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On the reconstruction of trees from their
chromatic symmetric functions

Michael Gonzalez 1*, Rosa Orellana 1†, and Mario Tomba1‡

1Mathematics Department, Dartmouth College, Hanover, NH 03755, U.S.A.

Abstract. We study Stanley’s chromatic symmetric function (CSF) for trees when
expressed in the star basis. We use the deletion-near-contraction (DNC) algorithm by
Aliste-Prieto et al. to compute coefficients that occur in the CSF in the star basis. In
particular, one of our main results determines the smallest partition in lexicographic
order that occurs as an indexing partition in the CSF, and we also give a formula for its
coefficient. In addition to describing properties of trees encoded in the coefficients of
the star basis, we give an algorithm for reconstructing trees of diameter less than six.
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1 Introduction

In 1995, Stanley [13] introduced the chromatic symmetric function (CSF) for a finite, simple
graph G, XG. The CSF is a multivariate generalization of the chromatic polynomial of
a graph that counts the number or proper colorings of the vertices of G. This function
has garnered significant interest, [2, 5, 4, 6, 9, 10, 12, 7, 11]. This interest is partly due to
the Tree Isomorphism Conjecture, which states that the CSF distinguishes non-isomorphic
trees. This conjecture is known to hold for trees with less than 30 vertices [9] and it has
been proved for several subclasses of trees [1, 2, 10, 12].

In a recent paper, Aliste-Prieto, De-Mier, Zamora and the second author [1] intro-
duced the Deletion-Near-Contraction relation (DNC relation), which leads to an algorithm
for writing XG in the star basis {stλ : λ ⊢ n} introduced by Cho and van Willigenburg
[3]. For T a tree we have:

XT = ∑
λ⊢n

cλstλ,

where λ ⊢ n denotes that λ is a partition of n.
The results in this abstract are as follows: (1) we give formulas for some of the

coefficients cλ; (2) we determine the smallest partition λ in lexicographic order such that
cλ ̸= 0 and compute this coefficient, we call this partition the leading partition of XT; (3) we
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give a reconstruction algorithm for trees of diameter less than 6. We believe these results
lay the groundwork for an inductive reconstruction algorithm that could hopefully prove
the Tree Isomorphism Conjecture. Our approach is novel in that it provides an explicit
reconstruction directly from XT. Additionally, we present a new, much shorter proof for
the diameter-five case, different from the proof in [8].

This paper is organized as follows: In Section 2, we review basic definitions. In Sec-
tion 3, we review the deletion-near-contraction relation, which allows us to efficiently
compute the CSF in the star basis. In addition, we present some results about the coef-
ficients that occur. In Section 4, we present our main result about the leading partition
and its coefficient. In Section 5, we prove that the Tree Isomorphism Conjecture is true
for all trees with a diameter of less than 6.

2 Graphs and the Chromatic Symmetric Function

For basic graph theory background see [14]. Here we give some basic definitions and set
the notation. We are interested in finite, simple graphs. A graph G = (V, E) is defined
via V, the set of vertices, and E the set of edges. We say that |V| is the order of G. In this
abstract we further restrict to the case when G is a tree, an acyclic, connected graph. A
forest is the disjoint union of trees. Every edge is determined by its endpoints, e = uv,
where u, v ∈ V. The degree of a vertex v is the number of edges having v as an endpoint.
A leaf is a vertex of degree 1, and a leaf edge is an edge incident to a leaf.

In this abstract we need a few more non-standard definitions. An edge e = uv is
called an internal edge if u and v have degree ≥ 2. We use I(T) for the set of internal
edges of T. An internal vertex is a vertex that is not a leaf. An internal vertex is called
deep if it is not the endpoint of a leaf edge. In the example below, u and w are internal
vertices, and u is deep, e is an internal edge and ℓ is a leaf edge and v is a leaf.

