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Abstract. We give an explicit characterization of the standard monomials for positroid
varieties with respect to the Hodge degeneration and give a Gröbner basis. Fur-
thermore, we show that promotion and evacuation biject standard monomials of a
positroid variety with those of its cyclic shifts and w0-reflection, respectively. The con-
nection to promotion allows us to identify standard monomials of a positroid variety
with Lam’s cyclic Demazure crystal. Using a recurrence on the Hilbert series, we give
an inductive formula for the characters of cyclic Demazure modules, solving a problem
posted by Lam.
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1 Introduction

Classical work of Hodge [4] described a particular set of bases for the homogeneous co-
ordinate rings of the Grassmannian Gr(k, n) and its Schubert varieties under the Plücker
embedding. Building on Hodge’s ideas, Seshadri initiated the study of standard mono-
mial theory (SMT), with the aim of giving standard monomial bases for the space of
global sections of line bundles over a (generalized) flag variety G/P. The foundation of
SMT was built in the works of Lakshmibai, Musili, and Seshadri, [17, 10, 8, 9]. The tools
developed in SMT yield a wide range of applications, such as derivations of geomet-
ric properties (Cohen–Macaulayness, normality, singularities, cohomological vanishings,
etc.) of Schubert varieties and character formulas for Demazure modules.

The main goal of our paper is to extend the work of Hodge to positroid varieties in
Gr(k, n), based on works of Knutson–Lam–Speyer. Positroid varieties are the closed
strata of the positroid stratification, the common refinement of the cyclically permuted
Bruhat decompositions. These are also exactly the projections of Richardson varieties
from the complete flag variety to Gr(k, n), and are the only compatibly split subvarieties
with respect to the standard Frobenius splitting on the Grassmannian [6].
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Using the standard monomial theory of Richardson varieties [7, 2], Knutson–Lam–
Speyer [6] described the Stanley–Reisner complexes of positroid varieties under the
Hodge degeneration, a special kind of Gröbner degeneration. However, they did not give
an explicit description (i.e., without referring to the chains in the Bruhat order of G/B)
of the standard monomials. In this extended abstract, we present an explicit description
of standard monomials for positroid varieties, analogous to Hodge’s original descrip-
tion based on semistandard Young tableaux (Theorem A). This approach yields several
applications in algebra, combinatorics, and representation theory. More specifically:

• an explicit Gröbner basis for positroid varieties with respect to the Hodge degen-
eration, analogous to the classical “straightening relations” (Theorem B).

• a connection between the promotion (resp. evacuation) on rectangular semistandard
Young tableaux and rotations (resp. reflections) of positroid varieties (Theorem C).

• a formula for characters of cyclic Demazure modules, resolving a problem posted by
Lam [11] (Theorem D).

2 Background

2.1 Grassmannians and Plücker embeddings

For k ≤ n ∈ Z>0 and an algebraically closed field k of characteristic 0, the Grassmannian
Gr(k, n) is

Gr(k, n) = {W ⊆ kn : dim(W) = k}.

For W ∈ Gr(k, n) and {w1, . . . , wk} a chosen basis of W. The Plücker embedding is the
map ι : Gr(k, n)→ P(Λk(kn)) sending W to [w1 ∧ · · · ∧ wk].

Set R(k, n) := k[[a] : a ∈ ([n]k )] to be the homogeneous coordinate ring of the projec-
tive space P(Λk(kn)). We extend the notation of [a] to all sequences a = (a1, . . . , ak) ∈
[n]k, where we use the convention that for any permutation σ ∈ Sn,

[aσ(1), aσ(2), . . . , aσ(k)] = sign(σ) · [a1, . . . , ak]. (2.1)

In particular, this implies that [a] = 0 if ai = aj for some i ̸= j ∈ [n].
The defining ideal J of Gr(k, n) as a projective subvariety of P(Λk(kn)) is generated

by the following straightening relations:

Definition 1 ([20]). Let s ∈ [k], α ∈ ( [n]
s−1), β ∈ ( [n]

k+1) and γ ∈ ( [n]k−s) where elements in α, β, γ

are in increasing order. The straightening relation attached to α, β, γ is

∑
I∈([k+1]

s )

(−1)sign(I)[α1, . . . , αs−1, βi′1
, . . . , βi′k−s+1

] · [βi1 , . . . , βis , γ1, . . . , γk−s]
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where I = {i1 < · · · < is} ⊂ [k + 1], {i′1 < · · · < i′k−s+1} := [k + 1] \ I, and sign(I) :=

∑s
j=1 ij − (s+1

2 ).

