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Abstract. Web bases give a diagrammatic calculus for spaces of Uq(slr)-tensor invari-
ants, but are known to exist only in certain cases. Recently, we introduced hourglass
plabic graphs to give the first rotation-invariant basis in the case r = 4, corresponding
to 4-row rectangular tableaux. Separately, Fraser introduced a rotation-invariant web
basis for the case of 2-column rectangular tableaux. Here, we show that Fraser’s basis
agrees with that predicted by the hourglass plabic graph framework. Together with
our earlier results, this implies that hourglass plabic graphs give a uniform description
of all known rotation-invariant Uq(slr)-web bases. Moreover, this provides a single
combinatorial model simultaneously generalizing the Tamari lattice, the alternating
sign matrix lattice, and the lattice of plane partitions.
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1 Introduction

Webs in type A give a diagrammatic way to represent morphisms between SLr(C)-
modules. This allows very complicated algebraic manipulations to be expressed com-
pactly and understandably in a graphical calculus. Moreover, webs exist for the quantum
deformation Uq(slr), allowing for applications to quantum link invariants.

A major challenge over the past few decades has been to find “nice” web bases. Kuper-
berg [8] gave a remarkable web basis for the tensor invariants of Uq(sl3), which consists
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of certain planar, trivalent graphs embedded in the disk with a proper white/black col-
oring of the vertices and a marked initial boundary vertex. Such a web corresponds
to a tensor invariant in InvUq(sl3)(V

⊗n
q ), where there are n black boundary vertices. A

key property of Kuperberg’s basis is that it is rotation-invariant, i.e. marking a different
boundary vertex as initial yields another such basis element. Finding rotation-invariant
web bases for r ≥ 4 has been a significant open problem for nearly 30 years. See [1, 3]
for further discussion.

In [4], we introduced the framework of hourglass plabic graphs and used it to construct
rotation-invariant web bases for spaces of Uq(slr)-invariants for r ≤ 4, i.e. rank at most
3. For r = 3, the framework recovers Kuperberg’s basis. In this abstract, we describe
how the framework also yields web bases in arbitrarily high rank with Plücker degree at
most 2, corresponding to tensor invariants in InvUq(slr)(V

⊗2r
q ). Full details are available in

[6], which builds on Fraser’s work in [2].
Hourglass plabic graphs are a variation on Postnikov’s theory of plabic graphs. See

Section 2.2 for the precise definition. One key difference is that we allow hourglass edges,
which are certain half-twist multi-edges. An r-hourglass plabic graph has a total of r
strands around any interior vertex, including hourglass multiplicity. See Figure 3 (lower
right) for an example with r = 7.

A plabic graph is in many ways governed by its trip permutation, which is obtained
by traveling through the graph following the rules of the road: taking a left at white
vertices and a right at black vertices. An r-hourglass plabic graph G instead has a
tuple trip•(G) = (trip1(G), . . . , tripr−1(G)) of trip permutations, where tripi takes the ith
left at white vertices and the ith right at black vertices. The half-twists in hourglass
edges become essential when computing trip•. See Figure 3 (lower right) for a sample
trip calculation. One may check that the square move in Figure 1 preserves all trip
permutations. The r-valence condition immediately implies tripi(G)−1 = tripr−i(G).

Hopkins–Rubey [7] observed that Kuperberg’s basis could be viewed as certain re-
duced plabic graphs and interpreted the trip permutation. Building on their work, for
each r-row rectangular tableau T ∈ SYT(r × d), in [5] we associate a tuple prom•(T) =
(prom1(T), . . . , promr−1(T)) of promotion permutations with the property promi(T)−1 =
promr−i(T). See Section 2.1 for details. In [4], we give a bijection between 4-row rectan-
gular standard tableaux T and certain 4-hourglass plabic graph move-classes with the
property that trip•(G) = prom•(T) for any G in the move-class. Under this bijection, web
rotation corresponds to tableau promotion.

