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Abstract. We prove that the Chow ring and augmented Chow ring of a matroid are
equivariant γ-positive under the action of any group of automorphisms of the matroid.
This verifies a conjecture of Angarone, Nathanson, and Reiner. Our method gives an
explicit interpretation for the coefficients of the equivariant γ-expansion, and extends
the author’s previous results regarding the positivity of the equivariant Charney–Davis
quantity of matroids. Applying the theorems to uniform matroids, we obtain inter-
pretations that extend Shareshian and Wachs’ Schur-γ-positivity of the Eulerian and
binomial Eulerian quasisymmetric functions, or equivalently, of the cohomologies of
the permutahedral and the stellahedral varieties.
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1 Introduction

Given a finite sequence, there are many features that one can look for in the sequence.
A sequence {ai}d

i=0 or a polynomial f (t) = ∑d
i=0 aiti of degree d is said to be palindromic

if aj = ad−j for all j = 0, 1, . . . , d. It is said to be unimodal if there is some 0 ≤ j ≤ d
such that a0 ≤ a1 ≤ · · · ≤ aj ≥ · · · ≥ ad−1 ≥ ad. A palindromic polynomial f (t) can be
uniquely expressed as

f (t) =
⌊ d

2 ⌋

∑
k=0

γktk(1 + t)d−2k.

We call the right-hand-side the γ-expansion of f (t), and say that f (t) is γ-positive (or
γ-nonnegative) if γk ≥ 0 for all k. It is not hard to see that a polynomial being γ-
positive implies that it is both palindromic and unimodal. Although the γ-positivity is
interesting to combinatorialists in its own right, this property has a connection to Gal’s
conjecture in discrete geometry, and hence has drawn much attention from researchers
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in combinatorics, discrete geometry, and commutative algebra. For more details about
γ-positivity, we refer the readers to the survey [3] by Athanasiadis.

Let M be a loopless matroid on the ground set E. The Chow ring of the matroid M
encodes information about the lattice of flats L(M) and is defined as

A(M) := R[xF : F ∈ L(M) \ {∅}]/(I + J)

where I = (xFxF′ : F, F′ not comparable) and J = (∑F:i∈F xF : i ∈ E). The augmented
Chow ring of M is an extension of A(M) encoding both information from L(M) and the
independence complex I(M), and is defined as

Ã(M) := R[{xF : F ∈ L(M) \ {[n]}} ∪ {yi : i ∈ E}]/( Ĩ + J̃)

where Ĩ = (xFxF′ : F, F′ not comparable) + (yixF : i /∈ F) and J̃ = (yi − ∑F:i/∈F xF : i ∈ E).
Despite the seemingly complicated presentation, the Chow ring A(M) has a very nice
R-basis called the Feichtner–Yuzvinsky basis

FY(M) :=
{

xa1
F1

xa2
F2

. . . xaℓ
Fℓ

: ∅=F0⊊F1⊊F2⊊...⊊Fℓ for 0≤ℓ≤n
1≤ai≤rkM(Fi)−rkM(Fi−1)−1

}
, (1.1)

which is induced by the Gröbner basis of the ideal I + J found by Feichtner and Yuzvin-
sky [9]. There is a similar Feichtner–Yuzvinsky basis for the augmented Chow ring
Ã(M),

F̃Y(M) :=
{

xa1
F1

xa2
F2

. . . xaℓ
Fℓ

:
∅⊊F1⊊F2⊊...⊊Fℓ for 0≤ℓ≤n

1≤a1≤rkM(F1),
1≤ai≤rkM(Fi)−rkM(Fi−1)−1 for i≥2

}
, (1.2)

found by the author [14, 16] and independently by Eur, Huh, and Larson [8]. The Chow
rings and augmented Chow rings of matroids play important roles in settling the long-
standing Rota–Welsh conjecture and Dowling–Wilson top-heavy conjecture, respectively.
They are shown to satisfy the so-called Kähler package (see [1] for Chow rings and [5] for
augmented Chow rings). In this package, the Poincaré duality implies that the Hilbert
series of the two rings are palindromic, and the hard Lefschetz theorem implies that
the Hilbert series are unimodal. The γ-positivity of the Hilbert series was shown by
Ferroni, Matherne, Stevens, and Vecchi [10], and independently by Wang [10, p.33],
using the semismall decomposition introduced in [6]. However, no interpretation of the
coefficients γk was known.