We will often1 represent a monomial m = ∏d
i=1[a

(i)] as a k× d tableau, where column
i is strictly increasing with entries in a(i) for all i.

Example 2. An example of a straightening relation in Gr(4, 8) arises from the product [1, 2, 6, 7] ·
[3, 4, 5, 8]. Here α = {1, 2}, β = {3, 4, 5, 6, 7}, and γ = {8}. The monomials are obtained by
permuting the elements in β (colored in red).

1 3
2 4
6 5
7 8

− 1 3
2 4
5 6
7 8

+ 1 3
2 4
5 7
6 8

− 1 3
2 5
4 7
6 8

· · ·

Definition 3. A tableau is called semistandard if it is strictly increasing along columns and
weakly increasing along rows.

The homogeneous coordinate ring of Gr(k, n) is k[Gr(k, n)] = R(k, n)/J . It is the
direct sum of its graded pieces:

k[Gr(k, n)] =
∞⊕

d=0

k[Gr(k, n)]d,

where each k[Gr(k, n)]d is a finite dimensional k-vector space spanned by the monomials
{∏d

i=1[a
(i)] : a(i) ∈ ([n]k ) for all i}. The following classical theorem is originally due to

Hodge [4] (c.f. [3, Lemma 7.2.3]).

Theorem 4. The monomials ∏d
i=1[a

(i)] that correspond to semistandard tableaux form a basis of
k[Gr(k, n)]d.

Let P = (([n]k ),≤) be the poset where

[c1, . . . , ck] ≤ [d1, . . . , dk] if and only if ci ≤ di for all i = 1, . . . , k.

Let <ω be a degree revlex monomial order on the polynomial ring R(k, n) := k[[a] : a ∈
([n]k )] where the Plücker variables are ordered by some linear extension of P .

Definition 5. For a subvariety X ⊆ Gr(k, n), let JX be its defining ideal under the Plücker em-
bedding. A monomial m = ∏d

i=1[a
(i)] is called a standard monomial for X if m /∈ Inω(JX).

1Sometimes we need to work with tableaux with permuted entries. In these cases, it is important to
keep in mind that we may sort the columns as long as we keep track of signs.
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For each d ∈ N, the degree d standard monomials {m : deg(m) = d, m /∈ Inω(JX)}
form a basis of k[X]d. This basis is also known as the standard monomial basis. The
monomials in Theorem 4 are standard monomials by the following:

Theorem 6 ([20]). The straightening relations in Definition 1 form a Gröbner basis of J under
the term order <ω. The initial ideal is

Inω(J ) = ⟨[a][b] : a, b not comparable in P⟩.

2.2 Positroid varieties

We first recall a few sets of combinatorial objects that index positroid varieties.
Define the set of bounded affine permutations to be

Bound(k, n) := { f : Z→ Z| f (i + n) = f (i) + n, i ≤ f (i) ≤ i + n for all i ∈ Z}. (2.2)

We will sometimes write f ∈ Bound(k, n) as f = [ f (1) f (2) · · · f (n)]. The partial order
on Bound(k, n) is inherited from the Bruhat order on affine permutations.

Given V ∈ Gr(k, n), let Ṽ denote a choice of k× n matrix such that rowspan(Ṽ) = V.
We write Ṽ = [v1, · · · , vn] where vi is the ith column. We extend the sequence v1 · · · vn
by setting vi = vi+n for all i ∈ [n], and denote by Ṽ[i,j] the matrix with column vectors
vi, · · · , vj. Consider the affine permutation fṼ : Z→ Z given by

fṼ(i) = min{j ≥ i : vi ∈ span(vi+1, · · · , vj)}. (2.3)

It is known that fV ∈ Bound(k, n) and that all of Bound(k, n) can arise this way. More-
over, fṼ only depends on the V := rowspan(Ṽ), so we may define fV for V ∈ Gr(k, n).

The open positroid variety associated to a bounded affine permutation f is Π◦f :=
{V ∈ Gr(k, n) : fV = f } and the positroid variety is its Zariski closure Π f = Π◦f . In fact,
positroid varieties stratify the Grassmannian: Π f =

⊔
f ′≥ f Π◦f ′ .

