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Abstract. As Littlewood–Richardson rules compute linear representation theory of
symmetric groups and cohomology of ordinary Grassmannians, shifted Littlewood–
Richardson rules compute analogous projective representation theory of symmetric
groups and cohomology of orthogonal Grassmannians. The first shifted Littlewood–
Richardson rule is due to Stembridge (1989). We give a new shifted Littlewood–
Richardson rule that is provably more efficient in some cases and is more convenient
for hand calculations. Our rule builds on ideas of Lascoux–Schützenberger (1981),
Haiman (1989), and Serrano (2010).

In addition, we obtain the first algebraic proof of Serrano’s shifted Littlewood–
Richardson rule (2010) and a new proof of the Hiller–Boe shifted Pieri rule (1986).
We also give a new characterization of Serrano’s shifted plactic monoid as the largest
monoid satisfying a short list of natural axioms and propose a solution to an open
problem of Cho (2013) asking for a satisfactory definition of plactic skew Schur P-
functions.
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1 Introduction

The Littlewood–Richardson (LR) coefficients cν
λ,µ arise in the linear representation theory

of the symmetric group and the cohomology of complex Grassmannians. The classical
Littlewood–Richardson rules compute the number cν

λ,µ in a manifestly integral and non-
negative fashion. Key ingredients of these rules are semistandard Young tableaux, Schur
functions, insertion algorithms, jeu de taquin, and plactic structure.

The shifted Littlewood–Richardson coefficients bν
λ,µ analogously arise in the projective

representation theory of the symmetric group and the cohomology of orthogonal Grass-
mannians. There are analogous shifted Littlewood–Richardson rules for computing bν

λ,µ, the
first being due to Stembridge [7]; however, all are significantly more complicated than
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their classical counterparts. The key combinatorial ingredients of these rules are shifted
Young tableaux, Schur P- and Q-functions, shifted insertions, and shifted analogs of jeu
de taquin and the plactic monoid.

Our main result is a new shifted LR rule for the coefficients bν
λ,µ. In some cases,

our rule is provably more efficient than the original rule of [7]. Moreover, we find it
significantly more convenient for hand calculations. At the center of our approach is the
identification of a shifted plactic class that we call barely Yamanouchi words, which has
many desirable algebraic and combinatorial properties. The straight-shaped tableaux
of these classes (barely Yamanouchi tableaux; see Figure 1) are a useful substitute for the
traditional “Yamanouchi” tableaux, although they appear very different. This newly
identified shifted plactic class is characterized by its decreasing subsequences in parallel
with a characterization for classical Yamanouchi words.

1 1 1 3′ 4′ 6′ 7′

2 2 4′ 5′

3

Figure 1: An example of a barely Yamanouchi tableau of shifted shape (7, 4, 1).

Constructed tableaux are the shifted tableaux that can become barely Yamanouchi after
a sequence of Haiman’s mixed insertions [2]. Constructed tableaux can be built directly
(without consideration of mixed insertion) by laying down sequences of (generalized)
rimhooks satisfying a couple of conditions that are easy to use but slightly technical
to state. We defer the details of these definitions until Section 2. For an example of a
constructed tableau, see Figure 2.

Theorem 1.1. Let λ, µ, and ν be strict partitions with |λ|+ |µ| = |ν| and µ < ν. Then, bν
λ,µ

equals the number of shifted tableaux of shape λ constructed from µ < ν.

1 2′ 3′ 3 4′ 5′ 8′ 9′

4 5′ 5 6′ 7′ 10′ 11′

6 7′ 8′ 9′

Figure 2: A tableau of shape λ = (8, 7, 4) constructed from µ = (4, 2) < ν = (11, 9, 5).
Here, the coloring is redundant but identifies the different generalized rimhooks.

