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Abstract. The Cambrian lattices, introduced in (Reading, 2006), generalize the Tamari
lattice to any choice of Coxeter element in any finite Coxeter group. They are further
generalized to the m-Cambrian lattices (Stump, Thomas, Williams, 2015). However,
their definitions do not provide a practical setup to work with combinatorially.

In this paper, we provide a new equivalent definition of the m-Cambrian lattices on
simple objects called m-noncrossing partitions, using a simple and effective compari-
son criterion. It is obtained by showing that each interval has a unique maximal chain
that is c-increasing, which is computed by a greedy algorithm. Our proof is uniform,
involving all Coxeter groups and all choices of Coxeter element at the same time.

Résumé. Les treillis cambriens, introduits dans (Reading, 2006), généralisent le treillis
de Tamari à tout choix d’élément de Coxeter dans tout groupe de Coxeter fini. Ils ont
été généralisé en les treillis m-cambriens (Stump, Thomas, Williams, 2015), mais ces
définitions ne fournissent pas de modèle combinatoire pratique.

Dans cet article, nous donnons une nouvelle définition des treillis m-cambriens sur des
objets simples appelés m-partitions non croisées, avec un critère de comparaison simple
et efficace. Elle est obtenue en montrant que chaque intervalle a une unique chaîne
maximale c-croissante, calculée par un algorithme glouton. La preuve est uniforme et
implique tous les groupes de Coxeter et tous les choix d’élément de Coxeter à la fois.

Keywords: m-Cambrian lattice, m-noncrossing partition, c-increasing chain, Tamari
lattice, subword complex

1 Introduction

The Tamari lattice, first defined by Tamari [12], enjoys many links to various domains in
combinatorics, see [9] and references therein. It can be defined in various perspectives,
thus also has many generalizations. Among them are the Cambrian lattices proposed by
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Figure 1: Schematic representation of the comparability condition ≤(m) on m-non-
crossing partitions giving an order isomorphic to the m-Cambrian lattice.

Reading [10] in the field of Coxeter combinatorics, defined for all finite Coxeter groups,
and parameterized by a choice of Coxeter element. Cambrian lattices were further gen-
eralized by Stump, Thomas and Williams in [11] to the m-Cambrian lattices, with several
equivalent definitions. However, even for linear type A, these descriptions remain diffi-
cult to manipulate combinatorially, which hinders our understanding of these lattices.

In this work, we propose a new definition of the m-Cambrian lattice over so-called m-
noncrossing partitions, which are multichains of m noncrossing partitions in the absolute
order. We define an easy comparison criterion on these simple objects involving only the
absolute order and the Cambrian lattice locally, as illustrated in Figure 1. We prove that
it gives an order relation, which is isomorphic to the m-Cambrian lattice.

To show that our new definition of the m-Cambrian lattice is equivalent to the original
ones in [11], we resort to another object called c-increasing chains, showing that they are
canonical certificates of intervals in m-Cambrian lattices. We also produce a simple
greedy algorithm to compute such c-increasing chains. To this end, we perform several
reductions to simpler cases, involving all parabolic subgroups and all choices of Coxeter
elements at the same time. Our proofs, already sketched in [4], rely on several definitions
of m-Cambrian lattices, especially on noncrossing partitions and subword complexes.

In the process, we also define a poset structure on intervals of any Cambrian lattice,
whose m-multichains correspond to intervals in the m-Cambrian lattice. This poset is
new to our knowledge, even for linear type A, where other poset on Tamari intervals
have been studied [5]. It might be a first step to understand the relation conjectured
in [11] between m-Cambrian intervals for linear type A and intervals in the m-Tamari
lattice introduced in [2], while the later were already enumerated in [3].