Fraser [2] gave a web basis for arbitrary SLr in Plücker degree 2 (which in fact coin-
cides with Lusztig’s dual canonical basis, though this is rarely true in general). Fraser’s
construction gives an explicit bijection F associating to each 2-column tableau T ∈
SYT(r× 2) a certain generalized-square-move-equivalence class F (T) of webs. See Sec-
tion 2.3 for details. We augment Fraser’s map F by interpreting the resulting webs as
hourglass plabic graphs. Our first main result is:
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Theorem 1.1. For any T ∈ SYT(r× 2) and any r-hourglass plabic graph G ∈ F (T), we have
trip•(G) = prom•(T). Promotion of T intertwines with rotation of F (T).

Our second main result provides an intrinsic characterization of graphs G appearing
in the image of Fraser’s construction. Plabic graphs have a notion of being reduced,
which for instance forbids certain double crossings of trips. In [4], we introduced a
corresponding notion of fully reduced 4-hourglass plabic graphs. Here we provide a
notion suitable for general r. See Definition 2.6. We show:

Theorem 1.2. An r-hourglass plabic graph with 2r black boundary vertices is in the image of F
if and only if it is fully reduced.

A consequence of these results is a strengthening of Fraser’s main result in [2] of
a rotation-invariant web basis for InvUq(slr)(V

⊗2r
q ) by giving an intrinsic graph-theoretic

characterization of the basis webs. This stands in contrast to [2], where the basis webs
are characterized only as the image of F .

Remark 1.3. Our web basis consists of square move equivalence classes of certain r-
hourglass plabic graphs. However, square moves do not change the tensor invariant. The
smallest case where such equivalence classes are absolutely necessary is in InvSL4(V

⊗8),
which is the basic r = 4 square move living in Plücker degree 2 (see Figure 1). Here

the corresponding SYT
1 2

3 4

5 6

7 8

has promotion order 2, while either of these graphs has

rotation order 4. But the entire equivalence class has rotation order 2. As we shall see,
move equivalence classes have rich connections to statistical mechanics and lattices. In
our experience, what may be initially perceived as a defect is in fact a feature of the
framework.
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Figure 1: The square move equivalence class F (T) for T =
1 2

3 4

5 6

7 8

.
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Furthermore, the hourglass plabic graph framework unifies the following three clas-
sical constructions: Alternating sign matrices, plane partitions in a box, and the Tamari
lattice. See [4, Section 8] and Proposition 4.4 for details.

The remainder of this extended abstract is organized as follows. Section 2 collects
background and preliminaries on tableaux and promotion, on hourglass plabic graphs,
and on Fraser’s map F . In Section 3, we sketch the proof of the first part of Theorem 1.1.
Section 4 characterizes when square faces are fully reduced, shows that square moves
preserve trip permutations, and discusses the connection between square moves and the
Tamari lattice. Section 5 sketches the core of the proof of Theorem 1.2.

This is an extended abstract of the full paper [6].

2 Background and preliminaries

2.1 Promotion permutations for standard Young tableaux

A partition with r rows is a tuple λ = (λ1, . . . , λr) ∈ Nr
>0 where λ1 ≥ · · · ≥ λr. The

diagram of λ is a collection of upper-left justified boxes where the ith row from the top
has λi boxes. A standard Young tableau (SYT) of shape λ is a bijective filling of the diagram
of λ with the numbers {1, . . . , n}, where n = ∑i λi. When λ is a rectangle with r rows
and d columns, we denote this set as SYT(r× d).

Given T ∈ SYT(λ), define the (jeu de taquin) promotion of T, denoted P(T), as follows.
Delete the 1 from T, leaving an empty box. Move the smallest of the numbers to the
right or below the empty box into the empty box. Continue this process with the new
empty box, until the empty box is at an outer corner. Fill the empty box with n + 1, then
subtract 1 from all entries. The promotion path consists of the numbers that move in this
process, and is denoted by arrows in Example 2.2.

In [5, Definition 6.1], we defined promotion functions for fluctuating tableaux, a class
containing SYT. When the shape of the tableaux T is rectangular with r rows, we showed
these functions are permutations, and in fact, promi(T)−1 = promr−i(T) [5, Theorem 6.7].
In our setting, we do not need the definition in full generality, but give the following,
which was [5, Proposition 6.9].