ℓv
u

w

e

A proper coloring of a graph G with vertex set {v1, . . . , vn} is a function f : V → Z≥0,
such that if e = uv ∈ E, then f (u) ̸= f (v). In [13], Stanley introduced the chromatic
symmetric function:

XG = ∑
f :V→Z>0

x f (v1)
· · · x f (vn)

where the sum is over all proper colorings of G and x1, x2 . . . are commuting variables.
XG is a homogeneous, symmetric function of degree n, the number of vertices. Let
Symn be the vector space of homogeneous, symmetric functions of degree n. Symn has
dimension p(n) which is equal to the number of partitions of n. Recall that a partition of
n, λ = (λ1, . . . , λk), is a multiset of positive integers written in weakly decreasing order
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and ∑k
i=1 λi = n, denoted by λ ⊢ n. The length of λ is ℓ(λ) = k. Let pr = xr

1 + xr
2 + · · ·

for any r ∈ Z>0 and pλ = pλ1 · · · pλk . The power sum basis {pλ | λ ⊢ n} is a linear basis
for Symn. In [13, Theorem 2.5], Stanley wrote XG in the power basis, we do not include
this here as we do not need it. But we give the power expansion for the star graph Stn,
the tree with one vertex of degree n − 1 and n − 1 vertices of degree 1.

stn := XStn =
n−1

∑
r=0

(−1)r
(

n − 1
r

)
p(r+1,1n−r−1)

More generally, if G is a forest of stars, we write G = Stλ1 ⊔ · · · ⊔ Stλk , where ⊔ is the
disjoint union of graphs. We write Stλ for the forest of stars with connected components
of orders λi, for all i. We define stλ := XStλ

= stλ1 · · · stλk . Here is St9,2,1

Cho and van Willigenburg showed [3] that {stλ | λ ⊢ n} is a basis of Symn called the
star basis. In the following section, we give a relation and an algorithm for writing XG in
the star basis.

3 Deletion-Near-Contraction

In this section, we review the deletion-near-contraction (DNC) relation, recently introduced
in [1]. This relation is a modification of the classical deletion-contraction relation used
to compute the chromatic polynomial of any graph.

• Deletion: This is the classic deletion of an edge in a graph. Given a graph G, we
denote the resulting graph obtained by deleting an edge e by G \ e.

• Leaf-contraction: Given a graph G and an edge e in G, the leaf-contracted graph,
G ⊙ e, is obtained by contracting e and attaching a leaf ℓe to the vertex that results
from the contraction of e.

• Dot-contraction: Given an edge e, the dot-contracted graph, (G⊙ e) \ ℓe, is obtained by
contracting the edge e and adding an isolated vertex, v, to the resulting graph. This
can be formulated in terms of the leaf-contraction operation as simply removing the
edge ℓe.

See Example 3.2 for an illustration of these operations. In [1], the authors proved that
the CSF satisfies a relation involving the three operations defined above.

Proposition 3.1 ([1]). (The deletion-near-contraction relation or DNC relation) For a simple
graph G and any edge e in G, we have

XG = XG\e − X(G⊙e)\ℓe + XG⊙e
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If e is a leaf edge, XG = XG⊙e and XG\e = X(G⊙e)\ℓe . Hence, we only apply it to
internal edges. In [1], the authors show that we can recursively apply the DNC relation
on internal edges until XG can be written as a linear combination of XH, where H is a
forest of star graphs. Stars do not have internal edges. This process is formalized in
the Star-Expansion Algorithm presented in [1]. We call an output of the star-expansion
algorithm a DNC tree for G, T (G). Every time we apply the DNC relation we obtain
forests with fewer internal edges. This leads us to an algorithm that gives the expansion
of XG in the star basis. For details about this algorithm see [8, Section 3].

Example 3.2. Example 3.2 shows an example of how to apply the star-expansion algo-
rithm. We use red to indicate the internal edge on which we apply the DNC relation. In
particular, it says that for the graph T at the root, we have

XT = −st(4,2,1) + st(4,3) + st(5,1,1) + st(5,2) − 2st(6,1) + st(7) .

+ − +

+ − + + − +

Remark 3.3. If G has n vertices and XG = ∑λ⊢n cλstλ is written in the star basis, then
cλ = (−1)m|Sλ|, where Sλ is the set of paths in a DNC tree T (G) that end in a star
forest H whose connected components’ orders are given by the parts in λ, and m is the
number of dot-contractions performed throughout any of these paths.

Remark 3.3 allows us to compute coefficients using combinatorial arguments for the
number of paths in a DNC tree. For example, in the case of hook partitions.

