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Abstract. The Bruhat interval polytope Pu,v is the convex hull of the Bruhat interval
[u, v] in Sn, where each permutation z is interpreted as a vector (z(1), . . . , z(n)) ∈ Rn.
One example is the permutahedron, which is Pe,w◦ . We explore the combinatorics of
regular subdivisions of the permutahedron into Bruhat interval polytopes. In particu-
lar, we identify 2n−2 finest such subdivisions, one for each Coxeter element of Sn. For
each subdivision, we provide an explicit height vector and determine exactly the con-
stituent Bruhat interval polytopes. We also obtain an algebro-geometric counterpart of
these subdivisions: for each Coxeter element c ∈ Sn, we obtain a formula for the class
of the permutahedral variety as a sum of Richardson classes, where the terms in the
sum exactly correspond to maximal polytopes in the subdivision. We further obtain
formulas for the cohomology class of more general subvarieties of G/B which include
Hessenberg varieties.
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1 Introduction

The permutahedron is the convex hull of the permutation vectors {(w(1), . . . , w(n)) :
w ∈ Sn} in Rn. It is the moment map image of both the complete flag variety Fln and
the permutahedral variety Tx, the closure of a generic torus orbit in Fln. The permuta-
hedron has appeared widely in combinatorics and in combinatorial algebraic geometry.
For example, the permutahedral variety has played a key role in the Hodge theory of
matroids.

Bruhat interval polytopes are a natural generalization of the permutahedron. Intro-
duced by Kodama–Williams [13], the Bruhat interval polytope Pu,v is the convex hull
of the permutations in the Bruhat interval [u, v]. The permutahedron is Pe,w◦ . Bruhat
interval polytopes are examples of flag matroid polytopes, and P̃u,v := Pw◦v−1,w◦u−1 is the
moment map image of the Richardson variety Ru,v ⊂ Fln. Their combinatorial properties
have been studied in e.g. [8, 10, 14, 18].

*mshermanbennett@ucdavis.edu. MSB was partially supported by NSF Award No. 2103282 and
2349015.

mailto:mshermanbennett@ucdavis.edu


2

1.1 Main results

The first main result of this extended abstract (Theorem 2.9) concerns the combinatorics
of regular subdivisions of the permutahedron Pe,w◦ into Bruhat interval polytopes. For
each Coxeter element c ∈ Sn, we define an explicit height function hc on the vertices of
Pe,w◦ (Definition 2.6). We show that the regular subdivision induced by hc is exactly the
decomposition

Pe,w◦ =
⋃

w : ℓ(wc)=
ℓ(w)+ℓ(c)

P̃w,wc. (1.1)

We also show that these subdivisions are finest, and discuss the numerology of the max-
imal cells. We obtain similar results for the type B permutahedron as well.

The second main result (Theorem 3.2) concerns the geometry of the permutahedral
variety, and mirrors Equation (1.1). For each Coxeter element c ∈ Sn, we show that the
class of the permutahedral variety is a sum of Richardson classes

[Tx] = ∑
w : ℓ(wc)=
ℓ(w)+ℓ(c)

[Rw,wc]. (1.2)

In fact, this equation is a special case of a formula for a more general class of subvarieties
of G/B which includes the Hessenberg varieties, see 3.1.

1.2 Scientific context

The subdivisions of the permutahedron studied here are examples of regular subdi-
visions of a flag matroid polytope (the permutahedron) into flag positroid polytopes
(Bruhat interval polytopes). See Section 2.1.1. Such subdivisions are known to be in
correspondence with the cones of a polyhedral fan, the positive flag Dressian, which is
also the positive tropicalization of Fln [7, 12]. Regular matroidal subdivisions of matroid
polytopes have been the focus of substantial interest in the past two decades, as have the
“positive” and “flag” variants of this setup1. Heuristically, the “positive” variants ex-
hibit surprisingly nice behavior compared to the general matroid version [17, 8]. Much
of the work on these objects has concerned the structure of the parametrizing polyhedral
fans; the combinatorics of e.g. which polytopes appear together in a subdivision remains
quite mysterious. The finest subdivisions found here constitute a first investigation of
this question in the “positive flag” case. We note that in just the “positive” case, there is
a family of finest positroidal subdivisions of the hypersimplex indexed by Catalan ob-
jects, whose combinatorics is completely understood. We view our finest Bruhat interval
subdivisions of the permutahedron, indexed by Coxeter elements, as roughly analogous.