For an illustration of the use of Theorem 1.1 to compute shifted LR coefficients bν
λ,µ,

see Example 5.9. Our proof of Theorem 1.1 makes heavy use of Serrano’s shifted plactic
monoid [6]. This monoid is an analog of the plactic monoid of Lascoux–Schützenberger



A new shifted Littlewood–Richardson rule and related developments 3

[4]; however, it is more complicated than its classical analog and less directly connected
to jeu de taquin. Serrano [6] used his shifted plactic monoid to give another shifted LR
rule for bν

λ,µ; this rule is rather difficult to apply in practice due to being formulated in
terms of equivalence classes. A consequence of our analysis is the first algebraic proof
of Serrano’s result (Serrano’s original proof being fundamentally combinatorial). We
also obtain a new proof of the first Pieri rule for Schur P-functions, originally due to
Hiller–Boe [3] (and equivalent to a special case of Stembridge’s formula [7]).

We also further analyze the shifted plactic monoid. Unlike the classical plactic
monoid whose relations are easily derived from the jeu de taquin algorithm on tableaux,
the relations defining the shifted plactic monoid are less obvious to discover and rely on
Haiman’s mixed insertion algorithm instead of shifted jeu de taquin.

Inspired by a universal characterization of the plactic monoid by Lascoux and Schüt-
zenberger [4], we give a new characterization of the shifted plactic monoid as the greatest
quotient of the free monoid satisfying a short list of natural axioms. Equivalently, this
identifies the shifted plactic monoid as the initial object of a category of monoids that
we define. The only combinatorial structure going into these axioms is a definition of
free Schur P-functions for strict partitions of the integers 1 and 3. In particular, this
characterization does not employ mixed insertion, jeu de taquin, or Young tableaux.

Finally, we propose a solution to [1, Open Problem 7.12(1)], asking for a new defi-
nition of plactic skew Schur P-functions Pν/λ satisfying certain desirable properties. This
open problem arises from an earlier definition of Serrano [6], which he conjectured to
satisfy these properties, but which was shown by Cho [1] to fail them in some cases.
Our definition involves a mixture of two different insertion algorithms; more specifi-
cally, we propose to take a formal sum over skew tableaux with a given Sagan–Worley
rectification [5, 8] of the rectification’s mixed reading word.

2 Background and definitions

Throughout this paper, we use the English tableau orientation convention. A strict par-
tition is a partition with distinct parts. We draw the Young diagram of a strict partition
as a shifted shape, indenting the ith row i − 1 boxes. For example, the tableau of Fig-
ure 1 has shifted shape equal to the strict partition (7, 4, 1). We consider the alphabet
N = {1 < 2 < 3 < . . . } and the doubled alphabet D = {1′ < 1 < 2′ < 2 < . . . }. A
shifted semistandard tableau of shape λ is a filling of the the boxes of the shifted Young
diagram of λ with elements of D such that the box labels weakly increase from left to
right along rows and from top to bottom down columns, each k′ appears at most once in
any row, each k appears at most once in any column, and the leftmost box of each row
contains an unprimed number. Figures 1 and 2 both show examples of such tableaux.

We write ShSSYT(λ) for the set of all shifted semistandard tableaux of strict partition
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shape λ. The content of a shifted semistandard tableau T is the integer vector c(T) =
(c1, c2, . . . ) where ci denotes the number of boxes that are filled with either the value i′

or i. A tableau T ∈ ShSSYT(λ) is standard if it contains no primed entries and its content
is (c1, c2, . . . ), where ci = 1 for i ≤ |λ| and ci = 0 for i > |λ|. We write ShSYT(λ) for the
set of all shifted standard tableaux of strict partition shape λ. The Schur P-function Pλ is
the symmetric function

Pλ := ∑
T∈ShSSYT(λ)

xc(T) = ∑
T∈ShSSYT(λ)

∏
i

xci
i .

We will also need the Schur Q-function Qλ := 2ℓ(λ)Pλ. Note that we can also think of Qλ

as the partition function for a generalization of shifted semistandard tableaux where we
allow primed entries in any box; we call these Q-tableaux.

Let w = w1 . . . wn ∈ N ⋆. Then, the mixed insertion [2] of w is the shifted tableau
constructed as follows:

• Place w1 in the first row of the diagram and set i = 2.

• Compare wi with the entries of the first row. If it is largest, insert it at the end
of the row. If not, find the least x in that row such that x > wi. Insert wi in the
position of x and save x along with its previous position. If x is unprimed and not
on the main diagonal, insert x in the next row in the same way. If x is unprimed
and on the main diagonal, insert x′ in the next column. If x is primed, insert it into
the next column. For column insertions of z, we mean insert it at the bottom of the
column if it is greater than the entries of that column; and otherwise insert it at the
position of the least y in the column with y > z. In the latter case, save the value
of y as well as its previous position and repeat this step with z = y.