In [2], Angarone, Nathanson, and Reiner further conjectured that the matroid Chow
rings, under the action of groups of automorphisms of the corresponding matroid, are
equivariant γ-positive (see Section 3 for the definition). In this extended abstract, we
present a proof of this conjecture using only the Feichtner–Yuzvinsky bases and a result
in Stanley’s classical paper [20] (see Theorem 2.1). Our method is motivated by the au-
thor’s proof of the positivity of the equivariant Charney–Davis quantity of matroids in
[15], and it gives an explicit interpretation of the γ-coefficients, which is stated in Sec-
tion 3. We present the proof in Section 4. In Section 5, we apply our results to uniform
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matroids, in which case the Hilbert series of the (augmented) Chow rings have been
studied in Hameister, Rao, and Simpson [12], Liao [15], and Hoster [13]. Our results
extend Shareshian and Wachs’ Schur-γ-positivity of the (binomial) Eulerian quasisym-
metric functions, and equivalently the equivariant γ-positivities on the cohomologies of
the permutahedral and the stellohedral varieties in [17, 18].

In a recent preprint, Stump [23] also independently gives an interpretation for the
coefficients of the (non-equivariant) γ-expansion for Chow rings and augmented Chow
rings of matroids using a certain evaluation of the Poincaré extended ab-index introduced
in [7]. He interprets the γ-coefficient as the number of maximal chains in L(M) with
fixed descent set under some R-labeling. This agrees with the result in this paper, fol-
lowing from Stanley [19, Theorem 3.1].

In [10], the Hilbert series of Chow rings and augmented Chow rings of matroids are
called Chow and augmented Chow polynomial of matroids. In an upcoming paper [11],
Ferroni, Matherne, and Vecchi generalize Chow and augmented Chow polynomials to
arbitrary graded posets. They show that Chow and augmented Chow polynomials are
γ-positive for Cohen–Macaulay posets using a method similar to this work.

2 Group actions on posets

For non-negative integers a ≤ b, let [a, b] := {a, a + 1, . . . , b}; and in particular, if a = 1,
we write [b] instead of [1, b].

Let P be a finite poset with a unique minimal element 0̂ and a unique maximal
element 1̂. If P is graded of rank n with rank function rkP : P −→ [0, n], then for
S ⊆ [n − 1], the rank-selected subposet of P is

PS := {x ∈ P : rkP(x) ∈ S} ∪ {0̂, 1̂}.

Consider a group G of automorphisms of P acting on the poset P. The action of G
preserves the rank of the elements in P; hence for any S ⊆ [n − 1], the group G permutes
the maximal chains in PS. Let us denote αP(S) the permutation representation of G
generated by the maximal chains in PS. Consider the virtual representation

βP(S) := ∑
T⊆S

(−1)|S|−|T|αP(T).

By Möbius inversion, we also have αP(S) = ∑T⊆S βP(T).

Theorem 2.1 (Stanley [20]). If P is Cohen–Macaulay, then βP(S) is a genuine representation
of G and

βP(S) ∼=G H̃|S|−1(PS).
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Remark 2.2. The dimension (rank) of βP(S) is given by the Möbius function
(−1)|S|−1µ(PS) and is the number of maximal chains in P whose Jordan–Hölder se-
quences have descent set S. See Stanley [19, Theorem 3.1] or Björner [4, Theorem 2.7].

