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Abstract. We define an abelian group homomorphism F , which we call the Frobe-
nius transform, from the ring of symmetric functions to the ring of the symmetric
power series. The matrix entries of F in the Schur basis are the restriction coefficients
rµ

λ = dim HomSn(Vµ, SλCn), which are known to be nonnegative integers but have no
known combinatorial interpretation.

We compute F{ f } when f is an elementary, complete homogeneous, or power sum
symmetric function. As a consequence, we prove that rµ

λ = 0 if |λ ∩ µ̂| < 2|µ̂| − |λ|,
where µ̂ is the partition formed by removing the first part of µ. We also prove that
rµ

λ = 0 if the Young diagram of µ contains a square of side length greater than 2λ1−1,
and this inequality is tight.

Keywords: symmetric functions, representation theory of categories, plethysm, Kro-
necker product

1 Introduction

Let n ≥ 0 and let λ be a partition with at most n parts. There is a corresponding
irreducible GLn(C)-module: the Schur module SλCn. Because the symmetric group Sn
embeds in GLn(C) by permutation matrices, one may ask: how does the restriction of
SλCn to Sn decompose into irreducible Sn-modules?

In other words, let λ and µ be partitions and let n = |µ|. What is the value of the
restriction coefficient

rµ
λ = dim HomSn(Vµ, SλCn),

where Vµ is the Specht module corresponding to the partition µ? This problem is known
as the restriction problem.1

While there are many known formulas for the restriction coefficient rµ
λ, no combinato-

rial formula is known. For example, in 1935, Littlewood proved a plethystic formula for
restriction coefficients [8]:

rµ
λ = ⟨sλ, sµ[1 + h1 + h2 + · · · ]⟩,

*mitchell@math.harvard.edu
1The restriction problem is a special case of the more general problem of computing the inner plethysm

coefficients, which were defined by Littlewood in 1958 [9].
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where sλ denotes the Schur function, hr denotes the complete homogeneous symmetric
function, ⟨·, ·⟩ denotes the Hall inner product, and the square brackets denote plethysm
of symmetric functions. However, this formula does not obviously yield a combinatorial
interpretation of rµ

λ.
The restriction problem has attracted a great deal of interest. Here is a sampling

of recent results about the restriction coefficients rµ
λ. In 2021, Heaton, Sriwongsa, and

Willenbring proved the following nonvanishing result for restriction coefficients: for all
positive integers m, n > 1 and all µ ⊢ n, there exists a two-row partition λ = (λ1, λ2) ⊢
mn such that λ1 − λ2 ≤ m and rµ

λ > 0 [5]. In 2021, Orellana and Zabrocki introduced the
irreducible character basis {s̃λ}λ of the ring of symmetric functions and used it to provide
an algorithm for computing rµ

λ [15]. In 2024, Narayanan, Paul, Prasad, and Srivastava
found a combinatorial interpretation for rµ

λ in the case that µ has one column and λ is
either a hook shape or has at most two columns [13].

There are also several recent results about the inverse problem of writing the Specht
module Vµ (or, more precisely, the class of Vµ in the representation ring of Sn) as a
Z-linear combination of Schur modules SλCn. In 2019, Assaf and Speyer proved that
the coefficients bµ

λ that arise in this way alternate in sign; that is, (−1)|µ|−|λ|bµ
λ ≥ 0 [2].

Ryba categorified this result in 2020 by finding a resolution of Vµ by direct sums of Schur
modules [17].

We take the following approach to the restriction problem. Let Λ denote the ring of
symmetric functions in the variables x1, x2, x3, . . . and let Λ denote the ring of symmetric
power series in x1, x2, x3, . . .. In this extended abstract, we will consider the abelian
group homomorphism F : Λ → Λ defined on the basis {sλ} of Schur functions by

F{sλ} = ∑
µ

rµ
λsµ.

Equivalently, F{sλ} is the result of applying the Frobenius characteristic map to the rep-
resentation

⊕
n SλCn of

⊕
n C[Sn]. For this reason, we call F the Frobenius transform. It

encodes all information about all the restriction coefficients. We will use this perspective
to prove that several of the restriction coefficients rµ

λ vanish.
The Frobenius transform can alternatively be defined in terms of the irreducible char-

acter basis {s̃λ}λ of Orellana and Zabrocki. Namely,

F{s̃λ} = ((1 + h1 + h2 + · · · )⊥sλ) · (1 + h1 + h2 + · · · )

for all partitions λ, where f⊥ : Λ → Λ denotes the operator adjoint under the Hall inner
product to multiplication by f .