Let χ : Gr(k, n)→ Gr(k, n) be the cyclic rotation such that for V ∈ Gr(k, n),

Ṽ = [v1, · · · , vn], χ(Ṽ) := [vn, v1, · · · , vn−1], χ(V) := rowspan(χ(Ṽ)). (2.4)

We abuse the notation and define the corresponding cyclic shift on Bound(k, n) as

χ( f )(i) = f (i− 1) + 1.

Lemma 7. For f ∈ Bound(k, n), χ(Π f ) = Πχ( f ).

An equivalent way to define positroid varieties is through cyclic rank matrices as
defined in [5, Corollary 3.12]. For any f ∈ Bound(k, n), write f as the ∞ ×∞ matrix
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with 1’s at positions (i, f (i)) and 0’s everywhere else. Let r( f ) be the infinite periodic
matrix defined for all i ∈ Z, i ≤ j ≤ i + n,

r( f )i,j = |[i, j]| − #{number of 1s in f ’s matrix weakly southwest of (i, j)}.

Let V ∈ Gr(k, n) so that fV = f , then r( f )i,j = rank(vi, · · · , vj). Furthermore,

Π◦f = {U ∈ Gr(k, n) : rank(Ũ[i,j]) = r( f )i,j for all i ∈ Z, j ∈ [i, i + n]}

and Π f is obtained by replacing “=” with “≤”.
For any α ∈ [0, n− 1] and m < n, define the cyclic interval

[α + 1, α + m]◦ =

{
{i : α + 1 ≤ i ≤ α + m} if α + m ≤ n
{i : α + 1 ≤ i ≤ n or 1 ≤ i ≤ (α + m) mod n} if α + m > n

.

We call the first kind of cyclic interval an interval and the second kind a wrapped-
around interval. In the wrapped-around case, we sometimes write [α+ 1, α+m− n]◦ :=
[α + 1, α + m]◦.

For any S ⊂ [n] and any r ∈N, define

ΠS≤r = {V ∈ Gr(k, n) : rank(ṼS) ≤ r},

where rank(ṼS) is the rank of the submatrix of Ṽ with column index S.

Lemma/Definition 8. If S is a cyclic interval, we say ΠS≤r is a basic positroid variety. This
is indeed an instance of a positroid variety.

For f ∈ Bound(k, n), the essential set of f is:

ess( f ) := {(i, j) : i ∈ Z, j ∈ [i, i + n], f (i− 1) > j, f−1(j + 1) < i, f (i) ≤ j, f−1(j) ≥ i}.

The following statement, which follows from [6, Theorem 5.1] is crucial for our main
results.

Proposition 9. Every positroid variety is the scheme-theoretic intersection of basic positroid
varieties:

Π f =
⋂

(i,j)∈ess( f )

Π[i,j]◦≤r( f )i,j
.

For the purpose of this paper, We only need the existence of essential sets in the
context of Proposition 9 rather than its precise description.

Example 10. Set k = 3, n = 6. Let f be the bounded affine permutation

· · · [5, 2, 4, 7, 9, 12] · · ·

where f (1) = 5. Then Π f = Π[2]≤0 ∩Π[2,4]≤1 ∩Π[1,5]≤2.
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Let w0 : Gr(k, n)→ Gr(k, n) be the reflection map such that for

Ṽ = [v1, . . . , vn], w0(Ṽ) = [vn, . . . , v1].

It is straightforward to see that w0(Π[i,j]≤r) = Π[n+1−j,n+1−i]≤r, hence

w0(Π f ) =
⋂

(i,j)∈ess( f )

Π[n+1−j,n+1−i]◦≤r( f )i,j
.

Lemma/Definition 11. The image w0(Π f ) is again a positroid variety. Define f ∗ to be the
bounded affine permutation such that Π f ∗ = w0(Π f ).

3 Standard monomials for positroid varieties

Let B(k, n, d) denote the set of rectangular semistandard tableaux of shape k × d with
entries ≤ n. We write m ∈ B(k, n, d) both for the monomial and its tableau. For a
positroid variety Π f , let J f := JΠ f and

B f (k, n, d) := {m ∈ B(k, n, d) : m ̸∈ In(J f )}.

be the set of degree-d standard monomials for Π f .
The main theorem of this section is an explicit combinatorial description of B f (k, n, d).

