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Abstract. In this extended abstract, we present new objects, quilts of alternating sign
matrices with respect to two given posets. For example, the rank function on all sub-
matrices of a matrix gives rise to a quilt with respect to two Boolean lattices. When
the two posets are chains, a quilt is equivalent to an alternating sign matrix and its
corresponding corner sum matrix. Quilts also generalize the monotone Boolean func-
tions counted by the Dedekind numbers. They form a distributive lattice with many
beautiful properties and contain many classical and well known sublattices, such as
the lattice of matroids of a given rank and ground set. While enumerating quilts is
hard in general, we prove two major enumerative results, when one of the posets is an
antichain and when one of them is a chain. We also give some bounds for the number
of quilts when one poset is the Boolean lattice.
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1 Introduction

The rank of a matrix is fundamental in mathematics, science, and engineering. The
notion of rank can also be associated to graphs, matroids, and partial orders. One can
refine the rank function to submatrices, subgraphs, etc. as well to get a family of ranks
to associate to each object. We observe that such families always follow certain Boolean
growth rules leading to the concept of a generalized rank function, which we call a quilt.
The goal of this paper is to consider families of generalized rank functions and their
connection with the well-studied alternating sign matrices (ASMs). We present some
applications and some related enumeration results.

The application that motivated us to study quilts comes from the geometry of span-
ning line configurations and an analog of Bruhat order based on a cell decomposition of
that space used by Pawlowski and Rhoades [12]. They posed the problem of characteriz-
ing the covering relations in the poset given by containment of cell closures. While that
problem is still open, the lattice of quilts on a chain poset with a Boolean poset naturally
contains the poset, now also called the medium roast Fubini–Bruhat order [2]. Hence,
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we can use quilts to study the vanishing flag minors defining the cell closures in the
spanning line configurations. See the full length version of this abstract [1] for details.
Note that due to length limitations, we omit all proofs in this extended abstract.

2 Background

We recall some history and background to motivate the main new concepts. See [3] for
more background.

If a matrix has k rows and n columns, we say it has size k × n. An alternating sign
matrix (or ASM for short) is a matrix of size k × n with entries in {−1, 0, 1} such that
in each row and each column the non-zero entries alternate, the leftmost non-zero entry
in every row and the bottommost non-zero entry in every column is 1, if k ≤ n, the
rightmost non-zero entry in every row is 1, and if k ≥ n, the topmost non-zero entry in
every column is 1. In particular, if n = k, the non-zero entries of every row and every
column alternate and begin and end with 1. Note that what we call an ASM is typically
called a rectangular or truncated ASM in the literature; we will instead emphasize that
we have a square ASM when n = k. Denote the set of all ASMs of size k × n by ASMk,n.
For example, every permutation matrix is a square ASM, but already for n = 3 there are
more than n! square ASMs. A very famous result tells us that |ASMn,n | = ∏n−1

j=0
(3j+1)!
(n+j)! .

See Example 4.5 for the asymptotics of |ASMk,n |.
Given A = (ai,j) ∈ ASMk,n, we can define a new matrix C(A) = (cij), called its corner

sum matrix, or CSM for short, of size (k + 1)× (n + 1) by setting cij = 0 if i = k + 1 or

j = 1, and cij = ∑k
i′=i ∑

j
j′=1 ai′,j′ otherwise. For an example, see (2.4). In the resulting

matrix C(A), the entries change by 0 or 1 when moving to the right or up, and the
bottom row and the leftmost column always consist of 0’s. Furthermore, if k ≥ n, the top
row consists of Cn = {0, 1, . . . , n}, and if k ≤ n, the rightmost column consists of Ck =
{0, 1, . . . , k}. Conversely, given a matrix B, with rows numbered 0, 1, . . . , k and starting
at the bottom, and columns numbered 0, 1, . . . , n and starting on the left, satisfying these
properties, the k × n matrix A = (aij) given by ai,j = bi,j − bi−1,j − bi,j−1 + bi−1,j−1 for all
i ∈ [k] and j ∈ [n] is an ASM. Therefore, we can equivalently define CSMs directly as
follows using the notation (i, j)⋖ (i′, j′) to mean the covering relation in Ck × Cn.