The rest of this article is organized as follows. We lay down the basic definitions in
Coxeter combinatorics and of m-Cambrian lattices in Section 2. Then in Section 3, we
detail our new definition of the m-Cambrian lattices and its connection with c-increasing
chains. We then sketch proof ideas of our results in Section 4. We conclude by Section 5
with some discussion on the new poset on Cambrian intervals.
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2 Preliminaries

2.1 Coxeter combinatorics

A Coxeter group is a group W with a finite set S of generators with s2 = e for s ∈ S,
subjected to relations (st)ms,t = e for ms,t ≥ 2. As a convention, the absence of relation
between s, t is denoted by ms,t = ∞. The pair (W,S) is called a Coxeter system, whose
rank is defined as |S|. The elements of S are called simple reflections, while the conjugates
of elements in S are called reflections, and we denote by R = {w−1sw | s ∈ S , w ∈ W}
the set of reflections. In the following, we consider only finite Coxeter systems, whose
study can be reduced to irreducible ones that have been fully classified in [6]. Given a
Coxeter system (W,S) and J ⊂ R conjugated to a subset of S , the parabolic subgroup WJ
is the subgroup of W generated by J. When J ⊂ S , we refer to WJ as a standard parabolic
subgroup. For J = S \ {s}, we also denote WJ by W⟨s⟩.

We can also view a Coxeter system (W,S) as words in the alphabet S up to equiva-
lence relations. A reduced word of w ∈ W is a shortest word in S that gives w as product,
which may not be unique, and the (Coxeter) length of w, denoted by ℓS(w), is the length
of any reduced word. For w ∈ W, a word u is initial (resp. final) for w if there is some
word w giving w that starts (resp. ends) with u. Two words u,w are commutation equiv-
alent, denoted by u ≡ w, if we can go from u to w by available commutations of letters
in W. The perspective of words leads naturally to the Artin monoid B+ associated to
(W,S), which is the free monoid generated by S quotiented by the relations (st)ms,t = e.
Following [11], we use sans-serif font for letters and words, in contrast to the equivalent
generators and elements of W in normal font, and elements of B+ in bold font.

Given a Coxeter system (W,S), the (right) weak order on W, denoted by Weak(W),
is a partial order on W such that u ≤ w if and only if there is some v ∈ W such that
w = uv and ℓS(w) = ℓS(u) + ℓS(v). It can also be defined with the (left) inversion set of
w ∈ W, denoted by Inv(w), which is the set of reflections t such that ℓS(tw) < ℓS(w).
Then u ≤ w if and only if Inv(u) ⊆ Inv(w). It is well-known that Weak(W) is a lattice,
thus has a maximal element, denoted by w◦.

Replacing the set of simple reflections S by the set of all reflections R in the definition
of the Coxeter length, we obtain the notion of absolute length of an element w ∈ W,
denoted by ℓR(w). The absolute order Abs(W) can be defined similarly as the weak order,
that is u ≤R w whenever there is v ∈ W with w = uv and ℓR(w) = ℓR(u) + ℓR(v).

A Coxeter word c in (W,S) is a word with each element of S appearing exactly once.
A Coxeter element c is the product of letters in a Coxeter word c in W. Given a Coxeter
element c, the interval [e, c] in Abs(W) is called the noncrossing partition lattice, denoted by
NCL(W, c). The elements in NCL(W, c) are called c-noncrossing partitions, and their set
is denoted by NC(W, c). It is well-known that the Kreweras complement of w ∈ NC(W, c),
defined as cw−1, is still a c-noncrossing partition.
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2.2 Cambrian lattice and m-Cambrian lattice

The Cambrian lattice, first defined by Reading (cf. [10]), is a generalization of the Tamari
lattice to all finite Coxeter groups. Given a Coxeter word c, we define the c-sorting word
of an element w ∈ W, denoted by w(c), to be the leftmost subword of c∞ that is a reduced
word of w. Let Ik ⊆ S be the set of letters in w(c) from the k-th copy of c. The element w
is c-sortable if Ik+1 ⊆ Ik for all k, meaning that if a letter si does not occur in some copy of
c for w(c), then it never occurs afterwards. We denote by Sort(W, c) the set of c-sortable
elements in W with the choice of Coxeter word c. The “sortable version” of the Cambrian
lattice, denoted by CambSort(W, c), is the restriction of the weak order to Sort(W, c).