• After the last insertion has been performed, set i = i + 1 and repeat step 2 if i ≤ n;
otherwise end and return the shifted tableau.

We also need the Sagan–Worley insertion [8, 5] of w = w1 . . . wn ∈ D⋆.

• Place w1 in the first row of the diagram and set i = 2.

• Let y be the smallest letter in the first row such that y wi is not a legal Q-tableau.
If y is not on the diagonal, replace y with wi and insert y into the next row. In the
other case, if wi = y or y′, then unprime wi and insert it into the next column;
otherwise, replace y with wi and insert y into the next column.

• We iterate this process until no letters are bumped with the caveat that once we
start to displace by columns, all subsequent bumps must also be column-bumps.

• After the last insertion has been performed, set i = i + 1 and repeat step 2 if i ≤ n;
otherwise end and return the shifted tableau.
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3 A universal property for the shifted plactic monoid

Let A be a totally ordered alphabet. A hook subword of a word w is a subword d · i such
that d is strictly decreasing and i is weakly increasing. If w is a hook subword of itself,
we say w is a hook word. Let λ be a strict partition. Denote by hook(λ), the set of words
w = w1 . . . wk, where each wi is a hook word of length λℓ(λ)−i+1 and such that, for all
i > 1, wi is a longest hook subword of wi−1wi. Then the shifted free Schur function of
shape λ is

P̂λ := ∑
w : w∈hook(λ)

w ∈ Z⟨⟨x1, x2, . . . ⟩⟩.

(Serrano [6] gives an equivalent definition of hook(λ) as the set of mixed reading words
for certain tableaux.)

The shifted plactic monoid S [6] is the quotient of the free monoid on N by 8 homoge-
neous degree-4 relations (the shifted Knuth relations). Serrano shows that two words are
equivalent in S if and only if they have the same mixed insertion tableau. We assume the
reader is familiar with the ordinary plactic monoid P [4]; let κ be the quotient map from
the free monoid to P. We write ρI for the restriction map on words given by deleting all
letters outside the interval I.

Consider the category SPlac(A) of monoids M equipped with homomorphisms

ϕ : F(A) ↠ M and ψ : M → P(A) such that

(SPlac.1) ψ ◦ ϕ = κ;

(SPlac.2) the images ϕ(P̂ ), ϕ(P̂ ) ∈ ZM of the free Schur P-functions {P̂ , P̂ } ⊂ ZF(A)
commute;

(SPlac.3) for any ordered endomorphism ω : F(A) → F(A) and any w1, w2 ∈ F(A), if
ϕ(w1) = ϕ(w2), then (ϕ ◦ ω)(w1) = (ϕ ◦ ω)(w2); and

(SPlac.4) for any interval I ⊆ A and any w1, w2 ∈ F(A), if ϕ(w1) = ϕ(w2), then

(κ ◦ ρI)(w1) = (κ ◦ ρI)(w2).

The defining properties of SPlac(A) are mostly given by directly adapting those for a
category of plactic monoids that we build based on ideas of Lascoux–Schützenberger
[4]. The main surprise is the appearance of κ in (SPlac.4), where one might naturally
expect ϕ by analogy. A morphism θ : (M′, ϕ′, ψ′) → (M, ϕ, ψ) in SPlac(A) is a monoid
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homomorphism such that the diagram

M′

F(A) P(A)

M

ψ′

θ

ϕ′

ϕ ψ

(3.1)

commutes.
Let σ : F(A) → S(A) be the quotient map and let π : S(A) → P(A) be the projection

map given by quotienting by the ordinary Knuth relations. It is straightforward to see
that κ = π ◦ σ.

We give the following intrinsic characterization of S(A) without reference to the
shifted Knuth relations. Our approach also avoids consideration of Haiman’s mixed
insertion and is analogous to the Lascoux–Schützenberger [4] characterization of P(A).

Theorem 3.1. The shifted plactic monoid (S(A), σ, π) is the initial object of the category
SPlac(A).