Throughout this paper, the poset P we care about is always the lattice of flats of a
matroid. It is well known that the lattice of flats of a matroid is always Cohen–Macaulay.

3 Main results on equivariant γ-positivity

Let G be a finite group. For a CG-module M, let [M] be the isomorphism class of CG-
modules containing M.

Definition 3.1. The Grothendieck ring RC(G) of CG-modules is a free abelian group hav-
ing the transversal of isomorphism classes of simple CG-modules {[Si], . . . , [Scc(G)]} as
a Z-basis, where cc(G) is the number of conjugacy classes of G, with the addition and
multiplication relations given by

[Si] + [Sj] := [Si ⊕ Sj] and [Si] · [Sj] := [Si ⊗C Sj]

for 1 ≤ i, j ≤ cc(G) and extended linearly over C. Now every element A in RC(G) has a
unique expression as a = ∑

cc(G)
i=1 ai[Si]. We say A is a genuine representation of G if ai ≥ 0

for all i, denoted by A ≥RC(G) 0.

Given a graded CG-module V =
⊕

i Vi, define the equivariant Hilbert series of V to be
the formal power series

HilbG(V, t) = ∑
i
[Vi]ti ∈ RC(G)[[t]].

Definition 3.2. For a finitely dimensional graded CG-module V =
⊕d

i=0 Vi, we say that
V is (G- )equivarant γ-positive if its equivariant Hilbert series can be expressed as

HilbG(V, t) =
d

∑
i=0

[Vi]ti =
⌊ d

2 ⌋

∑
k=0

γktk(1 + t)d−2k

and the uniquely defined coefficient γk ∈ RC(G) is a class of a genuine representation
of G over C for all k, i.e. γk ≥RC(G) 0 for all k.

Let M be a loopless matroid of rank r on the ground set E with the lattice of flats
L(M). Write A(M)C := A(M)⊗R C and Ã(M)C := Ã(M)⊗R C.

From now on, we let G be a group of automorphisms of matroid M. Consider the
induced action of G on the Chow ring A(M)C =

⊕r−1
i=0 Ai

C which gives each graded
piece Ai

C a CG-module structure. The following conjecture was proposed by Angarone,
Nathanson, and Reiner [2].
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Conjecture 3.3 ([2, Conjecture 5.2]). For any group G of automorphisms of M, the matroid
Chow ring A(M)C =

⊕r−1
i=0 Ai

C is (G-)equivariant γ-positive.

We prove Conjecture 3.3 and the equivariant γ-positivity of the augmented Chow
ring Ã(M) and obtain explicit G-representations as the coefficients in the equivariant
γ-expansions. Our method uses only the Feichtner–Yuzvinsky bases (1.1) and (1.2) and
Theorem 2.1. For S ⊆ [n], let Stab(S) denote the collection of subsets of S containing no
consecutive integers.

Theorem 3.4. The Chow ring A(M) is equivariant γ-positive with the following γ-expansion

HilbG(A(M)C, t) = ∑
S∈Stab([2,r−1])

[H̃|S|−1(L(M)S)]t|S|(1 + t)r−1−2|S|

=
⌊ r−1

2 ⌋

∑
k=0

 ∑
S∈Stab([2,r−1])

|S|=k

[H̃|S|−1(L(M)S)]

 tk(1 + t)r−1−2k.

Theorem 3.5. The augmented Chow ring Ã(M)C is equivariant γ-positve with

HilbG(Ã(M)C, t) = ∑
S∈Stab([r−1])

[H̃|S|−1(L(M)S)]t|S|(1 + t)r−2|S|

=
⌊ r

2 ⌋

∑
k=0

 ∑
S∈Stab([r−1])

|S|=k

[H̃|S|−1(L(M)S)]

 tk(1 + t)r−2k.

Remark 3.6. Theorem 3.4 and Theorem 3.5 generalize the author’s previous results in
[15], Theorem 4.9 and Theorem 4.12 respectively, regarding the equivariant Charney-
Davis quantities of Chow and augmented Chow rings of matroids.