1We direct the reader to [8] for a more comprehensive history and references.
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Our results generalize results of [11], who proved (1.1) in the special case of a “stan-
dard” Coxeter element c = sn−1 . . . s1 = n123 . . . (n − 1) via a connection to Gelfand–
Tsetlin polytopes. In this special case, (1.2) can be deduced from [4]. When c = sn−1 . . . s1,
each of the Bruhat interval polytopes P̃w,wc in (1.1) is combinatorially a cube. This cu-
bical subdivision of Pe,w◦ was utilized in [16] to provide a combinatorial interpretation
of a q-analogue of Postnikov’s mixed Eulerian numbers. Another perspective on the
relationship between (1.1) and (1.2) in the c = 234 . . . n1 case was given in [15], which
showed that there is a degeneration of the permutahedral variety Tx to the union ∪Rw,wc
which occurs inside the flag variety Fln. We speculate that such a degeneration exists for
arbitrary c, and in arbitrary type.

2 Subdivisions from Coxeter elements

2.1 Combinatorial background

We use the notation [n] := {1, 2, . . . , n}. For a permutation z ∈ Sn, both z(i) and zi are
the image of i, and z[1 : i] := {z(1), . . . , z(i)}. The simple transposition exchanging i and
i + 1 is si. A reduced word for z ∈ Sn is an expression z = si1si2 · · · siℓ where ℓ := ℓ(z)
is minimal. We call ℓ(z) the length of z. A product uw is length-additive if ℓ(uw) =
ℓ(u) + ℓ(w). For u, v ∈ Sn, u ≤ v in the Bruhat order if any reduced expression for v
contains a reduced expression for u as a subword. Intervals in Bruhat order are denoted
[u, v] := {z ∈ Sn : u ≤ z ≤ v}. The longest permutation is w◦ : i 7→ n − i + 1. We define
w̃ := w◦w−1 and ŵ := w−1w◦. These operations are involutive anti-automorphisms of
the Bruhat order.

Definition 2.1 ([13]). Let u ≤ v. The Bruhat interval polytope Pu,v is the polytope

Pu,v := conv{(z(1), z(2), . . . , z(n)) : z ∈ [u, v]} ⊂ Rn.

The twisted Bruhat interval polytope P̃u,v is the polytope

P̃u,v := conv{(z̃(1), z̃(2), . . . , z̃(n)) : z ∈ [u, v]} ⊂ Rn.

The set of Bruhat interval polytopes and the set of twisted Bruhat interval polytopes
is the same; the only difference is how each polytope is labeled by an interval. In
particular, P̃u,v = Pṽ,ũ. The Bruhat interval polytope Pe,w◦ is the permutahedron, which
is the convex hull of all permutations. We note that the vertex set of Pu,v is the interval
[u, v], and every face of Pu,v is itself a Bruhat interval polytope [18, Theorem 4.1].

Definition 2.2. Let P ⊂ Rd be a polytope with vertices v1, . . . , vr, and let

h : {v1, . . . , vr} → R
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be a height vector. We write vh
i := (vi, h(v)) for the lifted vertex, which is a point in Rd ×R.

The lifted polytope is

Ph := conv{vh
i : i = 1, . . . , r} ⊂ Rd × R.

A lower face of Ph is a face which minimizes a linear functional of the form ⟨(x, 1),−⟩.
The regular subdivision of P induced by h, also called the h-subdivision of P, is the collection
of polytopes

{conv{vi}i∈I ⊂ P : conv{vh
i }i∈I is a lower face of Ph}.

