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Identifying Orbit Lengths for Promotion
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Abstract. In this work we study Schützenberger’s promotion operator on standard
Young tableaux via a corresponding graphical construction known as m−diagrams.
In particular, we prove that certain internal structures of SYT are preserved under
promotion and correspond to distinct components of m−diagrams. By treating these
structures as atomic parts of the m−diagram, we provide a simple algorithm for com-
puting the promotion orbit length of rectangular SYT.
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1 Introduction

Young tableaux are fundamental combinatorial objects. With various choices of fillings
and rules for manipulations, Young tableaux encode representations and algebraic op-
erations on representations [1, 5, 7, 11], Schubert varieties and the cohomology ring
structure induced by Schubert classes [19, 20], and other constructions in algebra and
geometry [9].

We study Schützenberger’s promotion operator on standard Young tableaux, which is
important in part because of its role in the cyclic-sieving phenomenon [13, 14]. A seminal
— and very surprising — result of Haiman showed that the promotion orbit of an m × n
rectangular standard Young tableaux has order at most mn [5]. This has been explored
and extended in different contexts, using related operators [8, 17, 18] or equivariant
maps to other combinatorial objects admitting a group action [2, 10, 15, 21].

Yet, very little has been done to analyze or characterize the sizes of specific promotion
orbits, despite analogous classification and stability questions in representation theory.
A result by Purbhoo and Rhee does identify all minimal orbits for rectangular tableaux
[12]. In this paper, we do the following:
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1. define a notion of uniformly equivalent tableaux and investigate promotion via a
graphical construction known as m−diagrams, which are essentially a union of
noncrossing matchings;

2. prove that, while promotion of rectangular tableaux is not equivariant with rota-
tion of m−diagrams, the rotational symmetry of the m−diagram coincides with the
length of promotion orbits. In particular, this allows us to analyze orbit lengths
when the m−diagrams are disconnected (see Theorem 3.1).

2 Preliminaries

2.1 Tableaux

We begin by fixing notations and conventions for tableaux.

Definition 2.1 (Standard Young Tableau). Suppose λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) is a
partition of n. A Young diagram of shape λ is a grid of left- and top-aligned boxes with
λi boxes in the ith row for each 1 ≤ i ≤ k. If all parts of the partition λ are the same then
we call λ a rectangular partition and its Young diagram a rectangular Young diagram.

A standard Young tableau (SYT) is a filling of the Young diagram for λ with the val-
ues 1, . . . , n without repetition such that rows strictly increase left-to-right and columns
strictly increase top-to-bottom.

Given an SYT T, we use |T| to denote the number of boxes in T and Tij to denote
the entry in the ith row and jth column of T. Next, we review Schützenberger’s jeu de
taquin promotion on SYT. Promotion is a function from SYT of fixed shape λ to SYT of
the same shape [16].

Definition 2.2 (Promotion). Given an SYT T, the promotion of T is the SYT P(T) created
as follows:

1. Erase 1 in the top left corner of T and leave an empty box.

2. Given the configuration b
a

and b < a then slide b left; else if a < b slide a up.

3. Repeat the above process until there are no nonempty boxes below or to the right
of the empty box.

4. Decrement all entries by 1 and insert the largest entry of T into the empty box.

Example 2.3. Figure 1 gives an examples of an SYT T and its promotion P(T). This
tableau will serve as our running example.
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1 2 6 7 14 19
3 8 9 15 18 21
4 10 11 16 20 23
5 12 13 17 22 24

T =

1 5 6 13 17 18
2 7 8 14 19 20
3 9 10 15 21 22
4 11 12 16 23 24

= P(T)

Figure 1: The tableau T and its promotion P(T)

Note that while we define the promotion function on SYT, the same operation can
be performed on any filling of a Young diagram such that the entries are non-repeating
with strictly increasing rows and columns.

We are particularly interested in the orbits of tableaux under promotion. For a given
SYT T, we denote the promotion orbit of T by O(T). The key observation in our approach
is that certain internal structures of SYT are preserved during promotion. To this end,
we introduce the following definition.

Definition 2.4 (Equivalence). Suppose S and T are skew tableaux with |S| = |T| = n
and contents {s1, s2, . . . , sn} and {t1, t2, . . . , tn} respectively. We say that S is equivalent to
T, or S ≡ T, if S and T are the same after each tableau is left justified with the entries
relabeled smallest to largest so that the content becomes {1, 2, . . . , n}. Moreover, we say
S is uniformly equivalent to T if the content of S is {k + 1, k + 2, . . . , k + n} and the content
of T is {ℓ+ 1, ℓ+ 2, . . . , ℓ+ n} for some k, ℓ and S ≡ T.