Theorem A. A monomial m = ∏d
i=1[a

(i)] ∈ B f (k, n, d) if and only if m ∈ B(k, n, d) and

1. when Π f = ΠS≤r for some interval S, m does not contain a generalized antidiagonal
for S ≤ r (Definition 12);

2. when Π f = ΠS≤r for some wrapped-around interval S, m∨ does not contain a generalized
antidiagonal for S∨ ≤ r∨ (Construction 14);

3. when Π f =
⋂

i ΠSi≤ri , m ∈ ⋂
i B fi(k, n, d) where Π fi is the basic positroid variety ΠSi≤ri .

We note that for (3), any positroid variety can be written as a finite intersection of
basic poistroid varieties ΠSi≤ri (see Proposition 9).

Let m = ∏d
i=1[a

(i)] be a standard monomial of Gr(k, n) where the Plücker variables
a(1) ≤ a(2) ≤ · · · ≤ a(d) are sorted using the partial order in the Plücker poset.

Definition 12. Fix an interval S = [α + 1, α + m] in [n] and some r < m. A generalized
antidiagonal of m ∈ B(k, n, d) for the rank condition S ≤ r is a vertical strip in the tableau m
of size r + 1 with entries in S that are strictly increasing from NE to SW.
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Example 13. We illustrate the definition above with a small example. Let n = 5, k = 3,
and consider the interval positroid variety Π[2,4]≤2. The following m ∈ B(k, n, d) contains a
generalized antidiagonal for the rank condition [2, 4] ≤ 2:

2
3
4

,
1 2
2 3
4 5

,
1 2
3 3
4 5

,
1 2
3 4
4 5

,
1 1 2
2 3 4
4 5 5

.

In each monomial, the entries in the generalized antidiagonal are highlighted. By part 1 of
Theorem A, these are not standard monomials for Π[2,4]≤2.

To study the standard monomials for a basic positroid variety ΠS≤r where S is a
wrapped-around interval, we need the following contruction.

Construction 14. Let S = [α + 1, α + m]◦ be a cyclic interval and r < m. Define the following:

• S∨ := [α + m + 1, α]◦.

• r∨ := n− k−m + r

• For any monomial m = ∏d
i=1[a

(i)] ∈ R(k, n), define m∨ to be ∏d
i=1[a

(i)∨] ∈ R(n− k, n),
where a(i)∨ := [n] \ a(i) for all i ∈ [d].

• For any polynomial g ∈ R(k, n), define g∨ ∈ R(n− k, n) to be the polynomial obtained
from g by applying ∨ to each monomial summand.

Proposition 15. A monomial m ∈ Inω(JS≤r)) if and only if m∨ ∈ Inω(JS∨≤r∨)).

Example 16. Fix Gr(4, 6) and let S = [2, 5] and r = 3. Then S∨ = [6] \ S = [6, 1]◦ and
r∨ = 6− 4− 4 + 3 = 1. Given a monomial m ∈ Inω(JS≤r) ⊂ R(4, 6) (with the generalized
antidiagonal highlighted), we obtain m∨ ∈ Inω(JS∨≤r∨) ⊂ R(2, 6) by taking complements of
each of the Plücker coordinates dividing m. For instance,

2
3
4
5

complement←−−−−→ 1
6 ,

1 1 1 2
2 2 3 4
3 4 5 5
5 6 6 6

complement←−−−−→ 4 3 2 1
6 5 4 3 =

1 2 3 4
3 4 5 6

Using the Proposition below, we prove part (3) of Theorem A.

Proposition 17. Let m := ∏d
i=1[a

(i)] ∈ B(k, n, d), where a(1) ≤ · · · ≤ a(d). Then there exists
a unique minimal positroid variety Π f such that m ∈ B f (k, n, d). In other words, if Π f ′ is a
positroid variety such that m ∈ B f ′(k, n, d), then Π f ⊆ Π f ′ .

Proof sketch for part (3) of Theorem A: Notice first that if Π f ⊆ Π f ′ then J f ⊇ J f ′

and thus B f (n, k, d) ⊆ B f ′(n, k, d). This proves B f (k, n, d) ⊆ ⋂
i B fi(n, k, d). For m ∈⋂

i B fi(n, k, d), by Proposition 17, there is a unique minimal Πg ⊆
⋂

i Π fi = Π f such that
m ∈ Bg(n, k, d). Therefore m ∈ B f (n, k, d).
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4 Gröbner bases for positroid varieties

Using straightening relations and our characterizations for standard monomials, we ob-
tain an explicit Gröbner basis for positroid varieties.