Proposition 3.4 ([8, Proposition 3.8]). Let T be a tree of order n and I(T) the set of internal
edges of T. If XT = ∑λ⊢n cλstλ, then c(n−m,1m) = (−1)m(#I(T)

m ). In particular, |c(n−1,1)| =
#I(T).

4 The Leading Partition

Let F be a forest with n vertices with internal edges I(F). We call the connected com-
ponents of F \ I(F) the leaf components of F, and we denote by λLC(F) the partition of n
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whose parts are the orders of these components, that is,

λLC(F) := λ(F \ I(F)).

We call λLC(F) the leaf component partition of F. Notice that F \ I(F) is a spanning sub-
graph, i.e., every vertex in F is also a vertex in F \ I(F). Furthermore, F \ I(F) is a forest
whose connected components are all stars. Thus, a leaf component is always a star tree.

Example 4.1. The tree T from Example 3.2 has leaf components St4, St2, and St1; hence
λLC(T) = (4, 2, 1).

T = T \ I(T) =e1 e2

For λ, µ ⊢ n, we say that λ ≤ µ if λ = µ or if λi = µi for 1 ≤ i < j and λj < µj for
some 1 ≤ j ≤ ℓ(λ). This is called the lexicographic order on the set of partitions, and it
is a total order. In what follows, we assume that {stλ : λ ⊢ n} is an ordered basis with
respect to the lexicographic order. For any tree T of order n, we write

XT = ∑
λ⊢n

cλstλ,

where the summands are listed in increasing lexicographic order.

Definition 4.2. Let F be a forest of order n with XF = ∑λ⊢n cλstλ. The leading partition of
XF is the smallest partition λ ⊢ n, in lexicographic order, such that cλ ̸= 0. We then say
that cλ is the leading coefficient. We denote the leading partition of F by λlead(XF).

Example 4.3. For the tree T from Example 3.2, the leading partition is λlead(XT) =
(4, 2, 1), the leading coefficient is c(4,2,1) = −1. Observe that λLC(T) = λlead(XT).

In Examples 4.1 and 4.3, we see that λlead = λLC. In Section 4 of [8], we prove that
this is always the case. We also give an elegant combinatorial formula for the leading
coefficient. Recall that a deep vertex is an internal vertex that is not an endpoint of a leaf
edge. The number of deep vertices is equal to the number of 1s in λLC.

Theorem 4.4 ([8, Theorem 4.16 and Theorem 4.29]). Let F be a forest with n vertices. Then
λlead(XF) = λLC(F). If in addition, F has deep vertices u1, . . . , um, then:

cλlead = (−1)m
m

∏
i=1

(deg(ui)− 1)

This result is far from trivial. In particular, it is not even clear that there exists a
path in a DNC tree T (F) from the root to a star forest indexed by λLC(F) since the path
obtained by applying #I(F) deletions is not always possible. For instance, in Example 3.2,
there is no path obtained by performing two deletions.
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Example 4.5. Let T be the tree below. Notice that λLC(T) = (2, 2, 2, 1)
u

We have XT = −2st(23,1) + 3st(3,2,12) + 3st(3,22) − st(4,13) − 6st(4,2,1) + 3st(5,1,1) + 3st(5,2) −
3st(6,1) + st(7). We can see that λlead(XT) = (2, 2, 2, 1) = λLC(T) and there is only one
deep vertex u of degree 3, hence the coefficient is cλlead = (−1)1(3 − 1) = −2

4.1 Tree reconstructions using λlead

Given any tree T, we can now determine the leading partition of XT based on the proper-
ties of the tree T itself. In this subsection, we show that λlead(XT) allows us to make some
progress towards a positive answer to the tree isomorphism conjecture. In particular, we
immediately obtain the following corollary:

Corollary 4.6. If T1 and T2 are trees whose leaf components have different orders, then XT1 ̸=
XT2 , that is, if λLC(T1) ̸= λLC(T2), then XT1 ̸= XT2 .

The leading partition also allows us to positively answer the conjecture for another
infinite family of trees.