Uniform equivalence is a powerful condition that allows us to treat uniformly proper
subtableaux as atomic parts of the corresponding m-diagrams and webs (see the next
definition for more). However, there are contexts in which more generality is useful.

Definition 2.5 (Uniformly Proper Subtableau). Suppose T is a tableau with n rows and
S ⊊ T is a subtableau. We call S uniformly proper if:

1. S has n rows;

2. S is uniformly equivalent to a standard Young tableau.

We call S a uniformly proper rectangular subtableau if in addition all of its rows have
the same length. If T contains no uniformly proper subtableau, then we say that T is
minimal.

When an SYT T is not minimal, and thus has some uniformly proper subtableau S,
we can write the tableau T as the horizontal concatentation T = T1ST2, where T1 and T2
are also subtableaux of T, see Figure 2. More generally, given two skew tableaux T and
S, we write TS to refer to the tableau resulting from the horizontal concatenation of T
and S when such an operation makes sense.
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1 2 6 7 14 19
3 8 9 15 18 21
4 10 11 16 20 23
5 12 13 17 22 24

=

1 2
3
4
5

6 7 14
8 9 15

10 11 16
12 13 17

19
18 21
20 23
22 24

T T1 S T2

Figure 2: Decomposition of tableau T with uniformly proper subtableau S

We will see in Section 3 that the problem of determining the orbit length |O(T)| of
any non-minimal tableau T can be reduced to determining the orbit lengths of certain
smaller minimal tableaux.

2.2 m−Diagrams

Webs are planar graph morphisms in diagrammatic categories for certain representations
of the quantum groups Uq(sln) [3, 6]. There is a rich literature on how promotion of
tableaux corresponds to rotation of webs in the cases n = 2 and n = 3 [10, 15, 21]; but
this is constrained for larger n by our limited understanding of webs in that case (though
see [4] for a rotation-invariant basis when n = 4).

We instead focus on an intermediary between webs and tableaux: m-diagrams, which
are collections of arcs that satisfy certain noncrossing conditions.

Definition 2.6 (m−Diagram). A matching M on the set {1, 2, . . . , n} is a collection of
disjoint pairs

M = {(i1, j1), (i2, j2), . . . , (ik, jk)} ⊆ {1, 2, . . . , n} × {1, 2, . . . , n}.

We often refer to the pair (i, j) as an arc and assume in our notation that i ≤ j. We say
that an integer i′ is on the arc (i, j) if i′ ∈ {i, j} and below the arc (i, j) if i < i′ < j.

A matching M is:

• perfect if every number 1, 2, . . . , n is used on an arc;

• crossing if it contains two arcs (i, j), (i′, j′) ∈ M with i < i′ < j < j′;

• noncrossing if it is not crossing;

• with repetition if it contains at least one arc of the form (i, i);

• standard if every integer i′ below an arc (i, j) is itself on an arc.

An m-diagram on the set {1, 2, . . . , n} is the union
⋃r

i=1 Mi where each Mi is a non-
crossing matching.
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Note that an m-diagram itself may not be a noncrossing matching since arcs from
one matching are allowed to cross arcs from another matching. An m-diagram may have
arcs of the form (i, i) but is itself not a multiset, so each arc appears at most once in an
m-diagram regardless of how many different matchings contain it.

We represent matchings and m-diagrams by drawing semicircular arcs in the upper
half plane between the points i and j on the x-axis. The next lemma demonstrates a
simple bijection between SYT and m−diagrams, the proof of which can be found in [15,
Lemma 1], [21, Proposition 2.4].

Lemma 2.7. Let T be an SYT with r rows and content {1, . . . , n}. For each i ≤ r − 1 the
following recursive process constructs a noncrossing matching Mi on the integers filling rows i
and i + 1 of T:

1. If row i of T has λi boxes then denote them by ti(1), ti(2), . . . , ti(λi) and similarly for row
i + 1.

2. Create an arc (ti(j), ti+1(1)) where

j = max{1 ≤ s ≤ λi : ti(s) ≤ ti+1(1)}.