Definition 2.1. Let T ∈ SYT(r× d) and 1 ≤ i ≤ r− 1. Then the ith promotion permutation
is constructed as promi(T)(b) ≡ a + b− 1 (mod r · d) if and only if a is the unique value
that moves from row i + 1 to i in the application of jeu de taquin promotion to P b−1(T),
where 1 ≤ b ≤ r · n.

Example 2.2. Consider the promotion orbit of T ∈ SYT(7× 2) shown in Figure 2. One
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T =

1 3

2 6

4 7

5 9

8 10

11 12

13 14

P→

1 2

3 5

4 6

7 8

9 11

10 13

12 14

P→

1 4

2 5

3 7

6 10

8 12

9 13

11 14

P→

1 3

2 4

5 6

7 9

8 11

10 12

13 14

P→ . . .

Figure 2: The promotion orbit discussed in Example 2.2.

computes that

prom1(T) = 2 6 4 5 9 7 8 12 10 11 14 13 3 1 = prom−1
6 (T),

prom2(T) = 4 7 5 9 12 8 10 14 11 13 3 1 6 2 = prom−1
5 (T), and

prom3(T) = 5 9 8 12 14 10 11 1 13 3 6 2 7 4 = prom−1
4 (T).

Note that the first entries in these permutations are given by the entries siding up in
the promotion path of T, the second entries are given by the entries sliding up in the
promotion path of P(T) plus one.

2.2 Hourglass plabic graphs

Following [4], we define hourglass plabic graphs. An hourglass graph G is an underlying
planar embedded graph Ĝ, together with a positive integer multiplicity m(e) for each
edge e. The hourglass graph G is drawn in the plane by replacing each edge e of Ĝ with
m(e) > 1 with m(e) strands, twisted so that the clockwise orders of these strands around
the two incident vertices are the same. We call this twisted edge an m(e)-hourglass, and
call an edge with m(e) = 1 a simple edge. The degree deg(v) of a vertex v ∈ G is the
number of edges incident to v, counted with multiplicity, while its simple degree d̂eg(v)
is its degree in the underlying graph Ĝ.

Definition 2.3. An r-hourglass plabic graph is a bipartite hourglass graph G, with a fixed
proper black-white vertex coloring, embedded in a disk, with all internal vertices of de-
gree r, and all boundary vertices of simple degree one, labeled clockwise as b1, b2, . . . , bn.
We consider G up to planar isotopy fixing the boundary circle.

We say that G is of standard type if all boundary vertices are colored black and of
degree one, and in this case we say that G has Plücker degree n

r . In the remainder of the
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paper, all r-hourglass plabic graphs are assumed to be standard type, unless otherwise
noted. We say G is contracted if all internal vertices have simple degree at least 3.

Definition 2.4. Let G be an r-hourglass plabic graph with boundary vertices b1, . . . , bn.
For 1 ≤ a ≤ r− 1, the a-th trip permutation tripa(G) is the permutation of [n] obtained as
follows: for each i, begin at bi and walk along the edges of G, taking the a-th leftmost
turn at each white vertex, and a-th rightmost turn at each black vertex, until arriving at
a boundary vertex bj. Then tripa(G)(i) = j. The walk taken is called a tripa-segment. Note
that tripa(G)−1 = tripr−a(G). We write trip•(G) for the tuple of these trip permutations.
See Figure 3 for an example of a trip segment.

Definition 2.5. A trip segment has a self-intersection if it passes through a vertex more
than once. In particular, all trip segments not reaching the boundary have a self-
intersection.

Now suppose G has no self-intersections. We define what it means for two different
trip segments ℓ, ℓ′ of G to intersect. First suppose the four endpoints of ℓ, ℓ′ are distinct.
Draw the segments ℓ, ℓ′ on the underlying graph Ĝ. Contract any edges that ℓ, ℓ′ both
pass through to a point. The result is a network of ×’s which we call intersections. Each
intersection has four distinct directions at which the two segments ℓ, ℓ′ enter and leave.
An intersection is essential if ℓ and ℓ′ cross and inessential if ℓ and ℓ′ bounce off of each
other. If instead segments ℓ and ℓ′ share a boundary vertex bk, we consider them to have
an essential intersection at the unique internal vertex incident to bk. We say ℓ and ℓ′ have
an oriented double crossing if they have an essential intersection followed in the forwards
direction along both segments by another essential intersection.