We may also construct Cambrian lattices using subword complexes introduced in [7].
Given an S-word Q of length p, an element w ∈ W and a ∈ N with ℓS(w) ≤ a ≤ p, the
subword complex SCS(Q, w, a) is a simplicial complex on vertex set {1, . . . , p} whose facets
are subsets of positions of letters in Q whose removal gives an S-word of w of length a.
The word Q is called the search word of SCS(Q, w, a). It is clear that all facets are of size
p − a. Given two adjacent facets I, J of SCS(Q, w, a), that is, |I ∩ J| = p − a − 1, there are
some i ̸= j such that I \ {i} = J \ {j}. Suppose that i < j, then we say that J is obtained
from I with an increasing flip. The flip poset on facets of SCS(Q, w, a) is then defined as the
transitive closure of increasing slips. Given a Coxeter word c, we consider the c-sorting
word w◦(c) of the maximal element w◦ in Weak(W). The “subword complex version” of
the Cambrian lattice, denoted by CambSC(W, c), is the flip poset of the subword complex
SCS(cw◦(c), w◦, ℓS(w◦)). The word cw◦(c) is called the Cambrian search word Q(W, c).

The third construction of Cambrian lattices is based on noncrossing partitions. We
write the c-sorting word of w◦ as w◦(c) = s1 . . . sr. We take ti ∈ W the product of the
word s1 . . . si−1sisi−1 . . . s1. It is clear that ti ∈ R and ti ̸= tj for i ̸= j. In fact, every
reflection is obtained in this way. The total order ≤c on R defined by t1 <c t2 < · · · <c tr
is called the reflection order associated to c. We also express this total order as a special
R-word R(c) = t1 . . . tr. It is known [1, Theorem 3.5] that each c-noncrossing partition
w ∈ NC(W, c) has a unique reduced R-word, denoted by wR(c), such that wR(c) is a
subword of R(c). We call wR(c) the c-increasing word of w.

Concatenating the c-increasing word of w to that of its Kreweras complement cw−1,
we get a reduced R-word for c that is a subword of R(c)2, which is called a 1-factorization
of c. Such 1-factorizations are in bijection with c-noncrossing partitions, and can be
written in colored reflections as r

(0)
1 . . . r(0)k r

(1)
k+1 . . . r(1)n , where (0) (resp. (1)), called color,

indicates the letter being in the first (resp. second) copy of R(c). We extend the reflec-
tion order ≤c to colored reflections, ordering first by color, then by the position of the
reflections in R(c). By regarding R(c)2 as two copies of R(c) with color 0 and 1, we can
see a 1-factorization of c as a set of colored reflections in R(c)2. Given a 1-factorization
w containing some r(0), as colored reflections in w come in increasing order with ≤c, we
can write w = w′ · r(0) · w′′ · w′′′, where w′′ is the subword of w with all letters between
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Element CambSort CambSC
CambNC

s u t s u t

1 ε �s �t s t s ∗ ∗
2 s| s �t �s t s ∗ ∗
3 st| s t �s �t s ∗ ∗
4 t| �s t s t �s ∗ ∗
5 st|s s t s �t �s ∗ ∗ 1

4

5

2

3

Figure 2: Three versions of Camb(S3, st). Here, s = (12), t = (23), u = (13).

r(0) and r(1) in ≤c. We define the increasing rotation of w at the rotated reflection r(0) to be
the new R-word w′ · w′′ · r(1) · w′′′, where w′′ is obtained by conjugating each letter in w′′

by r. By [11], such a word is also a 1-factorization of c. The “noncrossing version” of the
Cambrian lattice CambNC(W, c) is the poset on 1-factorizations of c given by the covering
relation where the elements covering w are exactly increasing rotations of w.

For a comparison of the three versions of the Cambrian lattice, see Figure 2. It was
shown in [11, Theorems 5.7.3 and 6.8.6] that the three definitions are equivalent.

Proposition 2.1. We have CambSort(W, c) ≃ CambSC(W, c) ≃ CambNC(W, c) for any Cox-
eter system (W,S) and any Coxeter word c, with isomorphisms explicitly given.