Note that the final object of SPlac(A) is just (P(A), κ, id). We also show that the
analog of Theorem 3.1 holds if P̂ is replaced by P̂ in (SPlac.2). If instead P̂ is

replaced by P̂ , we obtain the free monoid as initial object, so that category is less
interesting.

4 A proposed solution to Cho’s open problem

First we recall the plactic Schur P-functions Pλ ∈ ZS(N ) [6]. They are the lifting of the
ordinary Schur P-functions Pλ given by σ(P̂λ). Consider the set of all Q-tableaux of
shape ν/λ. For the sake of convenience we denote them instead as ShSSYT(ν/λ)′.

Let µ < λ be strict partitions. There has long been desired an appropriate definition
of “skew plactic Schur P-functions” Pν/µ as lifts of Pν/µ to ZS(N ) with good properties.
Serrano [6] proposed a definition, but Cho [1] disproved his conjecture that it had the
desired properties; Cho [1, Open Problem 7.12(1)] asked for a new definition of Pν/µ

that makes it a member of Q[Pλ]λ (in agreement with Serrano’s original conjecture); and
such that the expansion of Pν/µ in the basis (Pλ)λ can be described in a nice way.

We propose such a definition of Pν/µ by lifting instead Qν/µ and adjusting by the
appropriate constant.
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Definition 4.1. The skew plactic Schur P-function is

Pν/µ :=
1

2diag(ν/µ) ∑
T∈ShSSYT(ν/µ)′

[F ◦ rect(T)]S ∈ S(A)

where ShSSYT(ν/µ)′ stands for the set of Q-tableaux of shape λ, F is the map that forgets primes
in diagonal positions, rect(•) signifies Sagan–Worley rectification [8, 5], and diag(ν/µ) denotes
the number of diagonal positions in the skew shape ν/µ.

Note that Sagan–Worley’s algorithm is employed to rectify T, but after it has been rec-
tified its shifted plactic class (codifying equivalence under Haiman’s insertion) is taken.
The following shows that the skew plactic Schur P-functions, as defined in Definition 4.1,
live in the correct ring and have the desired expansion into plactic Schur P-functions.

Theorem 4.2. Let µ < ν be strict partitions. Then Pν/µ ∈ Q[Pλ]λ and

Pν/µ = ∑
λ

2ℓ(λ)

2diag(ν/µ)
bν

λ,µPλ.

In particular, the expansion coefficients of Pν/µ in the plactic Schur P-basis are equal to the
expansion coefficients of Pν/µ in the ordinary Schur P-basis.

Similar ideas give us the first algebraic proof of Serrano’s [6] shifted LR rule. That
is, following a strategy of Lascoux–Schützenberger [4] for the unshifted case, we obtain
a shifted plactic expression for the multiplication P̂λ · P̂µ based on the duality between
mixed insertion and Sagan–Worley insertion. Serrano’s rule then follows:

Corollary 4.3 (Serrano [6]). Fix a tableau T ∈ ShSSYT(ν). Then the shifted Littlewood–
Richardson coefficient bν

λ,µ can be determined as follows:

bν
λ,µ = |{([U], [V]) : [U] · [V] = [T] ∈ S, U ∈ ShSSYT(λ), and V ∈ ShSSYT(µ)}|.

5 A new shifted Littlewood–Richardson rule

We will now consider a new analog of Yamanouchi tableaux for the shifted context.

Definition 5.1. Let ν be a strict partition of n with ℓ(ν) = ℓ. The canonical word for ν is the
sequence ŷν ∈ N ∗ given by

νℓ νℓ − 1 . . . 1 νℓ−1 νℓ−1 − 1 . . . 1 . . . ν1 ν1 − 1 . . . 1.

A word is barely Yamanouchi if it is in the shifted plactic class of ŷν for some strict partition ν.
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Example 5.2. For the strict partition ν = (6, 4, 3), we have that its canonical word is

ŷν = 3 2 1 4 3 2 1 6 5 4 3 2 1.