The following definition is central to the paper. Here an isolated component of an
hourglass graph G is a connected component which does not contain a boundary vertex.

Definition 2.6. An hourglass plabic graph G is fully reduced if it has no isolated compo-
nents, it has no self-intersections, no two tripi-segments have an oriented double crossing,
and no pair of tripi- and tripi+1-segments have an oriented double crossing.

Remark 2.7. In [4], we called the condition of Definition 2.6 “monotonic”, but showed
that for r ≤ 4 it was equivalent to another definition of “fully reduced”.

2.3 Fraser’s map

We give a brief description of the map of Fraser [2, Section 1.1-1.3] from 2-column stan-
dard Young tableaux to certain webs.

Define a map F on SYT(r× 2) as the composition of four maps, an example to follow
the construction is given in Figure 3. First, draw the matching given by the standard
Catalan bijection of the transposed tableau. That is, given T ∈ SYT(r× 2), let M(T) be
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the unique noncrossing matching on 2r points in which each number in the first column
is the smallest in its pair.

Given a noncrossing matching M of 2r points with s short arcs (arcs between adjacent
boundary vertices), let i1, i2, . . . , is be the sequence of numbers such that ij and ij + 1 mod
2r are joined by an arc. That is, i1, i2, . . . are the cyclically left endpoints of all the short
arcs. The claw sets are the cyclic intervals Cj := (ij, ij+1]. (These were called color sets in
[2].) We use the claw sets to obtain a weighted dissection d(M) of the s-gon by merging the
boundary vertices in each claw set and replacing multiple edges by a single edge with
the corresponding weight. Note that the total weight of d(M) is the number of arcs in
M, which is r. Similarly, the weight of d(M) at boundary vertex j in the s-gon equals the
cardinality of the claw set Cj of M.

Given such a weighted dissection d, we then add in diagonals of weight zero to
create a weighted triangulation t(d). (This step is not unique; any choice of triangulation
is related to any other by a sequence of flip moves on weight zero diagonals.)

T M7→
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= F (T)

Figure 3: In illustration of the construction discussed in Section 2.3. Top left: The non-
crossing matching corresponding to the transpose of the first SYT of Example 2.2. Top
middle and right: Its corresponding weighted dissection d and weighted triangula-
tion t. Bottom left: The web produced from t via the construction of Fraser [2]. Bottom
right: The hourglass plabic graph constructed by replacing edges of weight > 1 with
hourglasses. It is fully reduced. The red path is trip4(1). It ends at 8 since the number
8 slides into the 4th row in the first step of Example 2.2.
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Given such a weighted triangulation t, construct a web W(t) as follows. W(t) has
2r black boundary vertices and s internal white vertices (one for each vertex of the s-
gon). The jth white vertex in W(t) is adjacent to the entire claw set Cj of boundary
vertices by weight 1 edges. W(t) also has an internal trivalent black vertex b(∆) for each
triangle ∆ in t. Let δ1, δ2, δ3 denote the vertices of ∆ in t and w(δ1), w(δ2), w(δ3) denote
the corresponding white vertices in W(t); these are the three vertices b(∆) is adjacent to
in W(t). The weights of these three edges is given as follows. Let eδi denote the edge of
∆ opposite to δi. The edge eδi cuts the triangulation t into two parts; call (*) the one that
does not contain ∆. Then the weight of the edge between b(∆) and w(δi) is the sum of
the weights of the edges in (*). In the case where eδi is on the boundary (*) only consists
of the edge eδi .

We add a final step to the construction of [2]. Given the web W, replace each edge of
weight m > 1 with an hourglass of multiplicity m to form an r-hourglass plabic graph
F (T). We say that an hourglass plabic graph is Fraser if it can be produced from this
construction. Fraser showed that the result of this construction is a web, and that the
web invariant does not depend on the choice of triangulation [2, Proposition 1.13].