In [11], Stump, Thomas and Williams further generalized the Cambrian lattices to
m-Cambrian lattices, which also comes in three flavors. We see that the notions of weak
order and c-sortable elements also apply to the Artin monoid B+. Hence, the “sortable
version” of the m-Cambrian lattice Camb(m)

Sort(W, c) is the restriction of the weak order for
the Artin monoid to c-sortable elements of the interval [e, wm

◦ ]. The “subword complex
version” of the m-Cambrian lattice Camb(m)

SC (W, c) is simply the flip poset of the sub-
word complex SCS(cw◦

m(c), w◦
m, m ℓS(w◦)), with w◦ the maximal element of Weak(W)

and w◦(c) its c-sorting word. The word cw◦
m(c) is called the m-Cambrian search word

Q(m)(W, c). For the “noncrossing version”, we generalize the notion of a 1-factorization
of c to an m-factorization of c, which is a subword of R(c)m+1 that is a reduced R-word
of c. Such an m-factorization can be seen as a word of colored reflections with m + 1
colors, one for reflections from each copy of R(c). The notion of increasing rotation can
be extended to apply to any colored reflection r(i) of color i < m and turn it into r(i+1)

while conjugating all colored reflections in between in an m-factorization. The transitive
closure of increasing rotations gives the “noncrossing version” of the m-Cambrian lattice
Camb(m)

NC (W, c). Again, similar to Proposition 2.1, the three definitions are equivalent.

Proposition 2.2 ([11]). We have Camb(m)
Sort(W, c) ≃ Camb(m)

SC (W, c) ≃ Camb(m)
NC (W, c) for

any Coxeter system (W,S), Coxeter word c, and m ≥ 1, with isomorphisms explicitly given.
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3 A new definition of the m-Cambrian lattice

The m-factorizations in Camb(m)
NC (W, c) are in bijection with m-multichains w1 ≤R · · · ≤R

wm in NCL(W, c) that we call m-noncrossing partitions: we take wi as the product of the
subword of colored reflections with color at least m− i + 1 in a given m-factorization. We
thus propose the following new definition of the m-Cambrian lattice. Let NC(m)(W, c)
be the set of m-noncrossing partitions. For w(m), w′

(m) ∈ NC(m)(W, c) with w(m) = w1 ≤R
· · · ≤R wm and w′

(m) = w′
1 ≤R · · · ≤R w′

m, we set w(m) ≤(m) w′
(m) if and only if:

1. Vertical condition: For all 1 ≤ i ≤ m, we have wi ≤ w′
i in CambNC(W, c);

2. Diagonal condition: For all 1 ≤ i < m, we have wi ≤R w′
i+1 in NCL(W, c).

See Figure 1 for a scheme of the two conditions. We claim that (NC(m)(W, c),≤(m)) is a
poset isomorphic to the m-Cambrian lattice. We note that it is not trivial that our rule
gives a partial order, as transitivity cannot be easily proven by composing the conditions.

Example 3.1. In A2, with c = st and m = 4, for wa = ε ≤R s ≤R s ≤R s, wb = sts ≤R
sts ≤R st ≤R st, and wc = sts ≤R sts ≤R sts ≤R st, we have wa ≤(m) wb but wa ̸≤(m) wc.

wa ε s s s
≤R ≤R ≤R

wb sts sts st st
≤R ≤R ≤R

≤ R ≤ R ≤ R≤ ≤ ≤ ≤≤
(m

)

wa ε s s s
≤R ≤R ≤R

wc sts sts sts st
≤R ≤R ≤R

≤ R ̸≤ R ≤ R≤ ≤ ≤ ≰≤
(m

)

To show that our new definition is equivalent to the ones in [11], we introduce the
notion of a c-increasing chain between two m-factorizations w,w′ ∈ Camb(m)

NC (W, c), whose
rotated reflections are increasing in the (extended) reflection order ≤c.

4 Proof ideas

In this section, we sketch the main steps of the proofs of our results. We first show the
existence and uniqueness of a c-increasing chain between two comparable elements. As a
tool, we give a greedy algorithm to compute such a chain, and thus decide comparability
in the m-Cambrian lattice. Finally, we show that our comparison rule of m-noncrossing
partitions in Section 3 is equivalent to the existence of a c-increasing chain.

4.1 The greedy algorithm

Given a c-increasing chain from w to w′, we prove that its first rotated reflection must
be the smallest element of w that is not in w′. This observation leads to the following
greedy algorithm to compute a c-increasing chain from w to w′.
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Proposition 4.1. Let w and w′ be two m-factorizations of c. We define w0=w,w1, . . . ,w(m+1)|R|,
where wj+1 is computed from wj, w

′, and the j-th letter rj of R(c)m+1. We have

• wj+1 = wj if rj /∈ wj \ w
′ and rj /∈ w′ \ wj;

• wj+1 is the increasing rotation of wj at rj if rj ∈ wj \ w
′ and rj is not of color m;

• Otherwise, wj+1 is undefined, and the computation aborts.