Definition 2.1. A (k, n)-corner sum matrix (CSM) is a map f : Ck × Cn −→ N satisfying:

• f (i, 0) = 0 for i = 0, . . . , k, f (0, j) = 0 for j = 0, . . . , n,

• f (k, n) = min{k, n}, and

• if (i, j)⋖ (i′, j′) in Ck × Cn, then f (i′, j′) ∈ { f (i, j), f (i, j) + 1}.

Let CSMk,n denote the set of all (k, n)-CSMs. We refer to the third condition in the
definition of a CSM as a Boolean growth rule, which is a central concept in this paper.
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One more way to think of ASMs/CSMs is as monotone triangles (MTs). Given a CSM
f : Ck × Cn −→ N, record the positions of jumps in each row, denoted by

J f (i) = {j ∈ [n] : f (i, j) = f (i, j − 1) + 1}. (2.1)

Then, the monotone triangle (MT) corresponding to f is the “triangular array” of jump
sequences with rows J f (k), . . . , J f (2), J f (1) (from top to bottom). The rows of the mono-
tone triangle are interlacing in the sense that if J f (i) = {s1 < s2 < · · · < sp} and
J f (i + 1) = {t1 < t2 < · · · < tq} then either p = q − 1 and

t1 ≤ s1 ≤ t2 ≤ s2 ≤ · · · ≤ sq−1 ≤ tq, (2.2)

or p = q and
t1 ≤ s1 ≤ t2 ≤ s2 ≤ · · · ≤ tq ≤ sq. (2.3)

Clearly, the original CSM can be recovered from its interlacing jump sets by the Boolean
growth property, so there are easy bijections between the ASMs, CSMs, and MTs for
given k, n. For an example with k = 5 and n = 6, consider

A =


0 1 0 −1 1 0
1 −1 0 1 −1 1
0 1 0 −1 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 , C(A) =


0 1 2 3 3 4 5
0 1 1 2 3 3 4
0 0 1 2 2 3 3
0 0 0 1 2 2 2
0 0 0 1 1 1 1
0 0 0 0 0 0 0

 , MT(A) =

1 2 3 5 6
1 3 4 6

2 3 5
3 4

3.

(2.4)

Remark 2.2. Terwilliger introduced a poset Φn on the subsets of [n] with covering rela-
tions given by S⋖ T whenever S and T are interlacing in the sense of (2.2). The poset Φn
contains the Boolean lattice Bn as a subposet. He showed maximal chains in Φn are in
bijection with ASMn,n, just as the maximal chains of Bn are in bijection with Sn [17, The-
orem 3.4]. Building on this work, Hamaker and Reiner [7] showed that Φn is a shellable
poset, introduced a notion of descents for monotone triangles, and connected them to a
generalization of the Malvenuto–Reutenauer Hopf algebra of permutations.

3 Dedekind Maps and Quilts

In this section, we introduce a generalization of the Dedekind numbers, which count
the number of monotone increasing Boolean functions [11, A000372]. Such functions are
closely related to the CSMs defined in Definition 2.1 and are natural precursors to the
notion of a quilt defined later in this section. Assume all posets below are finite, ranked,
and have a unique minimal element 0̂ and unique maximal element 1̂.

Definition 3.1. A Dedekind map of rank k on a poset P is a surjective map f : P → Ck
satisfying x ⋖ y ⇒ f (y) ∈ { f (x), f (x) + 1}. The set of all Dedekind maps of rank k
on P is denoted by Dk(P), their union by D(P), and we write dk(P) = |Dk(P)| and
d(P) = |D(P)| = ∑k dk(P) for the kth Dedekind number of P and Dedekind number of P,
respectively.
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Example 3.2. The rank function of a matroid on ground set [n] of rank k is a Dedekind
map of rank k on the Boolean lattice Bn.