Interestingly, it is also possible to think of the Frobenius transform as a decategorifi-
cation of the analytic functor construction defined by Joyal in 1986 [6]. We will not explore
this perspective here; see [7, Section 3.1] for more details.
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This extended abstract will be organized as follows. Section 3 will cover the basic
properties of the Frobenius transform, several of which follow from the work of Orellana
and Zabrocki. For example, for any symmetric functions f , g, we have F{ f g} = F{ f } ∗
F{g}, where ∗ is the Kronecker product of symmetric functions.

In Section 4, we will define the surjective Frobenius transform FSur : Λ → Λ by the
equation FSur { f } = F{ f }/(1 + h1 + h2 + · · · ). We will discuss the basic properties of
FSur, such as the fact that FSur { f } has the same degree and leading term as f . We will
also introduce the inverse function F−1

Sur.
In Section 5, we will state a combinatorial formula for FSur { f }, where f is any

complete homogeneous, elementary, or power sum symmetric function. We will also
state a formula for F−1

Sur { f }, where f is any elementary symmetric function.
Finally, in Section 6, we will explain how to use the Frobenius transform to prove

new and surprising results about the vanishing of the restriction coefficients rµ
λ. Namely,

rµ
λ = 0 if |λ ∩ µ̂| < 2|µ̂| − |λ|, where µ̂ is the partition formed by removing the first part

of µ. Additionally, rµ
λ = 0 if the Young diagram of µ contains a square of side length

greater than 2λ1−1, and this inequality is tight.
All of the results in this extended abstract are stated without proof. For proofs of all

the main theorems, see [7].

2 Preliminaries

In this extended abstract, we will use the following terminology and notation. Defini-
tions can be found in any standard reference on the theory of symmetric functions [4],
[12, Chapter I], [18, Chapter 7], or in the Preliminaries section of the author’s published
work [7, Section 2].

• The ring of symmetric functions Λ and the ring of symmetric power series Λ.

• The monomial, elementary, homogeneous, power sum, and Schur symmetric functions,
denoted mλ, eλ, hλ, pλ, sλ respectively.

• The Hall inner product ⟨·, ·⟩ : Λ × Λ → Z.

• The plethysm f [g], where f , g ∈ Λ.

• The skewing operator f⊥ : Λ → Λ, where f ∈ Λ.

• The Littlewood–Richardson coefficient cν
λµ.

• The Kronecker product ∗ : Λ × Λ → Λ and the Kronecker coefficient gλµν.

• The Specht module Vλ.
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• The Schur functor Sλ : VectC → VectC, where VectC is the category of vector spaces
over C.

• The Frobenius characteristic map chn and the Frobenius characteristic of an Sn-module.

We also use the notation H to refer to the element 1 + h1 + h2 + · · · ∈ Λ.

3 The Frobenius transform: definition and basic proper-
ties

Let λ, µ be partitions, and let n = |µ|. Recall from the introduction that the restriction
coefficient

rµ
λ = dim HomSn(Vµ, SλCn)

is defined to be the multiplicity of the Specht module Vµ in the Schur module SλCn.
It is a long-standing open problem to find a combinatorial interpretation of rµ

λ. As a
potential way to approach this problem, we now define the Frobenius transform, which
is the primary object of study in this extended abstract.

Definition 3.1. The Frobenius transform is the abelian group homomorphism F : Λ → Λ
defined on the basis {sλ} by

F{sλ} = ∑
µ

rµ
λsµ,

where the sum is over all partitions µ.

Remark 3.2. By a classical result of Littlewood [8], we have

rµ
λ = ⟨sλ, sµ[H]⟩.

Hence, F is adjoint to plethysm by H = 1 + h1 + h2 + · · · under the Hall inner product.

Here is the reason for calling F the Frobenius transform. Let n ≥ 0 and let λ be any
partition. Then SλCn, considered as an Sn-module, can be expressed as a direct sum of
Specht modules:

SλCn =
⊕
|µ|=n

rµ
λVµ.

Taking the character of both sides and applying the Frobenius characteristic map, we
obtain

chn(χSλCn) = ∑
|µ|=n

rµ
λsµ. (3.1)

In other words, the degree n part of F{sλ} is equal to the Frobenius characteristic of
SλCn.
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To summarize, the restriction coefficient rµ
λ can be written in terms of the Hall inner

product in the following three ways:

rµ
λ = ⟨F{sλ}, sµ⟩ = ⟨sλ, sµ[H]⟩ = ⟨chn(χSλCn), sµ⟩.