Definition 4.7. A bi-star is a tree consisting of two star graphs whose centers are joined
by an internal edge. An extended bi-star is a tree consisting of two star graphs whose
centers are connected by a path of one or more deep vertices of degree 2.

Example 4.8. The extended bi-star shown below has leading partition (6, 4, 14)

Corollary 4.9 ([8, Corollary 4.23 and Corollary 4.25]). Let T be a tree of order n. Then,
λlead(XT) = (i, j, 1n−i−j) for some i, j > 1 if and only if T is a bi-star or extended bi-star with
leaf-stars Sti and Stj separated by n − i − j deep vertices of degree 2. Therefore, bi-stars and
extended bi-stars are distinguished by their CSF.

Note that bi-stars and extended bi-stars are particular cases of caterpillars, which are
already known to be distinguished by their CSF [10, 12]. We included Corollary 4.9 here
to illustrate that Theorem 4.4 has strong consequences and also the proofs in [10, 12] are
not constructive and do not use XT directly.

In what follows, we show that edge adjacencies can also be recovered from XT, which,
together with λlead will allow us to reconstruct other families of trees. If T is a tree and
L1 and L2 are two leaf components with central vertices v1 and v2, respectively, we say
that L1 and L2 are adjacent if v1v2 ∈ E(T). In addition, we will refer to L1 and L2 as the
leaf component endpoints for the internal edge e = v1v2.
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Example 4.10. In the tree below, the leaf components L1 (with center v1) and L2 (with
center v2), are adjacent and they are the leaf component endpoints of the edge v1v2.

v1 v2

For two partitions λ and µ, we use λ − µ to denote the multiset difference between
λ and µ, that is, for each i ∈ {1, . . . , n}, the multiplicity of i in λ − µ is max{mi(λ) −
mi(µ), 0}, where mi(λ) is the multiplicity of i in λ.

Definition 4.11. Let XT = ∑λ⊢n cλstλ be the CSF of a tree of order n with leading parti-
tion λlead. For any partition µ ⊢ n without 1s, ℓ(µ) = ℓ(λlead(XT))− 1, and cµ ̸= 0, we
define the adjacency multiset by Eµ = λlead − µ.

Example 4.12. Consider the following CSF:

XT = −st(4,2,1) + st(4,3) + st(5,1,1) + st(5,2) − 2st(6,1) + st(7)

The leading term has been colored blue, and the terms indexed by partitions of length
ℓ(λlead(XT))− 1 without 1s have been colored red. For µ = (4, 3), we obtain Eµ = {{2, 1}}
and for ν = (5, 2), Eν = {{4, 1}}. From Example 4.1, we see that Eµ and Eν contain the
orders of leaf components that are adjacent in T, allowing us to find the internal edges
e1 and e2 in that example from XT.

The following proposition makes precise the relation between the Eµ and the edges
with endpoints the centers of leaf components of a tree. For a part i of a partition λ, we
let mi denote its multiplicity.

Proposition 4.13 ([8, Proposition 5.14]). Assume that XT is the CSF of a tree of order n with
leading partition λlead(XT) = (nmn , . . . , 1m1). Let µ ⊢ n such that cµ ̸= 0 in XT, ℓ(µ) =
ℓ(λlead(XT))− 1, and µ contains no 1s. Then,

(a) If m1 = 0, then Eµ = {{p, q}}, where p and q are orders of two adjacent leaf components in
T. And cµ is the number of internal edges with leaf component endpoints of orders p and q.

(b) If m1 = 1, then Eµ = {{1, q}}, where q is the order of a leaf component adjacent to the deep
vertex. Then, cµ is the number of leaf components of order q adjacent to the deep vertex.

Example 4.14. Example 4.12 illustrates (b). For case (a), consider the following CSF:

XT = st(32,22) − 2st(4,3,2,1) − st(5,22,1) + st(5,3,12) + 2st(5,3,2) + 2st(6,2,12) + st(6,2,2)

−2st(6,3,1) − st(7,13) − 4st(7,2,1) + st(7,3) + 3st(8,12) + 2st(8,2) − 3st(9,1) + st(10)

λlead = (32, 22) has length 4, the terms indexed by partitions of length 3, µ = (5, 3, 2)
and ν = (6, 2, 2), are highlighted in red. Thus, Eµ = {{3, 2}} and Eν = {{3, 3}}. By
Proposition 4.13, there are c(5,3,2) = 2 internal edges in T with leaf component endpoints
of orders 3 and 2, and there is c(6,2,2) = 1 internal edge with leaf component endpoints
of orders 3.
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Corollary 4.15. Let XT be the CSF of a tree T such that λlead = λlead(XT) = (λ1, . . . , λk)
contains no 1s and has all distinct parts. Then, T can be reconstructed from XT. In particular, T
can be reconstructed from λlead and the adjacency multisets.