Observe that for a Dedekind map of rank k, f : P → Ck, the following conditions
are satisfied: f (0̂) = 0; f (1̂) = k; and if x ⋖ y, then f (y) ∈ { f (x), f (x) + 1} (Boolean
growth). Consequently, f (x) ≤ rank x for all x ∈ P. The k-Dedekind number of a chain
is dk(Cn) = (n

k). For the antichain poset A2(j), we have d1(A2(j)) = 2j.

Remark 3.3. Given f ∈ D1(P), the set of minimal elements satisfying f (x) = 1 is a non-
empty antichain in P \ {0̂}; so d1(P) counts the number of antichains in P (except for ∅
and {0̂}), which is a #P-complete problem [13]. In particular, d1(Bn) + 2 is the classical
Dedekind number and is notoriously difficult to compute. The exact value for n = 9 was
first computed in 2023, thirty years after the value for n = 8 [8].

Lemma 3.4. For any poset P and k ≥ 1, we have dk(P) ≤ d1(P)k.

Every column of a CSM of size (k + 1)× (n + 1) can be seen as a Dedekind map on
Ck and every row as a Dedekind map on Cn. As one reads left to right in columns or
bottom to top in rows, another Boolean growth rule must hold. This second type of
Boolean growth rule gives rise to the following graphs.

Definition 3.5. Let GD(P) denote the Dedekind graph of P, defined as the directed graph
with vertex set given by the Dedekind maps in D(P) and an edge from f to g if g(x) ∈
{ f (x), f (x) + 1} for all x ∈ P. The restricted Dedekind graph of P, G′

D(P), is the directed
graph with vertex set D(P) and an edge from f to g if g(1̂P) = f (1̂P) + 1 and g(x) ∈
{ f (x), f (x) + 1} for all x ∈ P.

Proposition 3.6. For any 1 ≤ k ≤ n, the map between the set CSMk,n and the set of walks
in the Dedekind graph GD(Cn) from its unique sink to a vertex in Dk(Cn) determined by the
consecutive list of columns is a bijection.

Recall the definition of interlacing sets and monotone triangles from Section 2. The
Dedekind graph of a chain Cn also respects the interlacing conditions. The next state-
ment follows from Proposition 3.6. See Proposition 3.13 for more connections with the
interlacing conditions.

Corollary 3.7. The restricted Dedekind graph G′
D(Cn) is isomorphic to the directed graph on

Bn, with an edge from S to T if |S| = |T| − 1 and the sets S and T are interlacing: t1 ≤
s1 ≤ t2 ≤ s2 ≤ · · · ≤ s|T|−1 ≤ t|T|. Similarly, the Dedekind graph GD(Cn) is isomorphic
to the directed graph on Bn, edges as above plus an edge from S to T whenever |S| = |T| and
t1 ≤ s1 ≤ t2 ≤ s2 ≤ · · · ≤ t|T| ≤ s|T|.

The following is the main definition of this paper. It generalizes the definition of a
CSM in Definition 2.1.
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Definition 3.8. Let P and Q be finite ranked posets with least and greatest elements. A
quilt of alternating sign matrices of type (P, Q) is a map f : P × Q −→ N satisfying:

• f (x, 0̂Q) = 0 for all x ∈ P, f (0̂P, y) = 0 for all y ∈ Q,

• f (1̂P, 1̂Q) = min{rank P, rank Q}, and

• if (x, y)⋖ (x′, y′) in P × Q, then f (x′, y′) ∈ { f (x, y), f (x, y) + 1} (Boolean growth).

We will also call such a map an ASM quilt or just a quilt for short. The set of all quilts of
type (P, Q) will be denoted by Quilts(P, Q).

Remark 3.9. A quilt of type (Ck, Cn) is a CSM on Ck ×Cn, so there is also a corresponding
ASM and MT. Similarly, for any f ∈ Quilts(P, Q) and any pair of maximal chains 0̂P =
x0 ⋖ x1 ⋖ · · ·⋖ xk−1 ⋖ xk = 1̂P, 0̂Q = y0 ⋖ y1 ⋖ · · ·⋖ yn−1 ⋖ yn = 1̂Q in P and Q, the map
(i, j) 7→ f (xi, yj) is a CSM on Ck ×Cn, which again has a corresponding ASM and MT. So
we can think of quilts as encoding collections of alternating sign matrices, one for each
pair of maximal chains in the two posets, appropriately “pieced” together like the fabric
of a quilt.