We also note that all barely Yamanouchi words are Yamanouchi, but the converse
does not hold. Specifically, we show barely Yamanouchi words satisfy the additional
condition that, in each final segment, the number of is is at most 1 more than the num-
ber of (i + 1)s; it is in this sense that “barely Yamanouchi” words barely satisfy the Ya-
manouchi condition. Moreover, we show barely Yamanouchi words satisfy an interlacing
condition, that between any two instances of i, there is an instance of i − 1 (unless i = 1)
and an instance of i + 1. This interlacing property is key to many of our arguments.

Definition 5.3. Given a strict partition ν of n, we define the barely Yamanouchi tableau of
shape ν, denoted by Ŷν, to be the shifted tableau resulting from the mixed insertion of any barely
Yamanouchi word for ν, i.e., Ŷν = Pmix(ŷν).

We establish a direct tableau-theoretic characterization of barely Yamanouchi tab-
leaux without reference to mixed insertion. For an illustration of the barely Yamanouchi
tableau Ŷ(7,4,1), see Figure 1. Note in particular that the largest shifted staircase inside
ν is filled as in a traditional Yamanouchi tableau (with no primed entries), whereas all
other entries are primed and satisfy additional conditions; this is always the case.

We now turn to introducing the constructed tableaux that are key to the statement of
Theorem 1.1.

Definition 5.4. A skew shape is a horizontal strip if it contains at most one box in each column,
and it is a vertical strip if it has at most one box in each row. A set of boxes γ is a generalized
rimhook it can be partitioned into a vertical strip ξ/π and a horizontal strip θ/η with ξ ⊆ η.
We write γ = ξ/π < θ/η. If we can choose the partitions so that η = ξ, we say γ is a rimhook.

Let T be a tableau of generalized rimhook shape γ = ξ/π < θ/η. We say that T is a Serrano–
Pieri strip if ξ/π is filled with unprimed letters that increase from top to bottom, θ/η is filled
with primed letters that increase from left to right, and each label in ξ/π is less than every label
in θ/η. (Note that this is backwards from the ordinary Pieri fillings!)

Example 5.5. In the tableau

1 2′ 3′ 4 5 7′ 9′

5 6′ 6 8′

7

,

the boxes shaded in blue form a Serrano–Pieri strip. Note that the blue boxes do not
form a skew shape, so that it is not a rimhook, but only a generalized rimhook.

Definition 5.6. Let α = (α1, . . . , αℓ), β = (β1, . . . , βℓ) be sequences of nonnegative integers
with αi < βi for all i. A tableau T of shape λ is constructible from α < β if
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• for every j, the letters of (αj, β j] in T form a Serrano–Pieri strip; and

• the unprimed entries of (αj, β j] occur before the unprimed entries of (αi, βi] for all i < j
when in the same row; and

• the primed entries of (αj, β j] occur before the primed entries of (αi, βi] for all i < j when in
the same column.

Observe that the horizontal or vertical strip in a Serrano–Pieri strip is allowed to be
empty. That is, a horizontal strip is a Serrano–Pieri strip, and likewise a vertical strip.

Definition 5.7. We say T is constructed from α < β if it is constructible from α < β, but none
of the Serrano–Pieri strips γ(s) = (ξ(s)/π(s)) < (θ(s)/η(s)) can be extended to a Serrano–Pieri
strip γ′(s) = (ξ ′(s)/π′(s))< (θ′(s)/η′(s)) such that γ′(s) ⊋ γ(s) and the letters in γ′(s), including
the primed ones but ignoring their primes, form an interval (αj − k, β j + e] ⊋ (αj, β j] for some
e, k ≥ 0, where (αj, β j] are the letters (some of them possibly primed) of γ(s).

See Figure 2 for an example of a constructed tableau. Theorem 1.1 then follows from
the following result, which is interesting in its own right.

Theorem 5.8. Let λ, µ, and ν be strict partitions with |λ|+ |µ| = |ν| and µ < ν. Then, the
tableaux Tλ of shape λ such that

Tλ · Ŷµ = Ŷν

(where the · denotes concatenation of shifted plactic words) are exactly the tableaux of shape λ

constructed from the partitions µ < ν.

We now give some examples of the application of the new rule of Theorem 1.1.