Example 4.16. For the sake of brevity, we only provide λlead(XT) and the coefficients
of the partitions µ without 1s such that ℓ(µ) = ℓ(λlead(XT)) − 1. Consider XT with
λlead(XT) = (9, 7, 6, 5, 4, 3, 2) and with the following coefficients indexed by partitions
without 1s with ℓ(λlead(XT)) − 1 on the table on the left. From these data, we can
reconstruct the tree T on the right (edge adjacencies are colored red).

µ cµ Eµ

(16, 6, 5, 4, 3, 2) 1 {{9, 7}}
(15, 7, 5, 4, 3, 2) 1 {{9, 6}}
(11, 9, 7, 4, 3, 2) 1 {{6, 5}}
(10, 9, 7, 5, 3, 2) 1 {{6, 4}}
(9, 7, 7, 6, 5, 2) 1 {{4, 3}}
(9, 7, 6, 6, 5, 3) 1 {{4, 2}}

T =

5 Trees of diameter ≤ 5

In this section, we show that trees of diameter at most five can be reconstructed from
their CSF. We give an explicit reconstruction algorithm using the leading partition which
for these trees can have at most two 1s, the internal subgraph, defined below, and Propo-
sition 4.13 on the adjacencies between the leaf components of the tree. In [12], the authors
proved that one can compute the diameter of a tree from its CSF. In [1], the authors
showed that a subclass of trees of diameter at most five are distinguished from their
CSF, providing a reconstruction algorithm. Here we show that all trees of diameter at
most five can be reconstructed from XT.

Trees of diameter ≤ 2 are stars and there is only one such tree for a given number
of vertices k, namely Stk. If T has diameter 3, then T is a bi-star with λlead(XT) = (i, j),
where i and j are the orders of its two leaf components, see Corollary 4.9. Therefore, in
the remainder of this section we focus on trees with diameter 4 and 5.

Recall that a leaf component of a tree T is a connected component of T \ I(T). Define
the internal degree of a vertex v as the number of internal edges having v as an endpoint.

Definition 5.1. Let T be a tree and let {v1, . . . , vl} be the set of vertices of T with internal
degree strictly greater than 1. Let Li be the set of leaf-vertices that are incident to any
vi for 1 ≤ i ≤ l. Then, the internal subgraph of T, IT, is the subgraph of T, with vertices
V(IT) = {v1, . . . , vl} ∪ L1 ∪ · · · ∪ Ll and all edges in T with endpoints in V(IT).

Example 5.2. A tree T and its internal subgraph IT. The vertices in T with internal
degree greater than 1 are labeled v1, v2 and v3. Their internal degrees are 3, 3, and 5,
respectively.
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v1

v2

v3 v1

v2

v3T = IT =

In [8], we showed that the internal subgraph of a tree is always connected.

5.1 Leaf components in the internal subgraph

From λlead(XT) for a tree T, we can recover the orders of the leaf components of T. When
T has diameter 4, only one of these leaf components is in IT; and if T has diameter 5,
then IT contains only two leaf components of T. In the case where T has diameter at
most 5, we can find from XT the orders of the leaf components in T that are also in
IT. Leaf components of order 1 in T must be in IT. Hence, we concentrate on leaf
components of order greater than 1.

We now define a number that will help us determine the orders of the leaf compo-
nents of T that are contained in IT. If XT = ∑λ cλstλ is the CSF of a tree T of order n
and p is a part in λlead(XT), then define the quantity:

N(p) := ∑ mp(Eµ) · cµ , (5.1)

where the sum runs over all µ ⊢ n of length ℓ(λlead(XT))− 1 such that cµ ̸= 0 in XT and
such that µ does not contain 1 as a part. Recall mp(Eµ) is the multiplicity of p in Eµ.
From Equation (5.1), we observe that N(p) can be computed from XT.