3 The trip• = prom• property

In this section we sketch the proof of the first statement in Theorem 1.1, i.e. if G ∈ F (T),
then trip•(G) = prom•(T). Our approach first describes promotion permutations directly
in terms of the matching of T. We then identify “ears” in Fraser graphs which may be
removed inductively. We show that the equality trip• = prom• is appropriately preserved
under ear removal.

3.1 Promotion permutations for two column rectangles

We regard non-crossing perfect matchings as permutations [2r] → [2r]. For such a
matching M we say that i is an opener if i < M(i) and i is a closer otherwise.

Let T ∈ SYT(r× 2) and M(T) : [2r]→ [2r] be the corresponding non-crossing perfect
matching (from the first step of the map F ). We call {1,M(T)(1)} the barrier. Let o1 <
· · · < ok be the openers of M(T) strictly between 1 and M(T)(1) and let ck+1 < · · · < cr−1
be the closers of M(T) strictly larger than M(T)(1). Note that every matching in M(T)
except the barrier has exactly one element in {o1, . . . , ok, ck+1, . . . , cr−1}. In Example 2.2
these openers are {2, 4, 5, 8} and the closers are {12, 14}.

Proposition 3.1. With the above notation, we have

promi(T)(1) =

{
oi if 1 ≤ i ≤ k,
ci if k + 1 ≤ i ≤ r− 1.
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3.2 Claws and ears

Our analysis of Fraser graphs is inductive and involves the following structures. See [6]
for full details.

Definition 3.2. Let G be an hourglass plabic graph. A claw C of G is a maximal col-
lection of boundary vertices connected to the same white internal vertex by edges with
hourglass multiplicity 1. The size of a claw is the number of its boundary vertices. Their
common internal vertex is the center of the claw. An ear (A, B, C) of type (p, q) of G is
a particular configuration of claws A, B, C as in the lower left of Figure 4. Call an ear of
a Fraser web proper if neither vertex of the barrier {1,M(T)(1)} appears as a boundary
vertex of the claw B.

Definition 3.3. To remove an ear (A, B, C) of type (p, q) in a web G, do the following; First
delete the claw B as well as the edges and vertex connecting the centers of A, B, C. Add
q clockwise-last boundary edges to A, resulting in a new claw A′, and add p clockwise-
first boundary edges to C, resulting in a new claw C′.

a

b

c

v

q

...
...

p

p
lobe A

. . .

. . .

p flap A

flap Cq

q

lobe C

. . .

. . .

. . .

✂

7→

a

c

p
lobe A′

. . .

. . .

p
flap A′

flap C ′
q

q

lobe C ′

. . .

. . .

. . .

Figure 4: Removal of an ear (A, B, C) of type (p, q) resulting in new claws (A′, C′).

Suppose G is Fraser with triangulation t. Ears correspond precisely to triangles in t

with at least two edges on the boundary. Removing an ear corresponds precisely to
collapsing such a triangle. In particular, removing an ear from a Fraser web results in a
Fraser web with fewer vertices. This idea now allows an induction to prove Theorem 1.1.

Proof of Theorem 1.1 (sketch). In the following we denote with T(·) the SYT corresponding
to a Fraser graph. We induct on the number of vertices of G. In the base case, G is the
disjoint union of two claws, and the result is straightforward to verify. Otherwise, one
may show G has a proper ear. Let H be the result of removing this ear. As noted above,
H is Fraser with fewer vertices, so by induction trip•(H) = prom•(T(H)).
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By analyzing closers and openers and using Proposition 3.1, we show tripi(G)(1) =
promi(T(G))(1). Using the fact that F intertwines promotion of the tableau with rotation
of the web, we obtain prom•(T(G)) = trip•(G).

4 Square faces

In this section, we define square moves (see Definition 4.2 and Figure 5) on square faces,
which play a special role in the theory of hourglass plabic graphs. In the setup of Fraser’s
map, the square move corresponds to flips of diagonals, which yields a connection be-
tween square moves and the Tamari lattice in Proposition 4.4. We also characterize when
square faces are fully reduced (Theorem 4.5) and show that square moves preserve trip
permutations (Theorem 4.6).