Each polytope in the collection is called a cell of the subdivision. Cells are partially
ordered by inclusion. A regular subdivision of the permutahedron Pe,w◦ is a regular
Bruhat interval subdivision if all cells are Bruhat interval polytopes.

2.1.1 Relation to matroidal subdivisions, Dressians, tropical Grassmannians

Before stating our results regarding Bruhat interval subdivisions, we give additional
context for the reader familiar with matroid theory. See [8] for additional details.

The twisted Bruhat interval polytope P̃u,v is the flag matroid polytope of the flag ma-
troid Mu,v := (M1

u,v, . . . , Mn−1
u,v ), where Mi

u,v is the matroid with bases {z[1 : i] : z ∈
[u, v]}. The matroid polytope of the constituent matroid Mi

u,v is

conv{ez[1 : i] : z ∈ [u, v]} ⊂ Rn

where for I ⊂ [n], eI = ∑i∈I ei is the indicator vector of I. We have that P̃u,v is the
Minkowski sum of the matroid polytopes of M1

u,v, . . . , Mn−1
u,v . Each of the matroids Mi

u,v
is a positroid, meaning that Mi

u,v can be realized by a i × n matrix with nonnegative
maximal minors. The flag matroids Mu,v are exactly the flag positroids, meaning they are
the only flag matroids which can be realized by an n × n matrix with nonnegative flag
minors.

The permutahedron Pe,w◦ is the flag matroid polytope of the uniform flag matroid,
meaning the constitutent matroids Mi

e,w◦ are all uniform. Thus, a regular Bruhat interval
subdivision of Pe,w◦ is a regular flag-positroidal subdivision of the uniform flag matroid
polytope. The height vectors h giving rise to such subdivisions form a polyhedral fan
called the positive flag Dressian [12], which is equal to the positive tropical flag variety [12,
7]. There is a bijective correspondence between cones of the positive flag Dressian2

and regular Bruhat interval subdivisions of Pe,w◦ . Containment of cones corresponds
to coarsening of subdivisions. We note that, while [7] gives a parametrization of the
positive flag Dressian, very little is known about its fan structure—such as the number
of rays or maximal cones—or about which Bruhat interval polytopes form regular Bruhat
interval subdivisions.

2Technically, one can endow the positive flag Dressian with a number of different fan structures. Here,
we choose the secondary fan structure.
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2.2 Regular Bruhat interval subdivisions from Coxeter elements

In this subsection, we define a height vector hc for each Coxeter element c ∈ Sn and state
our main result on the combinatorics of the hc-subdivision of Pe,w◦ .

Definition 2.3. A permutation c ∈ Sn is a Coxeter element if it has a reduced expression
in which each simple transposition appears exactly once.

Example 2.4. For S4, the Coxeter elements are s1s2s3, s3s2s1, s1s3s2 = s3s1s2 and s2s1s3 =
s2s3s1.

It is well-known that Sn has 2n−2 Coxeter elements. We will define a height function
on Sn, i.e. on the vertices of Pe,w◦ , using a Coxeter element. We first need the notion of
rightmost subexpressions.

Definition 2.5. Let w = si1 . . . sir be a word (not necessarily reduced) in the simple
transpositions of Sn. A subexpression for v in w is an expression for v of the form v =
sv

h1
. . . sv

hr
where sv

hi
∈ {e, shi}. The set of indices i ∈ [r] where sv

hi
̸= e is the support

of the subexpression. The rightmost subexpression3 for v is constructed using a greedy
procedure, moving from right to left, as follows: set v(r+1) = v. If v(j+1) is already
determined, then v(j) is equal to either v(j+1) or v(j+1)sij , whichever is smaller in the
Bruhat order. In the first case, sv

ij
= e; in the second, sv

ij
= sij . See Example 2.7.

For I ⊂ [n], let vI be the permutation obtained by putting the elements of I in
increasing order, followed by the complement in increasing order. Recall that w̃ :=
w◦w−1 and ŵ := w−1w◦.