We get the c-increasing chain from w to w′ if it exists, otherwise a certificate for non-existence.

As a technical tool for the proofs, for an m-factorization w and a colored reflection
r, we define |w|≤r to be the number of colored reflections of w weakly smaller than r in
≤R. The following lemma recalls how |w|≤r is changed by an increasing rotation.

Lemma 4.2. Let w be an m-factorization of c, and r be a colored reflection. If w′ is an upper cover
of w, then |w′|≤r = |w|≤r − 1 if r(w,w′) = r, and |w′|≤r = |w|≤r if r(w,w′) >c r.

The case r(w,w′) <c r is not tackled here as it is not needed in the proof of Lemma 4.3.

Lemma 4.3. Let w = w0 ⋖ w1 ⋖ · · ·⋖ wk = w′ be any saturated chain from w to w′. Let r be
the smallest element of w \ w′ for ≤c. The smallest rotation reflection for ≤c in the chain is r.

Proof. Let r′ = r(wj,wj+1) be the smallest rotation reflection of the chain, which means
r(wk,wk+1) >c r′ for k ̸= j. We prove that r′ = r by contradiction.

If r′ < r, then by the definition of r, we have |w′|≤r′ = |w|≤r′ , as w′ and w have the
same reflections strictly smaller than r. By Lemma 4.2, we have a contradiction since
|w′|≤r′ = |wk|≤r′ ≤ · · · |wj+1|≤r′ < |wj|≤r′ ≤ · · · ≤ |w0|≤r′ = |w|≤r′ .

If r′ > r, by the definition of r, we have |w′|≤r < |w|≤r. By Lemma 4.2, for all i, as
r(wi,wi+1) > r, we have |wi+1|≤r = |wi|≤r, hence |w′|≤r = |w|≤r, which is impossible.

Corollary 4.4. There is at most one c-increasing saturated chain between two m-factorizations.

Proof. The smallest rotated reflection of a c-increasing chain from w to w′ is its first, which
is the smallest in w \ w′ by Lemma 4.3. We conclude by induction on chain length.

Previous discussion shows that if a c-increasing chain from w to w′ exists, then we
can get it by the greedy algorithm of Proposition 4.1. It remains to show that such a
chain always exists when w ≤ w′. To prove it, we take any saturated chain from w to w′

and make it c-increasing by successive local changes. The following key lemma, proven
in Section 4.2, explains how to rectify reflection order locally in a chain.

Lemma 4.5 (Local reordering lemma). Let w0⋖w1⋖w2 in Camb(m)(W, c) with r(w0,w1)=
r >c r′ = r(w1,w2). Then r′ ∈ w0 and setting w′

1 the upper cover of w0 such that r(w0,w′
1) = r′,

we have w′
1 ≤ w2. In particular, there is a saturated chain from w0 to w2 that starts with w0 ⋖ w′

1.
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Proposition 4.6. If w ≤ w′ in Camb(m)(W, c), there exists a c-increasing chain from w to w′,
and it is of maximal length among chains from w to w′.

Proof. Suppose w ≤ w′ in the m-Cambrian lattice. Then, there exists a saturated chain
w = w0 ⋖ w1 ⋖ · · ·⋖ wk = w′ which may not necessarily be c-increasing.

Let i be the largest index such that the i reflection rotations of the subchain from w0
to wi are the smallest for ≤c of the whole chain and appear in order. Let j > i be the
index of the next smallest flip reflection r(wj,wj+1) of the subchain from wi to wk.

If i = k, the chain is c-increasing and we are done. Otherwise, wj−1 ⋖ wj ⋖ wj+1

respects the conditions of Lemma 4.5. There is thus a chain wj−1 ⋖ w′
j ⋖ · · ·⋖ wj+1 of

length at least 2 where r(wj−1,w′
j) = r(wj,wj+1). Replacing wj−1 ⋖ wj ⋖ wj+1 by this

new subchain in the saturated chain from w0 to wk, by Lemma 4.3, the smallest rotation
reflection of the new subchain from wi to wk is r(wj−1,w′

j), so either j − i has decreased
by one, or i has increased by at least one. Iterating the process, i eventually grows. As
chain length is bounded, we end up with a c-increasing chain. By unicity of such a chain
(see Corollary 4.4), its length is maximal among chains from w to w′.