3. If ti+1(1), . . . , ti+1(ℓ) are all on arcs then create an arc (ti(j), ti+1(ℓ+ 1)) where

j = max{1 ≤ s ≤ λi : ti(s) ≤ti+1(ℓ+ 1)
and (ti(s), ti+1(j′)) is not an arc for any j′ ≤ ℓ}.

We rephrase the previous result in terms of m-diagrams as follows. All of the proofs
are immediate from the previous lemma together with the definitions.

Corollary 2.8. The algorithm in Lemma 2.7 defines a function φ(T) = MT from r-row SYT to
m-diagrams built from r − 1 matchings. In addition, all of the following hold:

• The number of arcs in the matching Mi is equal to the number of boxes in row i + 1 of T.

• Each matching Mi is without repetition.

• The matching Mi is standard with respect to the entries in rows i and i + 1 of T.

• If T is a standard Young tableau on a rectangular Young diagram then φ(T) = MT is the
union of r − 1 matchings Mi of the same cardinality. Moreover every integer 1, 2, . . . , |T|
is one of three types: the end of an arc in Mi and the start of an arc in Mi+1, or the start
of an arc on M1, or the end of an arc in Mr−1.
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An example of an m−diagram corresponding to an SYT is given in Figure 3. We
can define a rotation operation on m-diagrams algebraically as follows. Intuitively, this
consists of connecting the endpoints of the boundary to form a circle, rotating the circle
one step clockwise, and then disconnecting the circle back to a boundary line again.

1 2 6 7 14 19
3 8 9 15 18 21
4 10 11 16 20 23
5 12 13 17 22 24

T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

φ(T)

Figure 3: Tableau T and its corresponding m−diagram φ(T)

Definition 2.9 (Rotation). Denote by ρ : {1, 2, . . . , n} → {1, 2, . . . , n} the cyclic permuta-
tion given by ρ(i) = i − 1 mod n. Then ρ induces a map from the set of matchings on
{1, 2, . . . , n} to itself by sending each arc (a, b) 7→ (ρ(a), ρ(b)). We call this map rotation
and denote the image of a matching M under rotation by ρ(M).

The following two observations about rotation are almost immediate from the defi-
nitions.

Lemma 2.10. If M is a perfect matching then so is the rotation ρ(M). If M is a noncrossing
matching then so is the rotation ρ(M).

We would like for rotation to respect promotion in the sense that rotating the m-
diagram for SYT T produces the m-diagram for the promotion P(T), but usually it does
not. For example, it is not true that the m−diagram φ(P(T)) is equal to ρ(φ(T)) for
the tableau T in our running example. However, the next section describes a different
way to connect rotations to promotions. The arguments in Section 3 utilize the idea of
sub-diagrams and components of an m−diagram, which we introduce here.

Definition 2.11 (Sub-diagrams and Components). Consider an m−diagram M =
∪r

i=1(ai, bi) where each (ai, bi) is an arc. The proper subcollection C = {(aik , bik)}
s
k=1

forms a sub-diagram of M if whenever a is an endpoint of some arc in C, all arcs with
a as an endpoint are in C and no (aj, bj) for j /∈ {i1, . . . , is} crosses any arc in C. The
sub-diagram is uniform if its endpoints are all adjacent and a component if it has no
proper subcollection that forms a sub-diagram. Two sub-diagrams C, C′ are equivalent
if ρN(C) = C′ for some N.

An example of components and sub-diagrams of an m−diagram is given in Figure 4.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C1 C2 C3 C4

Figure 4: The components of the m−diagram φ(T) are C1, C2, C3, and C4. The com-
ponents C1, C2, C3 are uniform, whereas C4 is nonuniform. Note that the components
C1 and C3 are equivalent since ρ12(C3) = C1. Any union of components forms a sub-
diagram of φ(T). For example, C1 ∪ C2 forms a uniform sub-diagram, whereas C3 ∪ C4

forms a non-uniform sub-diagram.

3 Determining Orbit Lengths

Our main result is an identification between the orbit lengths of rectangular SYT and the
rotatational symmetry of their corresponding m−diagrams. This identification allows
us to explicitly compute the orbit length of a non-minimal tableau by only considering
a subset of its, typically much smaller, subtableaux. To this end, we provide a simple
algorithm for the computation of orbit lengths.

Theorem 3.1. Fix a rectangular SYT T and its corresponding m−diagram M = φ(T). Let N
be the smallest positive integer such that ρN(M) = M. Then, the equality |O(T)| = N holds.