Theorem B. Let J f be the defining ideal for the positroid variety Π f . J f has a Gröbner basis
with respect to <ω (see bottom of p.4) consisting of straightening relations (Definition 1), and

(1) when Π f = ΠS≤r for some interval S, ∑w∈Sr+1
(−1)ℓ(w)w ·m where m minimally con-

tains a generalized antidiagonal for S ≤ r and Sr+1 acts on m by permuting entries in the
generalized antidiagonal;

(2) when Π f = ΠS≤r for some wrapped-around interval S, ∑w∈Sr∨+1
(−1)ℓ(w)(w ·m∨)∨

where m∨ minimally contains a generalized antidiagonal for S∨ ≤ r∨;

(3) when Π f =
⋂

i ΠSi≤ri , the union of the Gröbner basis for each ΠSi≤ri .

Example 18. Let n = 5, k = 3, S = [2, 4], r = 2, and consider the basic positroid variety
X[2,4]≤2. The generators of the Gröbner basis of J[2,4]≤2 which are not Plücker relations for
Gr(3, 5) consist of the following:

2
3
4

,
1 2
2 3
4 5

−
1 2
2 4
3 5

,
1 2
3 3
4 5

−
1 3
2 4
3 5

,
1 2
3 4
4 5

−
1 3
2 4
4 5

,

1 1 2
2 3 4
4 5 5

−
1 1 2
2 4 4
3 5 5

−
1 1 3
2 2 4
4 5 5

.

We see above that there is a single degree 3 generator of gb(J[2,4]≤2). Therefore, we also know
that we have a degree 3 generator of gb(J[5,1]◦≤1):

1 2 3
3 4 5 −

1 2 4
3 3 5 −

1 3 3
2 4 5 .

5 Promotion on standard monomials

Our next application concerns promotion and evacuation introduced by Schützenberger
[15, 16]. Evacuation appears in the theory of canonical bases where the bijection by
Berenstein-Zelevinsky [1] between canonical bases and semistandard tableaux sends
Lusztig’s involution to evacuation. Stembridge [18, 19] observed the q = −1 phenomenon,
meaning that the number of fixed points under an involution is the value of a polyno-
mial f (q) at q = −1. Motivated by the work of Stembridge, Reiner–Stanton–White [12]
introduced the cyclic sieving phenomenon for the enumeration of fixed points under cyclic
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group actions. Rhoades [13] showed that promotion on B(k, n, d) exhibits the cyclic siev-
ing phenomenon, where the number of fixed tableaux after applying promotion a times
is the value of a polynomial at the roots of unity ξa

n. More recently, these operations are
of interest in the study of dynamical algebraic combinatorics (see e.g., the survey [14]
and the references therein).

We relate promotion and evacuation to the cyclic and reflection symmetry of positroid
varieties, respectively.

Definition 19. Let promotion be the map prom : B(k, n, d) −→ B(k, n, d) defined as follows:

- If m ∈ B(k, n, d) does not contain n, then increase each entry of m by 1.

- If m contains n, replace each n with • and perform the jeu de taquin (jdt) slide:

a c
b • −→


a •
b c if b ≤ c or a, b do not exist,

a c
• b if b > c or a, c do not exist

until no longer possible. Replace each • with 0 and increase all entries by 1.

Definition 20. Let evacuation be the map evac : B(k, n, d)→ B(k, n, d) defined by:

1. replace every entry x with n + 1− x,

2. rotate the tableau by 180◦.

Our main theorem of this section is the following.

Theorem C. Promotion (resp. evacuation) bijects the set of standard monomials of a positroid
variety Π f and those of its cyclic shift χ(Π f ) (resp. its reflection Π f ∗ = w0 ·Π f ).

Since prom and evac are both bijections from B(k, n, d) to B(k, n, d), Theorem C is
equivalent to showing prom (resp. evac) bijects In(J f ) with In(Jχ( f )) (resp. In(J f ∗)).
Here we give an example to see how promotion (resp. evacuation) maps monomials in
In(J f ) to In(Jχ( f )) (resp. In(J f ∗)).