Remark 5.3. If λlead(XT) contains no 1s, then Proposition 4.13(a) implies that ET =
⊔

µ Eµ,
where the union is taken over all µ ⊢ n of length ℓ(λlead(XT))− 1 such that cµ ̸= 0 in XT
and µ contains no 1s, contains the adjacencies between leaf components in T. Further,
the multiplicity of Eµ in ET is cµ. Hence, N(p) as defined above is exactly the number of
times that a leaf component of order p occurs as a leaf component endpoint in T.

Theorem 5.4 ([8, Theorem 5.19]). Let XT be the CSF of a tree T of order n with no deep vertices,
and let λlead(XT) = (nmn , . . . , 2m2) be the leading partition. If p is any part of λlead(XT), then
a leaf component of order p in T is contained in IT if and only if N(p) > mp(λlead(XT)) = mp.

5.1.1 Reconstruction of trees of diameter 4.

The following theorem is a consequence of Theorem 4.4, which says that the leading
partition gives us the orders of all the leaf components of T, and the fact that IT has
only one leaf component, L, when T has diameter four [8, Corollary 5.7], we can recover
the order of L from Theorem 5.4 or from λlead(XT) if m1(λlead(XT)) = 1.
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Theorem 5.5. Trees of diameter four can be reconstructed from their CSF. In particular, these
trees can be reconstructed from the leading partition, λlead(XT), and the nonzero coefficients cµ,
indexed by partitions µ such that ℓ(µ) = ℓ(λlead(XT))− 1 and µ has no parts of size 1.

In fact, we can give an algorithm to reconstruct trees of diameter 4. Given XT in the
star basis, the leading partition λlead(XT) gives the orders of the leaf-components of T.
Since T has diameter 4, IT is a single leaf component and m1(λlead(XT)) ≤ 1.

• If λlead(XT) = (λ1, . . . , λℓ) and m1 = 1, then IT is a single vertex, v, then T is the tree
obtained by adding an edge from v the center of a star of order λi for all 1 ≤ i < ℓ.

• If λlead(XT) = (λ1, . . . , λℓ) and m1 = 0, then:

– Use Theorem 5.4 to determine the order, λj, of the leaf component in IT, where
1 ≤ j ≤ ℓ.

– Then add an edge from the central vertex of a star of order λi, for i ̸= j, to the
central vertex of IT.

Example 5.6. Consider the following CSF on a tree with 17 vertices.

XT = st(5,4,3,3,2) − st(5,5,3,3,1) − 2st(6,5,3,2,1) + st(6,5,3,3) + 2st(7,5,3,1,1) + 2st(7,5,3,2) − st(8,3,3,2,1) +

st(8,5,2,1,1) − 4st(8,5,3,1) + st(9,3,3,1,1) + st(9,3,3,2) − st(9,5,1,1,1) − 2st(9,5,2,1) + 2st(9,5,3) +

2st(10,3,2,1,1) − 2st(10,3,3,1) + 3st(10,5,1,1) + st(10,5,2) − 2st(11,3,1,1,1) − 4st(11,3,2,1) + st(11,3,3)

−3st(11,5,1) − st(12,2,1,1,1) + 6st(12,3,1,1) + 2st(12,3,2) + st(12,5) + st(13,1,1,1,1) + 3st(13,2,1,1)

−6st(13,3,1) − 4st(14,1,1,1) − 3st(14,2,1) + 2st(14,3) + 6st(15,1,1) + st(15,2) − 4st(16,1) + st(17)

As shown in [12], we know that T has diameter four from XT. We have λlead(XT) =
(5, 4, 3, 3, 2), colored blue. The terms indexed by partitions of length ℓ(λlead(XT)) − 1
without 1s are colored red. These terms induce the adjacency multisets {{5, 4}}, {{4, 3}}
(twice) and {{4, 2}}. We have N(4) = 4 > 1 = m4, which by Theorem 5.4 implies that the
leaf component in T contained in IT has order 4. Then, we draw all the remaining leaf
components and connect them to the leaf component of order 4 in IT.