The proof of Theorem 3.1 involves a combination of three lemmas that relate the
internal structure of T and P(T) to the geometric structures of M and ρ(M). We begin
by identifying all uniformly proper subtableaux of T with uniform sub-diagrams of M.

Lemma 3.2. For a fixed rectangular SYT T and its corresponding m−diagram M = φ(T), we
have the following correspondences:

1. The set of uniformly proper rectangular subtableaux of T is in bijection with the uniform
sub-diagrams of M.

2. The set of minimal uniformly proper rectangular subtableaux of T is in bijection with the
uniform components of M.

Then, we show that the action of promotion on T preserves the set of uniformly
proper subtableaux that do not contain the minimal element of the tableau.

Lemma 3.3. If T = T1ST2, then P(T) = T′
1S′T′

2 where T′
1T′

2 ≡ P(T1T2) and S′ is a uniformly
proper rectangular subtableau of P(T) that is uniformly equivalent to S.

The key insight in the proof of Lemma 3.3 is that the sliding path of the empty
box is entirely horizontal as it passes through a uniformly proper subtableau. This
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b

T1 S T2

T

T1 S T2

P(T)

Figure 5: The sliding path of b through T and structure of P(T)

ensures that the internal structure of each uniformly proper subtableau is preserved
during promotion. This is illustrated in Figure 5.

The combination of Lemmas 3.2 and 3.3 shows that the sub-diagrams of M are simply
rotated to form the sub-diagrams of the m−diagram φ(P(T)).

Lemma 3.4. Let M = φ(T) and choose a sub-diagram C. Suppose that EC = {(aik , bik)}
s
k=1 is

the set of endpoints of C and TC is the tableau corresponding to C.

1. The arcs with endpoints ρ(EC) in φ(P(T)) form a sub-diagram of φ(P(T)).

2. If EC does not contain 1, the arcs with endpoints ρ(EC) in φ(P(T)) are ρ(C).

3. If EC does contain 1, the arcs with endpoints ρ(EC) in φ(P(T)) form the m−diagram
φ(P(TC)) when endpoints are appropriately relabelled.

The proof of Theorem 3.1 is then a straightforward combination of Lemmas 3.2 to 3.4.
Now, since the orbit length |O(T)| is identified with the rotational symmetry of the
m−diagram φ(T), we can calculate the order of promotion of T by calculating the order
of rotational symmetry of its corresponding m−diagram. We outline a simple process
for this when 1 and n are not in the same component of φ(T) in Theorem 3.5.

Theorem 3.5. Let M be an m−diagram on n vertices such that the vertices 1 and n are not in
the same component. The order of rotational symmetry of M can be determined as follows:

1. Let k be the number of non-equivalent components of M. Color each vertex of the m−
diagram a color from [k] such that two vertices are the same color if and only if they belong
to equivalent components.

2. Define N to be the smallest positive integer such that for any vertex i, i− N mod n has the
same color as i and for any component C, the rotation ρN(C) is an equivalent component.

3. For each component C of M with a vertex in [N], let NC be the number of vertices of C
that are less than or equal to N and TC the SYT corresponding to C.
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4. Let ℓ be the smallest positive integer such that |O(TC)|
∣∣ℓNC for each C.

Then, M has rotational symmetry of order ℓN.

If the vertices 1 and n are in the same component of φ(T), we can still apply the
algorithm of Theorem 3.5 by first pre-processing φ(T) in the following way:

1. Let C1 be the component of φ(T) containing both 1 and n. Suppose the first k
vertices of φ(T) are contained in C1 and let T1 be the Young tableau to C1.

2. Determine the tableau Pk(T1) and its corresponding m−diagram φ(Pk(T1)). Note
that while T1 is not an SYT, the promotion operation can still be performed since
the entries of T1 strictly increase both row and column-wise.

3. Define M to be the m−diagram ρk(φ(T)) with the rightmost component replaced
by φ(Pk(T1)).

Note that by Lemma 3.3, the m−diagram M defined in the above process exactly
corresponds to φ(Pk(T)) and so the rotational symmetry of M corresponds to the orbit
length |O(T)|. Moreover, our approach of identifying uniform components of φ(T) with
the uniformly proper subtableaux of T allows us to calculate φ(Pk(T)), and thus Pk(T),
without requiring the k−fold evaluation of promotion on T itself.

