = 8 + d + 3 × 2d+1 + (d + 4) (ad − 1) +

d

∑
i=2

ai + 2
(
|J(K1)|+ |J(K2)|

)
+ |J(K3)| (5.1)

Remark 5.9. With Proposition 5.7 and (5.1), we are able to compute |L7
4| = 6543848 and

|L8
4| = 130286256. It completes column n = 4 of Table 2 of [1].

Conjecture 5.10. For n fixed, |Ld
n| = Od→∞

(
|J(osd+1

n )|
)
.

5.3 d-torsion classes of the higher Nakayama algebras of type A

We keep the notations from Section 5.2. A Kupisch series of type An is a sequence
l = (l0, l1, . . . , ln−1) of positive integers satisfying l0 = 1 and ∀i ≥ 1, 2 ≤ li ≤ li−1 + 1.
We define osd+1

l := {y = (y1, . . . , yd+1) ∈ osd+1
n | y1 ≥ yd+1 − lyd+1 + 1} ⊆ osd+1

n . We
denote Ld

l the lattice ordered by inclusion of the d-torsion classes of the higher Nakayama
algebra of type A associated to l (see [1, Section 6.1] for the details). We can prove

Lemma 5.11. Ld
l is the lattice ordered by inclusion on the subsets I ∩ osd+1

l ⊆ osd+1
l for all

torclosed subset I ⊆ osd+1
n .

Theorem 5.12. Ld
l is a lattice quotient of Ld

n. It inherits the properties of Tam (P, ϕ) that are
preserved by lattice quotient. In particular it is a join-semidistributive lattice.

Proof. Using Lemma 5.11, the elements of Ld
l identify with the equivalence classes of

the relation ≡N on Ld
n defined by I ≡N I′ if and only if I ∩ osd+1

l = I′ ∩ osd+1
l . Re-

call Theorem 5.5 that says that Ld
n = Tam

(
(osd

n,≤prod), ϕ
)

with ϕ defined by ϕ(i) =

(i, i, . . . , i) for all i < n. Then ≡N is the Kupisch equivalence relation ≡K on Ld
n for

K = (K0, K1, . . . , Kn−1) where Ki := max(0, i − li + 1) for all i < n. We conclude using
Proposition 4.19.
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We conclude with an open question.

Question 5.13. Do the higher torsion classes of a d-cluster tilting subcategory always form a
join-semidistributive lattice ?
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