5.1.2 Trees of diameter 5

Lemma 5.7. Let T be a tree with diameter five and internal subgraph IT. Let e = u1u2 be the
edge between the two internal vertices u1 and u2 contained in IT. Let T \ e = T1 ⊔ T2 where T1
and T2 are the trees containing u1 and u2, respectively. Then both T1 and T2 have diameter at
most 4.
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Proposition 5.8 ([8, Proposition 5.26]). Let XT be the CSF of a tree T with diameter five and
λlead = λlead(XT) = (nmn , . . . , 1m1). Let e be the internal edge in IT, the internal subgraph
of T, and let T \ e = T1 ⊔ T2. Then, XT1XT2 can be recovered from XT. Further, #V(T1) and
#V(T2) can be recovered from XT.

In [8], we prove the result below. However, we include here a shorter inductive proof
that did not appear in [8].

Theorem 5.9. Let XT be the CSF of a tree T with diameter 5 and λlead = λlead(XT) =
(nmn , . . . , 1m1). Then, T can be reconstructed from XT.

Proof. Since T has diameter 5, m1 ≤ 2 and the internal subgraph IT consists of two leaf
components L1 and L2 of orders p1 and p2, respectively, whose respective centers u1
and u2 are joined by an internal edge e. Let T \ e = T1 ⊔ T2, where T1 contains u1 and
T2 contains u2. Then, by Proposition 5.8, we can recover the product XT1XT2 as well as
#V(T1) and #V(T2). Let N1 = #V(T1) and N2 = #V(T2). If λlead has only two parts
greater than one, then T is reconstructible by Corollary 4.9. Thus, we may assume that
λlead has at least three parts greater than one.

Without loss of generality, we may assume λlead(XT1) ≤ λlead(XT2) where ≤ is lex-
icographic order. Therefore, in the product XT1XT2 , the smallest partition α in lexico-
graphic order such that c(N2,α) ̸= 0 must be exactly α = λlead(XT1). Thus, we can recover
the orders of the leaf components in T1, and thus those in T2 by taking the multiset
difference with λlead. Hence, we can recover λlead(XT1) and λlead(XT2) from XT1XT2 .
Observe that we can tell whether p1 = p2 from either λlead if m1(λlead) = 2 or from
Theorem 5.4 if m1(λlead) = 0. In this case, since p1 = p2, we can reconstruct T by
adding an edge between the centers of L1 and L2, then adding edges from the centers
of the other leaf components given by λlead(XT1)− {p1} to L1, and finally adding edges
from the center of L2 to the centers of the components given by the mulitset difference
(λlead − λlead(XT1))− {{p2}} = λlead(XT2)− {{p2}}.

Hence, assume p1 ̸= p2. If m1(λlead) = 1, we consider the following cases. If
ℓ(λlead(XT1)) = 1, then T1 is a star on k = |λlead(XT1)| vertices. Then, p1 = 1 and
the only two leaf components adjacent to L1 have orders k − 1 and p2. In this case, we
can find p2 using adjacency multisets from Proposition 4.13(b). If ℓ(λlead(XT1)) ̸= 1, then
either p1 = 1 if m1(λlead(XT1)) = 1 and we can find p2 again using adjacency multisets.
Otherwise, we must have p2 = 1. Since we recovered the orders of the leaf components
in T2, using the adjacencies from Proposition 4.13(b) we can find the value of p1. Once
we know the values of p1 and p2 the reconstruction of T is the same as when p1 = p2.

If m1(λlead) = 0, then by Theorem 5.4 we can find the multiset of values of the orders
of L1 and L2, {{r, s}}. We need to determine if p2 = r or s. If only r (or s) occurs in
λlead(XT1) (similarly for λlead(XT2)), then p1 = r (or s) and p2 = s (or r). Then, assume
λlead(XT1) = sort(r, s, a1, . . . , am) and λlead(XT2) = sort(r, s, b1, . . . , bk). Then, T must be
equal to one of the following trees (each leaf component is represented by its order):
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But it is clear that if λlead(XT1) ̸= λlead(XT2), these trees have different edge adjencen-
cies, otherwise they are isomorphic.
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