Following the algorithm in Theorem 3.5, we see that the orbit length |O(T)| is deter-
mined by examining orbit lengths of a set of minimal standard Young tableaux. While
there is no known method for identifying the orbit lengths of minimal tableaux, typi-
cally these tableaux will be much smaller than T and thus directly computing their orbit
lengths will be much less computationally expensive than computing the entire promo-
tion orbit of T. Furthermore, while there may be many components of φ(T) that have at
least one vertex in [N], only those that contain vertices outside of [N] need be consid-
ered in the calculation of k : if all vertices of the component C are contained in [N], then
|O(T)|

∣∣NC by [5].

Example 3.6. We can now calculate the promotion orbit length of our running example T.
Since 1 and 24 are in the same component in the m−diagram φ(T), we first pre-process
the m−diagram following the above steps. We begin by identifying C1, the minimal
component of φ(T) that contains both 1 and 24 as vertices.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C1

φ(T)

We then form the tableau T1 corresponding to T1. Since the first vertex not contained in
C1 is vertex 2, we need only promote T1 once.
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1 19
18 21
20 23
22 24

T1

17 18
19 20
21 22
23 24

P(T1)

After computing the promotion P(T1), we form the new m−diagram M by computing
the rotation ρ(φ(T)) and replacing the rightmost component with φ(P(T1)). We then use
the steps described in Theorem 3.5 to determine the rotational symmetry of M.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C1 C2 C3 C4

M

Using the same notation as in Theorem 3.5, we see that N = 12 since the components C1
and C3 are equivalent and the components C2 and C4 are equivalent. Since the compo-
nents C1 and C2 are entirely contained in the first 12 vertices of M, we conclude that M
has rotational symmetry of order 12. It follows that |O(T)| = 12.

4 Extending Results to Semistandard Young Tableaux

Thus far, we have only considered rectangular SYT. However, our results generalize to
rectangular (column) semistandard Young tableaux in a natural way.

Definition 4.1. A (column) semistandard Young tableau (SSYT) is a filling of the Young
diagram for the partition λ with the numbers 1, 2, . . . , n so that each number appears
at least once, rows strictly increase left-to-right, and columns weakly increase top-to-
bottom.

The content of an SSYT T is the collection of integers filling its boxes with repetition.
If each number i appears ei times in T then we denote the content {1e1 , 2e2 , . . . , nen}. Note
that the content may be a multiset.

Remark 4.2. Usually semistandard refers to tableaux in which columns strictly increase
and rows are weakly increasing. For this reason, we usually stress column in our termi-
nology. Note that each column semistandard tableau is the transpose of a (row) semis-
tandard tableau. Since the promotion orbit length is preserved under the transposition
of tableaux, it is sufficient to characterize the orbits of column SSYT.
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The definition of promotion given in Definition 2.2 is easily generalizable to a column
SSYT T by repeating steps (1) to (3) until there are no copies of 1 remaining in T and
then inserting the maximum entry of T into every empty box. Moreover, m−diagrams
can be constructed from SSYT using the same process as in Lemma 2.7. Our Theorem 3.1
can also be used to determine the promotion orbit lengths of an SSYT T.

Corollary 4.3. Let T be an SSYT and M = φ(T) be its corresponding m−diagram. If the
vertices 1 and n are not in the same component, the orbit length |O(T)| can be determined using
the algorithm in Theorem 3.5.

There are several key observations that allow us to extend our result to SSYT. Firstly,
there is a natural map ψ from the set of SSYT to SYT of the same shape. In essence,
the map ψ expands the content of T so that any entry appears in the tableau only once
while ensuring that the relative ordering of entries is preserved. If the number 1 appears
k times in the SSYT T, then the k−fold promotion of the SYT ψ(T) corresponds to 1
promotion of T and so the equality ψ(P(T)) = Pk(ψ(T)) holds. Moreover, there is
a well defined “contraction” map κ on the m−diagram φ(ψ(T)) so that the equality
κ(φ(ψ(T))) = φ(T) holds. The contraction map also respects rotation in the following
sense: if the number 1 appears k times in the SSYT T, then k rotations of the m−diagram
φ(ψ(T)) followed by contraction corresponds to 1 rotation of the m−diagram φ(T), i.e.
the equality κ(ρk(φ(ψ(T)))) = ρ(φ(T)) holds.

Combining these observations with the arguments arising from the study of SYT
completes the proof of Corollary 4.3. As with SYT, if the vertices 1 and n are in the same
component of φ(T), the m−diagram can be pre-processed as outlined above and then
Corollary 4.3 can be applied accordingly.
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