Example 3.10. Let M be a k × n matrix of full rank. The function fM : Bk × Bn −→ N

given by setting fM(I, J) to be the rank of the submatrix of M in rows I and columns J
is a quilt of type (Bk, Bn).

The following lemma also shows that the entire rank function of the smaller ranked
poset is encoded in each quilt. This justifies our claim that quilts generalize rank func-
tions of posets.

Lemma 3.11. Let f ∈ Quilts(P, Q). If rank P ≥ rank Q, then f (1̂P, y) = rankQ y for all
y ∈ Q. If rank P ≤ rank Q, then f (x, 1̂Q) = rankP x for all x ∈ P.

There is a natural partial order on Quilts(P, Q): we say that f ≤ g if f (x, y) ≤ g(x, y)
for all x ∈ P, y ∈ Q. For P = Ck, Q = Cn, this is the well-known partial order on the set
of CSMs or ASMs generalizing Bruhat order on the symmetric group [10]. We will call
Quilts(P, Q) the quilt lattice, as justified by the following.

Theorem 3.12. Let P, Q be finite ranked posets with least and greatest elements. The poset
Quilts(P, Q) is a distributive lattice ranked by

quiltrank f = ∑
x∈P, y∈Q

f (x, y)− ∑
x∈P, y∈Q

f0̂(x, y),

where f0̂(x, y) = max{0, rank x + rank y − max{n, k}} is the least element of Quilts(P, Q).
The greatest element of Quilts(P, Q) is f1̂(x, y) = min{rank x, rank y}.
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As mentioned in the introduction, our motivating example comes from vanishing flag
minors where the posets are the Boolean lattice and the other one is a chain. We will
call a quilt in Quilts(P, Cn) or Quilts(Cn, P) a chain quilt, a quilt in Quilts(P, A2(j)) or
Quilts(A2(j), P) an antichain quilt, a quilt in Quilts(P, Bn) or Quilts(Bn, P) a Boolean quilt.

There are three important ways to think of a chain quilt f ∈ Quilts(P, Cn). One is
to see it as a sequence of Dedekind maps in D(P) that correspond with a walk in the
Dedekind graph GD(P), generalizing Proposition 3.6. Another is to say that f maps
an arbitrary x ∈ P to the sequence ( f (x, 0), f (x, 1), . . . , f (x, n)) of length n + 1. This
sequence has the property that every two consecutive elements are either equal or they
differ by one. We also have f (y, i) ∈ { f (x, i), f (x, i) + 1} when x ⋖ y. The element
0̂P is mapped to the zero sequence, and the sequence corresponding to 1̂P ends with
min{rank P, n}.

Another equivalent, and probably even more intuitive, way to represent a chain quilt
f : P × Cn −→ N is to say that it is a map that sends x ∈ P to the set of jumps of f at x,
J f (x) = {i : f (x, i) = f (x, i − 1) + 1} ⊆ [n]. We will call this the monotone triangle (MT)
form of the quilt f . It is easy to go back from the MT form of a quilt: given J : P −→ Bn,
then f (x, i) = |J(x) ∩ [i]| defines f : P × Cn −→ N. The Boolean growth condition
translates into adjacent sets interlacing for quilts in MT form, see Proposition 3.13.

The first picture on the left in Figure 1 shows an element f ∈ Quilts(B3, C2), where

f ({2}, 1) = f ({1, 2}, 1) = f ({2, 3}, 1) = f ({1, 2, 3}, 1) = 1

and f (T, 1) = 0 for all other subsets T, while f ({2, 3}, 2) = f ({1, 2, 3}, 2) = 2. The
second picture is the MT form of f , where we omit braces and commas for the sets. The
third picture in Figure 1 represent a chain quilt g ∈ Quilts(B3, C5). Note how the top
element of f is 01 . . . n, and the rightmost element of every sequence in the picture for g
is equal to its rank, as stated in Lemma 3.11. The fourth picture is the MT form for g.