Example 5.9. Let ν = (11, 9, 5), µ = (4, 2), and λ = (8, 7, 4). We need to place the
elements of ⊔

i

(µi, νi] = (0, 5] ⊔ (2, 9] ⊔ (4, 11]

into the shifted shape λ according to our rule.
We start by adding the letters of (µ3, ν3] = (0, 5]. We must insert an initial interval of

these letters to form a vertical strip, and then the remaining letters (primed) to form a
horizontal strip. There is a unique way of doing so, illustrated below.

1 2′ 3′ 4′ 5′
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Now, we consider the letters of (µ2, ν2] = (2, 9]. This time there are two ways to
choose an initial interval and assign its letters to a vertical strip. For the unprimed
letters, either we have

1 2′ 3′ 3 4′ 5′

4
or 1 2′ 3′ 4′ 5′

3
.

On the left, since there were primed entries from the first sequence in that row before
the placement of 3, it displaces them eastwards; the letters 4 and 5 from the previous
sequence are primed, so neither 3 nor 4 from the new sequence can extend the first
sequence. Similarly, on the right, 3 cannot extend the previous sequence.

We must add the remaining letters in (2, 9] so that they are primed and constitute a
horizontal strip inside Dλ. We must be careful so that each entry i′ is inserted weakly
west of (i − 1)′ from the previous sequence. This process yields the tableaux

1 2′ 3′ 3 4′ 5′ 9′

4 5′ 6′ 7′ 8′
, 1 2′ 3′ 3 4′ 5′ 8′ 9′

4 5′ 6′ 7′
, 1 2′ 3′ 4′ 5′ 7′ 8′ 9′

3 4′ 5′ 6′
.

Finally, we place the interval (µ1, ν1] = (4, 11]. For the leftmost tableau above, we get

1 2′ 3′ 3 4′ 5′ 5 9′

4 5′ 6′ 7′ 8′ 10′ 11′

6 7′ 8′ 9′

and 1 2′ 3′ 3 4′ 5′ 5 9′

4 5′ 6′ 6 7′ 8′ 11′

7 8′ 9′ 10′

.

From the middle and rightmost tableaux, respectively, we obtain

1 2′ 3′ 3 4′ 5′ 8′ 9′

4 5′ 5 6′ 7′ 10′ 11′

6 7′ 8′ 9′

and 1 2′ 3′ 4′ 5′ 5 8′ 9′

3 4′ 5′ 6′ 7′ 10′ 11′

6 7′ 8′ 9′

.

The reader can check that none of the Serrano–Pieri strips here can be extended, so these
are all constructed tableaux.

Since we have computed that there are exactly 4 tableaux of shape (8, 7, 4) constructed
from (4, 2) < (11, 9, 5), we learn that b(11,9,5)

(8,7,4),(4,2) = 4.

Example 5.10. Let ν = (7, 3, 2), µ = (3, 2), and λ = (4, 3). We consider placing the
elements of ⊔

i

(µi, νi] = (0, 2] ⊔ (2, 3] ⊔ (3, 7]
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into the shifted shape λ according to our rule. The unique way to place (0, 2] is

1 2′

Adding (2, 3] can be done in exactly two ways. Either we obtain

1 2′ 3 or 1 2′

3
.

For the left tableau, the unique way to add (3, 7] gives

1 2′ 3 4

5 6′ 7′
.

For the right tableau, however, there is no way to validly add (3, 7] as a Serrano–Pieri
strip. Thus, we conclude that b(7,3,2)

(4,3),(3,2) = 1.

The reader familiar with Stembridge’s [7] shifted LR rule may note that the calcula-
tion of Example 5.10 would have been easier with his rule. In Stembridge’s rule, one

would have instead considered the shifted skew shape . Stembridge’s

rule is at its best in settings such as this, where the relevant skew shape consists of
a collection of disjoint horizontal segments. In contrast, our rule shines when λ is an
uncomplicated shape such as a row or a staircase. In these cases, we find the rule of
Theorem 1.1 significantly easier to apply. For example, in the “Pieri case” when λ is a
single row, Theorem 1.1 is extremely easy to apply. It is then a straightforward bijection
to obtain a new proof of the Hiller–Boe [3] Pieri formula in this case.