4 Proof of Theorem 3.4

In this section, we present our proof of Theorem 3.4, the equivariant γ-positivity of Chow
rings of matroids. The augmented case, Theorem 3.5, can be proved in a similar way.

It is not hard to check that under the action of G, the Feichtner–Yuzvinsky bases
FY(M) and F̃Y(M) are permutation bases for A(M)C and Ã(M)C, respectively.

Proof of Theorem 3.4. Recall that the permutation basis FY(M) consisting of monomials
xa1

F1
xa2

F2
. . . xaℓ

Fℓ
for any chains (including empty chain)

∅ ̸= F1 ⊊ F2 ⊊ . . . ⊊ Fℓ ⊆ E



6 H-C. Liao

such that 1 ≤ aj ≤ rk(Fj)− rk(Fj−1)− 1 for all j. For a subset S = {s1 < s2 < . . . < sℓ} ⊆
[r − 1], the permutation CG-module generated by chains in L(M) whose rank set is S is

αL(M)(S) = CG{F1 ⊊ . . . ⊊ Fℓ : rk(Fi) = si ∀i}.
∼= CG{F1 ⊊ . . . ⊊ Fℓ ⊊ E : rk(Fi) = si ∀i}

Therefore, A(M) as a CG-module is the direct sum of αL(M)(S) with some multiplicities
for S ⊆ [r − 1]. Hence we have

HilbG(A(M)C, t) = ∑
S⊆[r−1]

ϕS,r(t)[αL(M)(S)] (4.1)

for some polynomials ϕS,r(t). To see what the polynomial ϕS,t(t) is, we consider a map
f : FY(M) −→ 2[r−1] defined by f (xa1

F1
xa2

F2
. . . xaℓ

Fℓ
xi

E) = {rk(F1), rk(F2), . . . , rk(Fℓ)} where
all flats Fi are distinct and are not E. Since for any S = {s1 < · · · < sℓ} ⊆ [r − 1],

f−1(S) =
{

xa1
F1

xa2
F2

. . . xaℓ
Fℓ

xi
E :

∅=F0⊊F1⊊···⊊Fℓ⊊E with rk(Fj)=sj
1≤aj≤sj−sj−1−1 for j=1,2...,ℓ

0≤i≤r−sℓ−1

}
,

the polynomials that count the multiplicities are

ϕS,r(t) = (t + t2 + · · ·+ ts1−1) . . . (t + t2 + · · ·+ tsℓ−sℓ−1−1)(1 + t + · · ·+ tr−sℓ−1)

= t|S|[s1 − 1]t[s2 − s1 − 1]t . . . [sℓ − sℓ−1 − 1]t[r − sℓ]t,

where [n]t := 1+ t + . . . + tn−1 for n ≥ 1 and [0]t := 0. Note that ϕS,r(t) = 0 if sj − sj−1 =
1 for some 1 ≤ j ≤ ℓ, and [r − sℓ]t = 1 if r − 1 ∈ S. Therefore, ϕS,r(t) takes nonzero value
when S ∈ Stab([2, r − 1]). The identity (4.1) can be rewritten as follows:

HilbG(A(M)C, t) = ∑
S∈Stab([2,r−1])

ϕS,r(t)[αL(M)(S)] = ∑
S∈Stab([2,r−1])

ϕS,r(t) ∑
T:T⊆S

[βL(M)(T)]

= ∑
T∈Stab([2,r−1])

 ∑
T⊆S⊆[r−1]

ϕS,r(t)

 [βL(M)(T)].

Surprisingly, it turns out that

∑
T⊆S⊆[r−1]

ϕS,r(t) = t|T|(1 + t)r−1−2|T|.