000

001 011 001

011 001 012

012

∅

2 1 2

1 2 12

12

000000

000111 001111 000001

001122 011112 001112

011123

∅

3 2 5

24 15 25

145

Figure 1: Two ways to visualize quilts of types (B3, C2) and (B3, C5).

Proposition 3.13. Take f ∈ Quilts(P, Cn). For all x, y ∈ P with x ⋖ y, the sets S = J f (x)
and T = J f (y) are interlacing as in (2.2) and (2.3). When n ≤ rank P, J f (1̂P) = [n]. When
n ≥ rank P, we have |J f (x)| = rank x for all x ∈ P.
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The general problem of enumerating quilts is hard, as the following theorem shows.

Theorem 3.14. Computing |Quilts(P, Q)| for general P and Q is a #P-complete problem.

Even though computing |Quilts(P, Q)| for general P and Q is out of reach, we do
have a simple upper bound. Let b(P) = ∑x∈P rank x.

Theorem 3.15. If rank P ≤ rank Q, then |Quilts(P, Q)| ≤ d1(Q)b(P).

Observe from the definitions that for all posets P, Q with rank P = k and rank Q = n,
the map ι : CSMk,n −→ Quilts(P, Q) given by ι( f )(x, y) = f (rank x, rank y) is a lattice
embedding. The lattice Quilts(Ck, Bn), n ≥ k, also contains (among others) the following
three overlapping subposets:

• Matroids on ground set [n] with rank k are embedded into Quilts(Ck, Bn) via the
map that sends a matroid on [n] to the quilt f : Ck × Bn −→ N with f (i, T) =
min{i, rank T}, where rank T is the cardinality of the largest independent set con-
tained in T.

• The rank functions of flag matroids M on the ground set [n] with ranks k =
(k1, . . . , ks) and rank functions rank1, . . . , ranks can also be encoded as a Boolean-
chain quilt. Specifically, the embedding into Quilts(Cks , Bn) is given by fM(i, X) is
either min{i, rank1 X} if 1 ≤ i ≤ k1 or min{rankj X + i − k j, rankj+1 X} if k j < i ≤
k j+1, 1 ≤ j ≤ s − 1.

• The medium roast Fubini–Bruhat order embeds into Quilts(Ck, Bn) via northerly
rank conditions [2].

Theorem 3.16. Let P and Q be finite ranked posets with least and greatest elements. If φ is an
(involutive) antiautomorphism of P, rank P ≥ rank Q, then Φ : Quilts(P, Q) → Quilts(P, Q),
where Φ f (x, y) = rank y − f (φ(x), y), is an (involutive) antiautomorphism of the lattice
Quilts(P, Q). Given an involutive antiautomorphism φ : P → P, there is an action of the
dihedral group D4 acting on Quilts(P, P) that sends the horizontal reflection of the square to Φ
and the diagonal reflection of the square to Σ. If rank P ≥ 2, the action is faithful.

Take posets P1 and P2 with the same rank. The disjoint union P1 + P2 is the poset we
get by “merging” 0̂P1 with 0̂P2 and 1̂P1 with 1̂P2 , and adding the other elements of P1 and
P2 without any new relations. For example, A2(j1) + A2(j2) is isomorphic to A2(j1 + j2).
Write jP for the disjoint union of j copies of P. For example, A2(j) = jC2.

Proposition 3.17. Assume that rank P1 = rank P2 ≥ rank Q. Then the map

Θ : Quilts(P1 + P2, Q) −→ Quilts(P1, Q)× Quilts(P2, Q)

defined by f 7→ ( f1, f2), fi(xi, y) = f (xi, y) for xi ∈ Pi, y ∈ Q, is an isomorphism of lattices.