Theorem 4.7. We have w ≤ w′ in Camb(m)(W, c) if and only if there is a c-increasing chain
from w to w′. Moreover, it can be decided by the greedy algorithm in Proposition 4.1.

4.2 The local reordering lemma

It remains to prove the local reordering lemma (Lemma 4.5). The main idea is to reduce
it to the case of a rank 2 Coxeter group, then to a 1-Cambrian lattice in this case, using the
subword complex version of m-Cambrian lattices. The main technical tools are the shift
operator from [11], and the restriction of m-Cambrian lattices to a parabolic subgroup.

Proposition 4.8 ([11, Section 5.4.1]). Let s be the generator associated to the initial letter of a
Coxeter word c in a Coxeter group W. Let c′ = scs be the Coxeter word of W obtained by moving
the first letter of c to the end. Let s′ be the generator obtained by conjugating s by w◦

m. Then
the S-word scw◦

m(c)s′ is commutation equivalent to the m-Cambrian search word Q(m)(W, c′).
Hence, the flip poset of SCS(scw◦

m(c)s′, w◦
m, m ℓS(w◦)) is isomorphic to Camb(m)

SC (W, c′).

This gives a canonical bijection between the facets of Camb(m)
SC (W, c) and those of

Camb(m)
SC (W, c′), which is called the shift operator over s. It is not a poset isomorphism,

but we can split Camb(m)
SC (W, c) into two intervals such that it is in each interval.

Proposition 4.9. Let s be the generator associated to the initial letter of a Coxeter word c in a
Coxeter group W. Let F⊃1 (resp. F ̸⊃1) be the set of facets of Camb(m)

SC (W, c) in which the first

letter of Q(m)(W, c) is present (resp. absent). The two subsets F⊃1 and F ̸⊃1 are two intervals of

Camb(m)
SC (W, c), on which the restriction of the shift operator is an isomorphism of posets.
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Proof. The facets of F⊃1 are c-sortable elements with a c-sorting word not starting by
s. By definition of c-sortability, elements of F⊃1 live in W⟨s⟩ and are sc-sortable. The

restriction of Camb(m)(W, c) to F⊃1 is isomorphic to Camb(m)(W⟨s⟩, sc).
The subset F ̸⊃1 is formed by c-sortable elements whose c-sorting word starts with s.

Hence, F ̸⊃1 is the set of c-sortable elements in [s, wm
◦ ], thus an interval in Camb(m)

Sort(W, c).
By Proposition 4.8, the shift operator is a bijection between facets of the two subword

complexes. Within F⊃1 and F ̸⊃1, covering relations never involve the first letter, hence
are preserved by the shift operator. On F⊃1 and F ̸⊃1, it is an isomorphism of posets.

We can describe precisely the isomorphism between F⊃1 and Camb(m)(W⟨s⟩, sc).

Proposition 4.10. In the situation of Proposition 4.9, there is a subset X of positions in the
search word for Camb(m)

SC (W, c) such that facets of F⊃1 are included in {1} ∪ X and vice-versa.
In terms of m-reflections, the isomorphism between F⊃1 and Camb(m)(W⟨s⟩, sc) is given by

removing the reflection s(0) from the facets.

Positions in X are said to be compatible with the first letter of the search word.

Proof. Let Q = Q(m)(W, c) and Q′ = Q(m)(W⟨s⟩, sc). We identify letters of Q′ with a

subset X of positions in Q. The smallest facet in Camb(m)
SC (W, c) is the initial copy of c.

We identify letters of c not equal to s with the corresponding letter in the initial copy of sc
in Q(m)(W⟨s⟩, sc). Since the two simplicial sets are isomorphic, we can identify increasing
flips, which allows us to propagate the identification to all letters of Q′. All facets of F⊃1
live within {1} ∪ X by construction. The identification of simplicial complexes gives the
reverse direction. Finally, any m-factorization of sc can be completed into one for c by
adding s(0), which means we can turn a facet for Q′ into one for Q.