This fact and its proof will be presented later in Lemma 4.1. Combining with Theo-
rem 2.1, which states that βL(M)(T) is isomorphic to H̃|T|−1(L(M)T) as CG-modules, we
obtain

HilbG(A(M)C, t) = ∑
T∈Stab([2,r−1])

[βL(M)(T)]t
|T|(1 + t)r−1−2|T|

= ∑
T∈Stab([2,r−1])

[H̃|T|−1(L(M)T)]t|T|(1 + t)r−1−2|T|.



Equivariant γ-positivity 7

Lemma 4.1. For n ≥ 2 and any subset T ∈ Stab([2, n − 1]),

∑
T⊆S⊆[n−1]

ϕS,n(t) = t|T|(1 + t)n−1−2|T|, (4.2)

where
ϕS,n(t) = t|S|[s1 − 1]t[s2 − s1 − 1]t . . . [sℓ − sℓ−1 − 1]t[n − sℓ]t.

Note that ϕS,n(t) = 0 if S /∈ Stab([2, n − 1]).

To prove Lemma 4.1, we will use a combinatorial model motivated by Angarone,
Nathanson, and Reiner’s combinatorial proof of the permutation representation lift of
the Poincaré duality and the Hard Lefschetz theorem in [2, Theorem 1.1].

Definition 4.2. For n ≥ 2, consider sequences w = w1w2 . . . wn−1 in three symbols •, ×,
and a blank space , defined as follows:

(W1) If wi = •, then wi−1 = × (hence w1 ̸= • and there is no consecutive • in w).

Say that S = {s1 < s2 < . . . < sℓ} ⊆ Stab([2, n − 1]) is the set of indices s with ws = •.

(W2) If there is si < j < si+1 such that wj = ×, then wj = wj+1 = . . . = wsi+1−1 = ×.

(W3) If there is sℓ < j < n such that wj = ×, then wj = wj+1 = . . . = wn−1 = ×.

Denote by Wn the set of such sequences of length n − 1. For w ∈ Wn, let Dot(w) = {i ∈
[n − 1] : wi = •} and let cro(w) be the number of × in w.

Proof of Lemma 4.1. We show that (4.2) counts in two ways the sum of tcro(w) for se-
quences w in Wn satisfying Dot(w) ⊇ T.

First, for fixed S ⊇ T, S = {s1 < . . . < sℓ} ∈ Stab([2, n − 1]), a sequence w =
w1 . . . wn−1 ∈ Wn with Dot(w) = S has wsj = • for all j. Between wsj−1 and wsj , we have
wsj−1 = × and we can choose to place from 0 to sj − sj−1 − 1 consecutive ×s on the left
of × = wsj−1. Hence the section between wsj−1 and wsj contributes t[sj − sj−1 − 1]t. In
total, we have

∑
w∈Wn

Dot(w)=S

tcro(w) = t|S|[s1 − 1]t[s2 − s1 − 1]t . . . [sℓ − sℓ−1 − 1]t[n − sℓ]t = ϕS,n(t).

Therefore, ∑ w∈Wn
Dot(w)⊇T

tcro(w) = ∑T⊆S⊆[n−1] ϕS,n(t).

On the other hand, for any sequence w = w1 . . . wn−1 ∈ Wn with Dot(w) ⊇ T, since
wi = • for i ∈ T, by the definition of the sequence we have wi−1 = × for i ∈ T. These
× contribute the factor t|T| on the right hand side of (4.2). In the remaining n − 1 − 2|T|
positions, we can choose to place a × or not, which gives the factor (1 + t)n−1−2|T| on
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the right-hand side of (4.2). After this process, there is a unique way to add • so that the
sequence is in Wn. This implies that

∑
w∈Wn

Dot(w)⊇T

tcro(w) = t|T|(1 + t)n−1−2|T|.

Example 4.3. Here is an example of the procedure in the proof of Lemma 4.1. Let n = 12,
T = {3, 9} ⊆ Stab([2, 11]).