Corollary 3.18. For k ≥ n and arbitrary positive integer j, |Quilts(jCk, Cn)| = |ASMk×n |j.
For any i, j, n, we have |Quilts(iCn, jCn)| = |ASMn×n |ij.
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4 Enumerative results

4.1 Enumeration of antichain quilts

We next consider the case of counting the number of quilts of type (P, Q) when Q is an
antichain poset. The enumeration is in terms of the number of antichains in convex cut
sets of P. We say that a subset S of a poset P is convex if x, y ∈ S implies [x, y] ⊆ S. We
say that S is a cut set if it intersects every maximal chain in P. If you have a convex cut
set C, it makes sense to say that an element x ∈ P \ C is above C or below C: x lies on a
maximal chain, the maximal chain intersects C in some element x′, and x is above C if
x > x′ and below C if x < x′. This is well defined, as x′ < x < x′′ for x′, x′′ ∈ C would
imply x ∈ C. For example, if rank P ≥ 2, then C = P \ {0̂P, 1̂P} is a convex cut set, 0̂P is
below C, and 1̂P is above C.

Recall from Remark 3.3 that d1(P) counts the number of nonempty antichains in P
other than {0̂}. Such antichains are in bijection with antichains in P \ {0̂P, 1̂P}. For any
S ⊆ P, denote by αP(S) the number of antichains in S. Then, we have αP(P \ {0̂P, 1̂P}) =
d1(P). Given two infinite sequences (an) and (bn), we write an ∼ bn to mean an/bn → 1
as n goes to infinity.

Theorem 4.1. Take a ranked poset P with least and greatest elements, rank P ≥ 2, and j ≥ 1.
We have

|Quilts(P, A2(j))| = ∑
C

αP(C)j, (4.1)

where the sum is over all subsets C of P \ {0̂P, 1̂P} that are convex cut sets of P. In particular,
as j goes to infinity, we have |Quilts(P, A2(j))| ∼ d1(P)j.

Corollary 4.2. We have |Quilts(Ck, A2(j))| = ∑k
i=2(k + 1 − i)ij for j ≥ 1, k ≥ 2.

4.2 Enumeration of chain quilts

Recall that b(P) = ∑x∈P rank x. If f ∈ Quilts(P, Cb(P)), we say that i ∈ [b(P)] is a jump
for f if there exists x ∈ P so that f (x, i) = f (x, i − 1) + 1. If the set of jumps of f is
equal to [m], we say that f is m-fundamental for P. A standard quilt is one that is b(P)-
fundamental. Let Fm(P) be the set of all m-fundamental quilts for P. Let S(P) = Fb(P)
and F(P) =

⋃
m Fm(P). Observe that a chain quilt is m-fundamental if and only if its MT

form contains precisely the elements 1, . . . , m. In particular, it is standard if and only if
its MT form contains exactly one of each of 1, . . . , b(P).

Theorem 4.3. For a fixed poset P of rank k with least and greatest elements and any integer
n ≥ k, the number of chain quilts of type (P, Cn) is given by a polynomial in n. Namely,

|Quilts(P, Cn)| =
b(P)

∑
m=k

|Fm(P)|
(

n
m

)
∼ |S(P)|

b(P)!
· nb(P). (4.2)
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Example 4.4. Consider P = B2. We have b(P) = 4, and there are four 2-fundamental, five
3-fundamental, and two 4-fundamental (standard) quilts, presented here in MT form.

∅

1 1

12

∅

1 2

12

∅

2 1

12

∅

2 2

12

∅

1 2

13

∅

2 1

13

∅

2 2

13

∅

2 3

13

∅

3 2

13

∅

2 3

14

∅

3 2

14

Therefore it follows from Theorem 4.3 that for n ≥ 2,

|Quilts(B2, Cn)| = 4
(

n
2

)
+ 5

(
n
3

)
+ 2

(
n
4

)
=

n4

12
+

n3

3
+

5n2

12
− 5n

6
∼ 2 · n4

4!
.

Example 4.5. We can think of a standard quilt for P = Ck as a monotone triangle (in the
classical sense) in which all numbers 1, . . . , (k+1

2 ) appear. After an up-down reflection
and a 45◦ rotation, we get a shifted standard Young tableau of shape (k, k − 1, . . . , 1). For

example, for k = 3, we get monotone triangles
1 3 6

2 5
4

and
1 4 6

2 5
3

and shifted standard

Young tableaux
1 2 4

3 5
6

and
1 2 3

4 5
6

. The hook-length formula for shifted standard Young

tableaux [18] gives (for fixed k and n → ∞) |ASMk,n | ∼
∏k−1

i=0 (2i)!