Definition 2.6. Let c ∈ Sn be a Coxeter element and fix a word c for c. Let cm = si1 · · · sir ,
where m is large enough that cm contains a subexpression for w◦. Weight each letter of
cm according to which copy of c it is in: for j ∈ [r], wt(j) := #{k ∈ [j + 1, r] : sik = sij}.
The weight of a subexpression of cm is the sum of weights of its support. Given I ⊂ [n],
we define wt(I) to be the weight of the rightmost subexpression for vI in cm. Finally, we
define

hc(w) :=
n−1

∑
i=1

wt(ŵ[1 : i]) or equivalently hc(w̃) :=
n−1

∑
i=1

wt(w[1 : i]). (2.1)

Example 2.7. Let c = s1s2s3, and cm = s1s2s3s1s2s3s1s2s3. The weights of the letters are
222111000. Consider w = 3412 so w̃ = 2143. From the table below, we see hc(w̃) =
1 + 2 + 0 = 3.

3Also called the positive distinguished subexpression for v in the literature.
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i I = w[1 : i] vI rightmost subexp. for vI in cm wt(I)

1 {3} 3124 s1s2s3s1 s2 s3 s1 s2s3 1 + 0 = 1

2 {3,4} 3412 s1s2s3s1 s2 s3 s1 s2 s3 1 + 1 + 0 + 0 = 2

3 {1,3,4} 1342 s1s2s3s1s2s3s1 s2 s3 0 + 0 = 0

Remark 2.8. Recall from Section 2.1.1 that Pe,w◦ is the Minkowski sum of uniform ma-
troid polytopes, also called hypersimplices, whose vertices are the indicator vectors eI .
In effect, Definition 2.6 defines a height function on vertices of hypersimplices, where
the height of eI is wt(I). Then hc is the height function on the vertices of Pe,w◦ induced
by writing each vertex as a sum of hypersimplex vertices and then taking the sum of
heights.

The following is the main theorem of this section.

Theorem 2.9. Let c ∈ Sn be a Coxeter element and let c∗ := w◦cw◦. Then the subdivision of
Pe,w◦ induced by the height function hc : Sn → R is a finest regular Bruhat interval subdivision
of Pe,w◦ . The maximal cells of this subdivision are

{Pu,c∗u : c∗u length-additive} = {P̃w,wc : wc length-additive}.

The dimension i cells are

{P̃p,q : [p, q] ⊂ [w, wc] for some w with wc length-additive, ℓ(q)− ℓ(p) = i}.

To prove Theorem 2.9, we show via careful analysis of hc that each P̃w,wc lifts to a
hyperplane, and that the lifted polytopes satisfy the local folding condition of [9, Theorem
2.3.20].

Example 2.10. For c = s1s2s3 = 2341, the maximal cells in the hc-subdivision of the
permutahedron P1234,4321 are

P̃1234,2341, P̃1324,3241, P̃1243,2431, P̃1423,4231, P̃1342,3421, P̃1432,4321.

For c = s1s3s2 = 2413, the maximal cells in the hc-subdivision of the permutahedron
P1234,4321 are

P̃1234,2413, P̃1324,3412, P̃2314,3421, P̃1423,4312, P̃2413,4321.

We obtain the following immediate corollary, utilizing the correspondence between
finest regular Bruhat interval subdivisions and the maximal cones of the positive flag
Dressian (cf. Section 2.1.1).
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Corollary 2.11. For each Coxeter element c ∈ Sn, the vector hc lies in a maximal cone in the
positive flag Dressian, endowed with secondary fan structure. Thus, there are at least 2n−2

maximal cones.

Our results extend to the type B and type C variants of Bruhat interval polytopes
via a folding argument. As this result does not depend on the weight lattice, it suffices
to state it for type C. Let S±

n be the signed permutation group, acting by reflections on
Rn. The group S±

n is the type BC Coxeter group, and so is equipped with the (strong)
Bruhat order. Given an interval [u, v] in S±

n , the type C-Bruhat interval polytope P̃C
u,v is the

polytope
P̃C

u,v = conv (w · (n, n − 1, . . . , 1) : w ∈ [u, v]) .