The shift operator allows us to move the first letter of the subword complex of the
m-Cambrian lattice to the end. Combining it with Proposition 4.10, we can fix any subset
E of compatible positions in the search word, and reduce the rank by the size of E. This
is formalized in the next proposition, which generalizes [8, Proposition 3.6].

Proposition 4.11. Let W be a Coxeter group of rank n, I a facet of Camb(m)
SC (W, c), and E a

subset of I. The set F⊃E of facets of Camb(m)
SC (W, c) containing E forms an interval isomorphic

to an m-Cambrian lattice of the parabolic subgroup W ′ of rank n − |E| generated by I \ E.

Proof. We perform induction on |E|. It suffices to prove it for |E| = 1. Let Q = s1 . . . sp be

the m-Cambrian search word Q(m)(W, c). The case E = {1} is done in Proposition 4.10.
Let E = {i + 1} for some i > 0. Let Q′ = si+1 . . . sps

′
1 . . . s′i be the search word obtained

by applying the shift operator i times. By Proposition 4.8, Q′ ≡ Q(m)(W, c′) for some
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Coxeter word c′. Now si+1 is the initial letter of Q′, and F⊃E is an interval isomorphic to
Camb(m)(W⟨si+1⟩, si+1c

′), of rank n − 1.
To complete the proof, we need to shift back the i last letters of Q′ to the beginning.

By Proposition 4.10, letters of Q′′ = Q(m)(W⟨si+1⟩, si+1c
′) are identified with a subset X of

positions in Q′ compatible with si+1. When shifting back a letter sk, if k ∈ X, we shift
back the corresponding letter in Q′′; if k ̸∈ X, the parabolic subword complex remains the
same but the parabolic subgroup is conjugated by sk. We conclude that F⊃E is an interval
in Camb(m)(W, c) isomorphic to an m-Cambrian lattice in a conjugate of W⟨si+1⟩.

We can now prove the local reordering lemma.

Proof of the local reordering lemma (Lemma 4.5). Let w0 ⋖w1 ⋖w2 in Camb(m)(W, c) be such
that r(w0,w1) = r >c r′ = r(w1,w2). We prove that r′ ∈ w0, and that w′

1 ≤ w2 where w′
1 is

the upper cover of w0 such that r(w0,w′
1) = r′.

First, the rotation from w0 to w1 does not modify the reflections smaller than r. Thus,
r′ is already in w0, meaning that w′

1 is well-defined, and w′
1 ̸= w2. As w2 is obtained from

w0 by two successive rotations, the two corresponding facets of the subword complex
contain at least n − 2 common positions. By Proposition 4.11, w0 and w2 live in an
m-Cambrian lattice of rank 2, say Camb(m)(I2(k), st) for some k and Coxeter word st.

Without loss of generality, thanks to the shift operators, we may assume that r′ is the
smallest reflection s(0) in the reflection order associated to st. If r is not of color 0, then
the two increasing rotations commute, and w′

1 ≤ w2. Otherwise, [w0,w2] is isomorphic
to an interval in the 1-Cambrian lattice Camb(I2(k), st), and the result is easily checked
since w0 and w2 must be the bottom and top elements of the poset. Hence, w′

1 ≤ w2.

4.3 The comparison criterion

The greedy algorithm in Proposition 4.1 provides a way to decide comparability in the
m-Cambrian lattice. A reinterpretation of the algorithm leads to a criterion for compa-
rability of two m-noncrossing partitions. The idea is to take a “snapshot” of the state of
the algorithm after each copy of R(c) instead of processing letters of R(c)m+1 in one go.

Recall that there is a natural bijection between m-factorizations of c and m-non-
crossing partitions. For m = 1, we get a description of the Cambrian lattice on the set of
noncrossing partitions NC(W, c), with the order relation denoted by ≤. The noncrossing
partition lattice is another partial order on NC(W, c), with the order relation denoted
by ≤R. We can in fact define the m-Cambrian lattice using ≤ and ≤R on NC(W, c), as
described in Section 3. This criterion is illustrated in Figure 1.