∏k−1
i=0 (k+i)!

· n(k+1
2 ).

There is in fact one more way to compute |Quilts(P, Cn)| and prove the polynomiality
property via the Transfer-Matrix Method [15, Theorem 4.7.2] using the adjacency matrix
AD(P) of the Dedekind graph of P defined in Definition 3.5.

Theorem 4.6. For a finite poset P of rank k ≥ 1 with least and greatest elements, we have

∞

∑
n=k

|Quilts(P, Cn)|xn = (I − xAD(P))−1
1,d(P) =

(−1)d(P)−1

(1 − x)d(P)
det T(P), (4.3)

where T(P) is the transfer-matrix I − xAD(P) with the the column indexing the unique source
and the row indexing the unique sink in GD(P) removed. In particular, the sequence 0, 0, . . . , 0,
|Quilts(P, Ck)|, |Quilts(P, Ck+1)|, . . . is given by a polynomial of degree < d(P). Furthermore,

k−1

∑
n=0

|Quilts(P, Cn)|xn =
d(P)−1

∑
i=1

(I − xA′
D(P))−1

1,i =
d(P)−1

∑
i=1

(−1)i−1 det T′(P)i, (4.4)

where T′(P)i is the matrix I − xA′
D(P) with the source column and i-th row removed.

There is an easy bijection between k × n ASMs and monotone triangles with all possi-
ble length k top row sequences. Such a top row sequence will be denoted by (a1, . . . , ak)
with 1 ≤ a1 < a2 < · · · < ak ≤ n. Fischer proved that the cardinality of MT(a1, . . . , ak),
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the set of monotone triangles with top row (a1, . . . , ak), is a polynomial in variables
a1, . . . , ak, and she also found an explicit (operator) formula for |MT(a1, . . . , ak)|, see [6].
The definition can be extended to arbitrary chain quilts: given a poset P of rank k and
1 ≤ a1 < a2 < · · · < ak ≤ n, define MTP(a1, . . . , ak) as the set of quilts f ∈ Quilts(P, Cn)
for which J f (1̂P) = {a1, . . . , ak}. Let J f (1̂P)i denote the i-th largest element of the set.

Theorem 4.7. For a finite poset P of rank k with least and greatest elements, we have

|MTP(a1, . . . , ak)| = ∑
f∈F(P)

k

∏
i=2

(
ai − ai−1 − 1

J f (1̂P)i − J f (1̂P)i−1 − 1

)
, (4.5)

4.3 Enumeration of Boolean quilts

Exact enumeration of Dedekind maps for Bn and Boolean quilts is at least as difficult
as finding a formula for the Dedekind numbers. However, some bounds can be given.
For example, we can construct 2(

n
⌊n/2⌋) 1-Dedekind maps on Bn by taking f (T) = 0 for

|T| < ⌊n/2⌋, f (T) = 1 for |T| > ⌊n/2⌋, f (T) ∈ {0, 1} for |T| = ⌊n/2⌋. It follows that
d1(Bn) ≥ 2(

n
⌊n/2⌋). Kleitman [9] proved the upper bound d1(Bn) ≤ 2(1+c ln n/

√
n)( n

⌊n/2⌋) for
some constant c. We use that result for the following.

Lemma 4.8. There exists a constant c > 0 so that dk(Bn) ≤ 2k(1+c ln n/
√

n)( n
⌊n/2⌋) for all 1 ≤ k ≤

n. Furthermore, for every ε > 0, dk(Bn) ≥ 2(k−ε)( n
⌊n/2⌋) for large enough n.