We now demonstrate that Theorem 1.1 is more efficient than the earlier Stembridge
rule [7] in certain cases. An analysis of a natural algorithmic implementation of Theo-
rem 1.1 shows that the time complexity of Theorem 1.1 is |SYT(λ)| · O(|λ|2). Now con-
sider the special case where µ and ν are such that ν := µ+ 1⃗ = (µ1 + 1, µ2 + 1, . . . , µℓ(µ)+
1) and λ has staircase shape.

The time complexity of Stembridge’s rule is bounded below by O(|SYT(ν/µ)|) · |λ|.
By the choice of µ and ν, the cardinality of SYT(ν/µ) is found to be(

|λ|
λ1, λ2, . . . , λℓ(λ)

)
=

|λ|!
λ1! · · · · · λℓ(λ)!

, modulo priming of the entries.

On the other hand, the complexity of our rule from Theorem 1.1 is a function of
|SYT(λ)|, which by the shifted hook formula is

|λ|!
∏i∈Dλ

h(i)
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(again, modulo priming of the entries), where hi is the classical hook of a cell inside the
doubled and unshifted version of the shifted diagram Dλ for λ. One then computes that
|SYT(λ)| ≤ 1

2|λ|−ℓ(λ) |SYT(ν/µ)|.
Taking now into account the primed entries, a tableau T ∈ SYT(λ) may contain

primes anywhere off the diagonal. However, a tableau S ∈ SYT(ν/µ) may have any
entries primed except possibly the southmost one. We obtain the sharper estimate that

|SYT(λ)| ≤ 1
2|λ|−ℓ(λ)

|SYT(ν/µ)| · 1
2ℓ(λ)−1

=
1

2|λ|−1
|SYT(ν/µ)|.

Hence, the time complexity of our algorithm is bounded above by

|SYT(λ)| · O(|λ|2) ≤ 1
2|λ|−1

|SYT(ν/µ)| · O(|λ|2),

so that for |λ| ≫ 0, the running time of Theorem 1.1 is exponentially faster than the
Stembridge formulation in this class of examples.

Acknowledgements

We are grateful for conversations with Olya Mandelshtam, Alejandro Morales, Andrew
Naguib, Colleen Robichaux, Bruce Sagan, Kartik Singh, and Jerónimo Valencia-Porras.

References

[1] S. Cho. “A new Littlewood-Richardson rule for Schur P-functions”. Trans. Amer. Math. Soc.
365.2 (2013), pp. 939–972. doi.

[2] M. D. Haiman. “On mixed insertion, symmetry, and shifted Young tableaux”. J. Combin.
Theory Ser. A 50.2 (1989), pp. 196–225. doi.

[3] H. Hiller and B. Boe. “Pieri formula for SO2n+1/Un and Spn/Un”. Adv. in Math. 62.1 (1986),
pp. 49–67. doi.

[4] A. Lascoux and M.-P. Schützenberger. “Le monoïde plaxique”. Noncommutative structures in
algebra and geometric combinatorics (Naples, 1978). Vol. 109. Quad. “Ricerca Sci.” CNR, Rome,
1981, pp. 129–156.

[5] B. E. Sagan. “Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley”. J. Combin.
Theory Ser. A 45.1 (1987), pp. 62–103. doi.

[6] L. Serrano. “The shifted plactic monoid”. Math. Z. 266.2 (2010), pp. 363–392. doi.

[7] J. R. Stembridge. “Shifted tableaux and the projective representations of symmetric groups”.
Adv. Math. 74.1 (1989), pp. 87–134.

[8] D. R. Worley. A theory of shifted Young tableaux. Thesis (Ph.D.)–Massachusetts Institute of
Technology. ProQuest LLC, Ann Arbor, MI, 1984, 138 pages. Link.

https://dx.doi.org/10.1090/S0002-9947-2012-05653-4
https://dx.doi.org/10.1016/0097-3165(89)90015-0
https://dx.doi.org/10.1016/0001-8708(86)90087-3
https://dx.doi.org/10.1016/0097-3165(87)90047-1
https://dx.doi.org/10.1007/s00209-009-0573-0
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0373556

	Introduction
	Background and definitions
	A universal property for the shifted plactic monoid
	A proposed solution to Cho's open problem
	A new shifted Littlewood–Richardson rule