Theorem 2.12. Let c ∈ S±
n be a Coxeter element. Then, there is a height function hc : S±

n → R

such that the corresponding regular subdivision of P̃C
e,w0

is a finest regular subdivision into type
C Bruhat interval polytopes with maximal cells

{P̃C
w,wc : wc length-additive}.

2.3 Numerology of maximal cells

In this section, we discuss the number of maximal cells in the hc-subdivision of Pe,w◦ . As
we will see, this number varies depending on the choice of c.

Remark 2.13. Regular Bruhat interval subdivisions of Pe,w◦ are the “flag” analogue of
regular positroidal subdivisions of the hypersimplex ∆k,n. In the latter context, all finest
subdivisions have the same f -vector, and in particular have (n−2

k ) maximal cells. In [8],
it was shown for n = 4 that, in contrast, finest regular Bruhat interval subdivisions of
Pe,w◦ need not have the same number of maximal cells. The results of this section show
that this continues for arbitrary n.

We use ≤L to denote the left weak order on Sn. Recall that u ≤L v if and only if v
has a reduced expression which has a reduced expression for u as a suffix. Equivalently,
u ≤L v if and only if v can be written as v = xu where xu is length-additive. Left weak
order can also be rephrased in terms of right inversions.

Definition 2.14. For u ∈ Sn, let TR(u) := {(a, b) : a < b, ua > ub} be the set of right
inversions of u. We define ≽u to be the poset on [n] defined by a ≽u b if (a, b) ∈ TR(u) or
if a = b.

It is straightforward to verify that ≽u is indeed a partial ordering on [n]. It follows
from [6, Proposition 3.1.3] that for u ∈ Sn

[u, w◦]L = {v ∈ Sn : v(a) > v(b) for all a ̸= b with a ≽u b}

where the set on the right is exactly the set of linear extensions of ≽u.
The following lemma is straightforward.
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Lemma 2.15. Let c ∈ Sn be a Coxeter element. Then

{v : c ≤L v} → {P̃w,wc : wc length-additive}
v 7→ P̃vc−1,v

is a bijection. That is, the maximal cells of the hc-subdivision of Pe,w◦ are in bijection with the
left weak order interval [c, w◦]L and the linear extensions of ≽c .

Using this lemma, we obtain a count for the number of maximal cells in the subdivi-
sions of Theorem 2.9.

Corollary 2.16. Let c ∈ Sn be a Coxeter element. The number of maximal cells in the hc-
subdivision of Pe,wo is the number of linear extensions of ≽c.

a1

a2

ar−1

ar

. . .

. . .
. . .

. . .

. . . . . .

. . .
1 2 3 6

4 5 7 8

Figure 1: On the left, the Hasse diagram of ≽c when c = s5s7s6s1s2s4s3 = 23614857. On
the right, the general shape of the Hasse diagram of ≽c, which is a zig-zag (in blue)
with claws attached to the peaks and valleys. The numbers a1, . . . , ar are arbitrary
nonnegative integers.

See Figure 1 for an example of the poset ([n],≽c), as well as their general “shape”.
Note that the posets ([n],≽c) are height 2 tree posets on [n]. As a result, the number of
linear extensions may be computed using a polynomial-time algorithm [5].

Example 2.17. For an hc-subdivision of Pe,w◦ , the number of maximal cells achieves its
maximum when c = s1s2 . . . sn−1 = 234 · · · n1 or its inverse. In this case, ([n],≽c) is a
claw, and has (n − 1)! linear extensions. This subdivision was first studied by [11], who
showed that each maximal cell is combinatorially a cube.