In the first part of the two-way counting, say S = {3, 5, 9} ⊇ T, so we place • at 3, 9
and × at 2, 8; and • at 5, × at 4 as follows:

1 2 3 4 5 6 7 8 9 10 11
× • × • × •

t[2]t t[1]t t[3]t [3]t

Then for example, between w5 = • and w9 = •, we can have either w6 = w7 =blank
spaces, w8 = ×; or w6 =blank space, w7 = w8 = ×; or w6 = w7 = w8 = ×. These three
cases contribute t + t2 + t3 = t[3]t. Hence we have

∑
w∈W12

Dot(w)={3,5,9}

tcro(w) = t[2]t · t[1]t · t[3]t · [3]t = t3[2]t[1]t[3]t[3]t.

In the second part of the two-way counting, we count sequences w with w3 = w9 = •
and w2 = w8 = ×. We can choose each of the remaining 7 positions to be either a × or a
blank space. For each choice there is exactly one way to add • to complete the sequence
in W12. Hence this implies

∑
w∈W12

Dot(w)⊇{3,9}

tcro(w) = t|{2,8}|(1 + t)|{1,4,5,6,7,10,11}| = t2(1 + t)12−1−2·2.

For example, say we choose w1 = w4 = w5 = w10 = ×, then we have

1 2 3 4 5 6 7 8 9 10 11
× × • × × × • × .

The only way to complete the above sequence into a sequence in W12 by adding • is as
follows:

1 2 3 4 5 6 7 8 9 10 11
× × • × × • × • × •

The augmented case can be proved similarly with a slightly different combinatorial
model.
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5 Uniform matroids and q-uniform matroids

In this section, we apply Theorem 3.4 and Theorem 3.5 to the uniform matroid Ur,n of
rank r and the symmetric group Sn. In this case, the lattice of flats L(Ur,n) is the rank-
selected subposet (Bn)[r−1] of the Boolean lattice Bn = (2[n],⊆). For the background on
representation theory of Sn, standard Young tableaux, and symmetric functions in this
section, we refer the readers to Wachs [24] and Stanley [21]. For an introduction to the
permutation statistics inv, maj, etc., see Chapter 1 of Stanley [22].

Let ch be the Frobenius characteristic map. For a graded CSn-module V =
⊕

i Vi, the
graded Frobenius series of V is defined to be grFrob(V, t) := ∑i ch(Vi)ti.

Let λ, µ be two partitions such that µ ⊆ λ (i.e. µi ≤ λi for all i). The connected skew
shape λ/µ is said to be a ribbon if two consecutive rows always overlap in exactly one
cell. A ribbon HR,n can be described in terms of the number n of its cells and its descent
set R ⊆ [n − 1]. Given a ribbon of n cells, we number its cells from 1 to n, filling left
to right in each row and filling the rows from bottommost to topmost. We call a cell i
a descent of the ribbon if cell i + 1 is directly above cell i. Then the collection of all its
descents is called its descent set.

Example 5.1. Let n = 7. Then the diagrams of H{2,4},7 and H{1,3},7 are

5 6 7
3 4

1 2

and 4 5 6 7
2 3
1

.

Let SHR,n be the Specht module of a ribbon shape, also known as the Foulkes representa-
tion of Sn, with ch(SHR,n) = sHR,n the ribbon Schur function.

Applying Theorem 3.4 to the uniform matroids Ur,n then from [20, Theorem 4.3]
or [24, Theorem 3.4.4], one obtains the graded Frobenius series of A(Ur,n)C. Applying
the operator ∏n

i=1(1 − qi)psq(−), where psq is the stable principle specialization, to the
graded Frobenius series gives the Hilbert series of the q-Uniform matroid Ur,n(q) (See
[15, Section 3] for the explanation). Note that the stable principle specialization on the
ribbon Schur function gives

n

∏
i=1

(1 − qi)psq(sHR,n) = ∑
σ∈Sn

DES(σ)=R

qmaj(σ−1) = ∑
σ∈Sn

DES(σ)=R

qinv(σ)