Example 21. Consider the basic positroid variety Π f = Π[2,4]≤1 ⊂ Gr(3, 7), then χ(Π f ) =
Π[3,5]≤2 and w0 ·Π f = Π[4,6]≤2. For m = [1, 3, 4] · [2, 5, 7] ∈ In(J f ), we have prom(m) =
[1, 2, 3] · [3, 4, 5] ∈ In(Jχ( f )) and evac(m) = [1, 3, 6] · [4, 5, 7] ∈ In(J f ∗). We demonstrate the
process below:

prom :
1 2
3 5
4 7

→
1 2
3 5
4 •

→
1 2
3 •
4 5

→
1 2
• 3
4 5

→
• 2
1 3
4 5

→
0 2
1 3
4 5

→
1 3
2 4
5 6

.

evac :
1 2
3 5
4 7

→
7 6
5 3
4 1

→
1 4
3 5
6 7
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6 Hilbert series and cyclic Demazure characters

Motivated by the cyclic symmetry of the Grassmannian and its positroid varieties, Lam
introduced cyclic Demazure modules Vf (dωk) as the cyclic intersections of Demazure
modules. They are isomorphic to the space of sections H0(Π f ,Ldωk

) as T-modules.
Let ωk be the k-th fundamental weight, Lωk the associated line bundle on Gr(k, n)

and Ldωk
:= L⊗d

ωk
. Let res f : H0(Gr(k, n),Ldωk

)→ H0(Π f ,Ldωk
) be the restriction map.

Proposition 22. The map res f is surjective and H0(Π f ,Ldωk
) ∼= k[Π f ]d as T-modules.

We establish a recurrence on the multigraded Hilbert series of positroid varieties with
the grading induced by the standard T-action on the Grassmannian. This allows us to
give an inductive formula for the T-character of cyclic Demazure modules, answering a
question of Lam [11, Problem 24].

Theorem D. For f ∈ Bound(k, n), if d = 0, then ch(Vf (dωk)) = 1. Otherwise,

ch(Vf (dωk)) = ttop( f )ch(Vf ((d− 1)ωk) + ∑
f ′∈L0( f )∩Bound(k,n)

(−1)ℓ( f ′)−ℓ( f )+1Vf ′(dωk).

Here top( f ) ∈ ([n]k ) corresponds to the smallest Plücker coordinate that does not van-
ish on Π f , ttop( f ) := ∏i∈top( f ) ti, and L0( f ) is derived from Lenart’s K-theoretic Monk’s
rule for Grothendieck polynomials defined below.

Definition 23. Let Γ0( f ) denote the set of saturated chains in the Bruhat order of affine permu-
tations:

f ⋖ f ta1,b1 ⋖ f ta1,b1ta2,b2 ⋖ · · ·⋖ f ta1,b1ta2,b2 · · · tam,bm ,

where ai ≤ 0, bi ∈ [1, n], and the pairs (ai, bi) satisfies either (bi > bi+1) or (bi = bi+1 and ai <
ai+1). Let L0( f ) be the set of permutations that are endpoints of chains in Γ0( f ).

Proposition 24 ([5, Corollary 7.3]). Let C( f ) := { f ′ ∈ Bound(k, n) : f ⋖ f ′ = f ta,b, a ≤
0 < b}. Then the following formula holds scheme-theoretically:

{[top( f )] = 0} ∩Π f =
⋃

f ′∈C( f )

Π f ′ . (6.1)

Consider the Zn-grading on the polynomial ring R(k, n) such that for any a ∈ ([n]k ),
the degree of the Plücker variable [a] is (d1, · · · , dn) where di = 0 if i ̸∈ a and di = 1 if
i ∈ a. For m ∈ B f (k, n, d), define content(m) := (c1, · · · , cn) where ci counts the number
of appearance of i in m. Set tcontent(m) := ∏n

i=1 tci
i .

Key Observation: By definition, the Hilbert series

Hilb(R/J f ; t) =
∞

∑
d=0

∑
m∈B f (k,n,d)

tcontent(m),
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and the degree d part of H(R/J f ; t) is the character of Vf (dωk). Since [top( f )] is not a
zero divisor of R/J f , the Hilbert series of the LHS of (6.1) is

Hilb(R/(J f + ⟨[top( f )]⟩); t) = (1− ttop( f ))Hilb(R/J f ; t). (6.2)

For the RHS, we have

Proposition 25.

Hilb(R/(
⋂

f ′∈C( f )

J ′f ); t) = ∑
f ′∈L0( f )∩Bound(k,n)

(−1)ℓ( f ′)−ℓ( f )+1 Hilb(R/J ′f ; t),

The proof of the above proposition relies on proving an isomorphism of posets of
varieties, generated by taking the closure of the “intersect and decompose” operation on
the varieties appearing in the Monk’s rule for positroid and matrix Schubert varieties.

Theorem D then follows from taking the degree d piece of the Hilbert series on both
sides of (6.1) by combining (6.2) and Proposition 25.
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