Theorem 4.9. Let P be a finite ranked poset with least and greatest elements. There exists a
constant c > 0 so that 2(

n
⌊n/2⌋) ≤ |Quilts(P, Bn)| ≤ 2b(P)(1+c ln n/

√
n)( n

⌊n/2⌋) if n ≥ rank P. If
n ≥ 2 rank P, we have the improved lower bound |Quilts(P, Bn)| ≥ d1(P)(

n
⌊n/2⌋). In particular,

2(
k

⌊k/2⌋)(
n

⌊n/2⌋) ≤ |Quilts(Bk, Bn)| ≤ 2k2k−1(1+c ln n/
√

n)( n
⌊n/2⌋) for n ≥ 2k.

Remark 4.10. Theorem 4.9 guarantees that for a poset P, there are positive numbers AP
and BP such that (ln |Quilts(P, Bn)|)/( n

⌊n/2⌋) ∈ [AP, BP] for n ≥ rank P. It is natural
to ask if the limit L(P) = limn→∞ ln |Quilts(P, Bn)|/( n

⌊n/2⌋) exists. By the last part of

the theorem, if L(Bk) exists, it must be in the interval
[
( k
⌊k/2⌋) ln 2, k2k−1 ln 2

]
. We do

not have enough data to state an explicit conjecture, but we believe that the limit does
indeed exist; if we had to venture a guess as to what this number would be, we would
say L(P) = b(P) ln 2. In other words, we believe that 2b(P)( n

⌊n/2⌋) is the best estimate for
|Quilts(P, Bn)| among functions of the form C( n

⌊n/2⌋).
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5 Final remarks

In this section, we discuss some possible avenues for future research.
Representability. Call a quilt f ∈ Quilts(Bk, Bn) representable if there exists a matrix

A ∈ Rk×n, rank A = min{k, n}, so that f (I, J) is equal to the rank of the matrix ob-
tained by taking rows in I and columns in J in the matrix A. It would be interesting to
characterize the representable quilts of type (Bk, Bn).

Quilt polytopes. There are beautiful results about the polytopes of alternating sign
matrices, matroids, and flag matroids, see e.g. [16] and [4]. In 2018, Sanyal–Stump [14]
defined the Lipschitz polytope of a poset P, denoted L(P), as the set of functions f ∈ RP

such that 0 ≤ f (a) ≤ 1 for all minimal elements a ∈ P and 0 ≤ f (y)− f (x) ≤ 1 for all
x ⋖ y in P. Therefore, the vertices of the Lipschitz polytopes are closely related to the
Dedekind maps on P. This variation on Boolean growth leads us to define L(P, Q) for a
pair of finite ranked posets P, Q with least and greatest as the set of functions f ∈ RP×Q

satisfying the boundary conditions f (x, 0̂Q) = 0 for all x ∈ P, f (0̂P, y) = 0 for all y ∈ Q,
f (1̂P, 1̂Q) = min{rank P, rank Q}, and 0 ≤ f (x′, y′) − f (x, y) ≤ 1 if (x, y)⋖ (x′, y′) in
P × Q (bounded growth). Thus, integer lattice points of L(P, Q) are exactly the quilts of
type (P, Q). What is the Ehrhart polynomial for these generalized Lipschitz polytopes?
What more can be said about these polytopes?

Enumeration. As we stated in the introduction, one of the most fascinating facts
in the area is that there is a product formula for the number of square ASMs. Corol-
lary 3.18 gives a simple generalization of this statement. Is there a simple formula for
|Quilts(P, P)| for some family of posets P ̸= jCn? Can we at least find asymptotic formu-
las for |Quilts(Pn, Pn)| for some nice families of posets Pn, or upper and lower estimates?
Can we improve the bounds for |Quilts(P, Bn)| beyond Theorem 4.9?

Generalizing ASM. The literature on permutations and alternating sign matrices pro-
vide a rich source of problems for quilts, some of which are mentioned in the introduc-
tion and Remark 2.2. What can be said about the interlacing Boolean lattice with both
types of interlacing conditions? Following Hamaker–Reiner [7], what are the descents
for quilts? Can we generalize their result on shellability to an (appropriately defined)
Dedekind poset? Is there a Hopf algebra interpretation for quilts and an analog of the
shuffle product? See also the work of Cheballah–Giraudo–Maurice, who defined a Hopf
algebra with basis given by alternating sign matrices [5].
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