Definition 4.1. The edges of a plabic graph decompose the embedding disk into regions.
If such a region is not adjacent to the boundary of the disk, we call it a face. A face of an
hourglass plabic graph is a face of the underlying plabic graph. We call a face a square if
this cycle has exactly 4 edges. For a face F of an hourglass plabic graph G bounded by
edges e1, . . . , e2 f , define m(F) := ∑

2 f
i=1 m(ei).

Note that the lacunae between the strands of an hourglass edge are not faces.

Definition 4.2. Let F be a square in an r-hourglass plabic graph G with m(F) = r and
with vertices v1, v2, v3, v4. We say G′ is obtained from G by applying a square move at the
square F if G′ is obtained by the following procedure: Remove the edges between the
vertices v1, v2, v3, v4, insert a new square v′1, v′2, v′3, v′4 and hourglasses such that vi and
v′i, for 1 ≤ i ≤ 4, are adjacent and m(vivi+1) = m(v′i+2v′i+3), the result is bipartite and
all vertices have degree r. If by this process a vertex with simple degree 2 is generated,
remove it and its incident edges and contract its neighbors into a single vertex. (A visual
aid for this definition is in Figure 5.)

As shown in the proof of [2, Proposition 1.13] and depicted in Figure 6, square moves
correspond to flips of weight 0 diagonals in the triangulation produced in the construc-
tion of F (T).

Proposition 4.3 ([2, Proposition 1.13]). For a fixed T ∈ SYT(r × 2), the hourglass plabic
graph F (T) is determined uniquely, up to square moves.

Given a partition shape λ, let the superstandard SYT of shape λ be constructed by
filling λ in order left to right, then top to bottom. For the superstandard SYT of shape
r× 2, F gives diagonals all of weight zero. Thus the move equivalence class is counted by
the Catalan numbers and is indeed equivalent to the Tamari lattice; see Proposition 4.4
below. In [4, Proposition 8.2], we showed the square move equivalence class of the
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m4

m1

m2

m3

←→ m2

m3

m4

m1m3 +m4

m1 +m4 m1 +m2

m2 +m3

Figure 5: The square move. Here we assume m1 + m2 + m3 + m4 = r. Edge multiplici-
ties on the boundary of the picture are not shown, and are preserved by the move.
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1

1

1

1
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1

0

Figure 6: A square move applied to our running example. A square move on the web
corresponds to a flip of a diagonal with weight 0 in the underlying triangulation.

hourglass plabic graph corresponding to the superstandard 4 × n SYT is in bijection
with the set of n× n alternating sign matrices.

Proposition 4.4. Let T be the r × 2 superstandard SYT. The square move equivalence class of
F (T) is in bijection with triangulations of an r-gon connected by diagonal flips, i.e. the Tamari
lattice.

The following results hold for arbitrary hourglass plabic graphs and thus are impor-
tant results for the general framework.

Theorem 4.5. If a square F in an r-hourglass plabic graph G satisfies m(F) > r, then G is not
fully reduced.

The following theorem can be obtained as a consequence of Theorem 1.1.

Theorem 4.6. Applying a square move to an hourglass plabic graph preserves the trip permuta-
tions trip•.

Remark 4.7. If W ′ is an hourglass plabic graph that differs from W by a sequence of
square moves, then the associated tensor invariants are equal.
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5 Characterization of fully reduced graphs

We now quickly sketch the intrinsic characterization of Fraser graphs.

Proof (sketch) of Theorem 1.2. A careful analysis of the argument mentioned in Section 3
(cutting away ears) shows that Fraser graphs are fully reduced. For the converse, a key
observation is that if G is a fully reduced hourglass plabic graph, then the underlying
plabic graph Ĝ is reduced. This fact is then combined with the observation that, for H
a contracted, bipartite, reduced plabic graph, whose trip permutation has two antiex-
cedances, all internal black vertices have degree 3 and all white vertices are adjacent to
the boundary. The final ingredient is that, for G be a connected, contracted, fully reduced
hourglass plabic graph of Plücker degree two, all internal faces of G are squares. The
proof is completed by constructing a triangulated polygon t whose vertices correspond
to the white vertices of G and whose diagonals correspond to the square faces in G.
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