The number of maximal cells achieves its minimum when c = ∏i even si ∏i odd si or
its inverse. In this case, ([n],≽c) is a zig-zag poset. Linear extensions are in bijection with
“up/down” permutations and are counted by Euler numbers (see Table 1).
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n 3 4 5 6 7 8 9
(n − 1)! 2 6 24 120 720 5040 40320

Euler number 2 5 16 61 272 1385 7936

Table 1: Ranging over all Coxeter elements c in Sn, the largest possible number of
maximal cells in an hc-subdivision of Pe,w◦ is (n − 1)!. The smallest possible number
of maximal cells is the nth Euler number. The two numbers are contrasted above.

3 Formulas for the Permutahedral class from Coxeter ele-
ments

In this section, we turn to our second main result on formulas for the permutahedral
class.

Let G be a simply connected semisimple algebraic group with Borel subgroup B,
opposite Borel B−, maximal torus T, and Weyl group W. In type A, G = SLn, B is
the subgroup of upper triangular matrices, B− the lower triangular matrices, T is the
diagonal matrices, and W = Sn. The quotient G/B is the (generalized) flag variety. The
flag variety admits two well-known decompositions into B-orbits and B−-orbits:

G/B =
⊔

w∈W
BwB/B =

⊔
w∈W

B−wB/B.

The Richardson variety Ru,v is the closure of the intersection B−uB/B ∩ BvB/B.
The (Coxeter) Bruhat interval polytope P̃u,v is the moment map image of the Richard-

son variety Ru,v ⊂ G/B. The Coxeter permutahedral variety is the torus-orbit closure Tx
of a generic point x ∈ G/B and its moment map image is the Coxeter permutahedron.

Given an element v ∈ W and X ∈ T, we define the subvariety4 Hv(X) of G/B by

Hv(X) = {hB : h−1Xh ∈ BvB}.

The most general form of our cohomological result calculates the cohomology class of
Hv(X).

In type An, when v is a dominant permutation, Hv(X) is a regular semisimple Hes-
senberg variety, whose definition we now recall. Given a function h : [n] → [n] with the
property h(i) ≥ i and a linear operator X, the type A Hessenberg variety Hess(X, h) is
the subvariety of the flag variety given by

Hess(X, h) = {F• ∈ Fln : XFi ⊆ Fi+1 for i = 1, 2, . . . , n}.

When h is the function h(i) = min{i + 1, n} and X is semisimple and regular, Hess(X, h)
is the permutahedral variety. Hessenberg varieties have appeared in many contexts and

4We note that the choice of X does not change the isomorphism class of the variety.
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are important, for instance, in the study of the chromatic symmetric function of special
graphs. See the survey [2] for more information.

Our proof uses the double Schubert varieties Ωw defined by Anderson in [3]. This
is the subvariety of G/B × G/B given by

Ωw := G∆ · (wB, B) = {(gB, hB) : h−1g ∈ BwB}

There are two key ideas in our proof. The first is that Hv(X) is the projection onto
the second factor of G/B × G/B of the transverse intersection (X × 1)Ωe ∩ Ωv. The
second is that the double Schubert Ωw degenerates to

⋃{B−uB/B× BvB/B : v−1u ≤ w}.
Combining these ideas together gives our main second result.

Theorem 3.1. We have
[Hv(X)] = ∑

u∈W
uv−1length-additive

[Ru,uv−1 ]

in H∗(G/B).

When v is a Coxeter element, Hv(X) is the permutahedral variety Tx which gives as
a corollary the geometric counterpart to Theorem 2.9.

Theorem 3.2. Let c be a Coxeter element in W. Let T be the torus in G and let x be a generic
point in G/B. For a pair of permutations u ≤ v in W, let Ru,v denote the corresponding
Richardson variety.

Then we have
[Tx] = ∑

w∈W
ℓ(wc)=ℓ(w)+ℓ(c)

[Rw,wc].

When c = sn−1sn−2 . . . s1 = n12 . . . (n − 1) is a “standard” Coxeter element, this
recovers the formula for the permutahedral variety in [4].

Remark 3.3. The class of a regular Hessenberg variety Hess(X, h) does not depend on
the choice of regular X [1]. Hence, this also gives formulas for the class of the Peterson
variety.
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