Proposition 4.12. For any m′ < m, the m′-Cambrian lattice Camb(m′)(W, c) embeds in
Camb(m)(W, c) as the interval of m-factorizations using only m′ + 1 consecutive colors.
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Conversely, the m-Cambrian lattice Camb(m)(W, c) projects onto the m′-Cambrian lattice
Camb(m′)(W, c) by keeping only m′ consecutive components of the m-factorizations.

Proof. For any i ≤ m − m′, the m′-Cambrian lattice Camb(m′)(W, c) is isomorphic to the

interval [wi
◦, wi+m′

◦ ] in Camb(m)(W, c). Conversely, for w an m-factorization of c, we can
chase its reflections of color 0 by rotating at them in the order ≤c. This only modifies
the last component of the corresponding m-noncrossing partition, and respects the order
thanks to Theorem 4.7, so that we can erase its last component. A similar argument
applies for the erasure of the first component.

Hence, two comparable m-noncrossing partitions satisfy the vertical condition (Item 1).

Corollary 4.13. Let w(m) = (wi)1≤i≤m and w′
(m) = (w′

i)1≤i≤m be two m-noncrossing partitions

such that w(m) ≤ w′
(m) in Camb(m)(W, c). For all 1 ≤ i ≤ m, wi ≤ w′

i in CambNC(W, c).

Theorem 4.14. Two m-noncrossing partitions w and w′ are comparable in the m-Cambrian
lattice if and only if they satisfy the vertical and diagonal conditions (Items 1 and 2 in Section 3).

Proof. For m = 1, the proof is immediate. Suppose m > 1. Let w ≤ w′ in Camb(m)
NC (W, c),

and w(m) and w′
(m) be the corresponding m-noncrossing partitions. By Corollary 4.13, the

vertical condition is satisfied. During the greedy algorithm in Proposition 4.1 that turns
w into w′, when we read the i-th copy of R(c), we turn wm−i into w′

m−i without changing
the other components. Hence, we have the diagonal condition wm−i−1 ≤R w′

m−i for all i.
Reciprocally, we start with two m-noncrossing partitions w(m) and w′

(m) such that
wi ≤ w′

i for all i, and wi ≤R w′
i+1 for all 1 ≤ i < m. Since wm−i ≤R w′

m−i+1, we take
w[i] ∈ NC(m)(W, c) to be w1 ≤R · · · ≤R wm−i ≤R w′

m−i+1 ≤R · · · ≤R w′
m. We observe

that w[i] and w[i+1] only differ on reflections of color i and i + 1. We use Proposition 4.11
to remove the other common reflections. Since wi ≤ w′

i in Camb(W, c), we have w[i] ≤
w[i+1] in Camb(m)(W, c), which means w(m) = w[0] ≤ w[m] = w′

(m).

5 A poset on Cambrian intervals

Inspired by our new definition, we define a binary relation ≼ on intervals of the Cam-
brian lattice CambNC(W, c) where [u, u′] ≼ [w,w′] if and only if u ≤R w, u ≤R w′, and
u′ ≤R w′. Note that transitivity of this relation is here easily proven. However, reflexivity
fails for certain elements that we call red elements. Enforcing reflexivity extends ≼ to a
poset CC2(W, c). This construction can be generalized to k-multichains of CambNC(W, c)
with horizontal and diagonal comparisons, leading to a poset CCk(W, c) with red ele-
ments.
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Proposition 5.1. For any k and m, the m-multichains of CCk(W, c) are in bijection with k-
multichains in Camb(m)(W, c), where repetition of red elements is forbidden.

For a finite poset P, its Zeta polynomial ZP counts its m-multichains when evaluated
at m + 1. It is not applicable here due to red elements, but there still seems to be a
polynomial that enumerates multichains in CC2(W, c) with no repeated red element.

Recall that the Cambrian lattice specializes to the Tamari lattice in linear type A. Even
in this context, such a binary relation on Tamari intervals seems new to our knowledge,
see [5] for another poset structure on Tamari intervals. There is another generalization
of the Tamari lattice called the m-Tamari lattice [2], different from the linear type A
m-Cambrian lattice. We conclude by mentioning a conjecture in [11, Section 5.8].

Conjecture 5.2 ([11]). The m-Tamari lattice and the linear type A m-Cambrian lattice
have the same number of intervals.
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