(see [18, Theorem 4.4] and its proof for a detailed discussion of the above identity).
The following corollary generalizes Corollary 4.10 and 4.11 in the author’s previous

work [15]. It also extends Shareshian and Wachs’ Theorem 7.3 in [17] and Corollary 3.2,
Theorem 4.4, Theorem 6.1 in [18] (when r = n or n − 1).
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Corollary 5.2. For any positive integer n and 1 ≤ r ≤ n,

grFrob(A(Ur,n)C, t) = ∑
R∈Stab([2,r−1])

sHR,n t|R|(1 + t)r−1−2|R|

=
⌊ r−1

2 ⌋

∑
k=0

 ∑
R∈Stab([2,r−1])

|R|=k

sHR,n

 tk(1 + t)r−1−2k

and

Hilb(A(Ur,n(q)), t) =
⌊ r−1

2 ⌋

∑
k=0

ξr,n,k(q)tk(1 + t)r−1−2k

where
ξr,n,k(q) = ∑

σ

qmaj(σ−1) = ∑
σ

qinv(σ)

and the sum runs through all σ ∈ Sn for which DES(σ) ∈ Stab([2, r − 1]) has k elements.

Similarly, for the augmented case, the following corollary generalizes Corollary 4.13
and 4.14 in the author’s previous work in [15]. It also extends Shareshian and Wachs’
Corollary 3.2, Theorem 3.4, 4.4, 4.5, and Corollary 5.4 in [18] (when r = n or n − 1).

Corollary 5.3. For any positive integer n and 1 ≤ r ≤ n,

grFrob(Ã(Ur,n)C, t) = ∑
R∈Stab([r−1])

sHR,n t|R|(1 + t)r−2|R|

=
⌊ r

2 ⌋

∑
k=0

 ∑
R∈Stab([r−1])

|R|=k

sHR,n

 tk(1 + t)r−2k

and

Hilb(Ã(Ur,n(q)), t) =
⌊ r

2 ⌋

∑
k=0

ξ̃r,n,k(q)tk(1 + t)r−2k,

where
ξ̃r,n,k(q) = ∑

σ

qmaj(σ−1) = ∑
σ

qinv(σ)

and the sum runs through all σ ∈ Sn for which DES(σ) ∈ Stab([r − 1]) has k elements.

For a partition λ of n, denoted by λ ⊢ n, let SYT(λ) be the set of standard Young
tableaux of shape λ. For P ∈ SYT(λ), let DES(P) be the set of entries (called descents)
i ∈ [n − 1] such that i + 1 appears in a lower row than i in P, and des(P) = |DES(P)|. Let
grFrob(A(Ur,n)C, t) = ∑λ⊢n Pr

λ(t)sλ and grFrob(Ã(Ur,n)C, t) = ∑λ⊢n P̃r
λ(t)sλ. The follow-

ing result generalizes Corollary 2.41 in Athanasiadis [3].
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Corollary 5.4. For λ ⊢ n, we have

Pr
λ(t) = ∑

P∈SYT(λ)
DES(P)∈Stab([2,r−1])

tdes(P)(1 + t)r−1−2des(P) =
⌊ r−1

2 ⌋

∑
k=0

ξr,λ,k tk(1 + t)r−1−2k

and

P̃r
λ(t) = ∑

P∈SYT(λ)
DES(P)∈Stab([r−1])

tdes(P)(1 + t)r−2des(P) =
⌊ r

2 ⌋

∑
k=0

ξ̃r,λ,k tk(1 + t)r−2k

where ξr,λ,k (respectively, ξ̃r,λ,k) is the number of tableaux P ∈ SYT(λ) for which DES(P) ∈
Stab([2, r − 1]) (respectively, Stab([r − 1])) has k elements. In particular, Pr

λ(t) and P̃r
λ(t) are

γ-positive for every r and every partition λ.
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