Example 3.3. Let r ≥ 0. We will compute F{er}. First, er = sλ, where λ = (1r). Hence,
for any n, the degree n part of F{er} is the Frobenius characteristic of

SλCn = ∧rCn = IndSn
Sr×Sn−r

(V(1r) ⊗ V(n−r)),

considered as an Sn-module. Thus, it is equal to erhn−r [18, Proposition 7.18.2]. Taking
the sum over all n yields F{er} = er · H.

Let us now describe the expansion of F{ f } in the power sum basis. Following
Orellana and Zabrocki [15], for any partition µ = (µ1, . . . , µℓ) of n, let us define Ξµ ∈ Cn

to be the sequence consisting of the roots of unity

1, exp
(

2πi
µ1

)
, exp

(
4πi
µ1

)
, . . . , exp

(
2(µ1 − 1)πi

µ1

)
,

...

1, exp
(

2πi
µℓ

)
, exp

(
4πi
µℓ

)
, . . . , exp

(
2(µℓ − 1)πi

µℓ

)
.

Then, we have the following.

Proposition 3.4. Let f ∈ Λ. Then

F{ f } = ∑
µ

f (Ξµ)
pµ

zµ
.

This proposition can be written as

F{ f } = ϕ0( f ) + ϕ1( f ) + ϕ2( f ) + · · · ,

where ϕn : Λ → Λ was defined by Orellana and Zabrocki [16, Equation (7)].
Another important property of the Frobenius transform is that it relates the ordinary

product of symmetric functions to the Kronecker product ∗.

Proposition 3.5. Let f , g ∈ Λ. Then F{ f g} = F{ f } ∗F{g}.

By taking both f and g to be Schur functions, we may think of Proposition 3.5 as a
relationship between the Littlewood–Richardson coefficients cν

λµ, the Kronecker coeffi-

cients gλµν, and the restriction coefficients rµ
λ, as follows. This is potentially interesting

because Littlewood–Richardson coefficients have a known combinatorial interpretation,
but Kronecker coefficients and restriction coefficients do not.

Corollary 3.6. Let λ, µ, ν be partitions. Then

∑
ν′

rν
ν′c

ν′
λµ = ∑

λ′,µ′
rλ′

λ rµ′
µ gλ′µ′ν.
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4 The surjective Frobenius transform

Let f ∈ Λ. Even though F{ f } ∈ Λ can have infinitely many nonzero coefficients, it only
carries a finite amount of information in the following sense.

Proposition 4.1. Let f ∈ Λ. There exists a symmetric function FSur { f } ∈ Λ such that
F{ f } = FSur { f } · H. Moreover, FSur { f } has the same degree and leading term as f .

For example, in Example 3.3 we showed that F{er} = er · H. Thus, FSur {er} = er.
(Note, however, that in general, FSur does not preserve the property of being homoge-
neous.) We call FSur the surjective Frobenius transform because it is related to the category
Sur whose objects are finite sets and whose morphisms are surjective functions [7, Propo-
sition 3.15 proof 1].

The function FSur : Λ → Λ can be described explicitly as the adjoint to plethysm by
H+ = h1 + h2 + h3 + · · · under the Hall inner product. It is not difficult to show that
FSur is invertible:

Corollary 4.2. There exists a two-sided inverse F−1
Sur : Λ → Λ of FSur.

Like the ordinary Frobenius transform, the surjective Frobenius transform can be
described in terms of its matrix entries in the Schur basis.

Definition 4.3. Let λ, µ be partitions. Define the surjective restriction coefficient tµ
λ by

tµ
λ = ⟨FSur {sλ} , sµ⟩

and define the inverse surjective restriction coefficient uµ
λ by

uµ
λ = ⟨F−1

Sur {sλ} , sµ⟩.

By the above, we have tµ
λ = uµ

λ = δλµ for |µ| ≥ |λ|.

5 Computing the Frobenius transform

5.1 Formulas for the surjective Frobenius transform

Recall that one of the overall goals of this project is to find a combinatorial interpretation
of the restriction coefficients rµ

λ. Since the restriction coefficients are the matrix entries
of F in the Schur basis, this is tantamount to finding an explicit combinatorial (i.e.
subtraction-free) formula that writes F{sλ} as a linear combination of Schur functions.

Such a formula for F{sλ} is still not known. However, Theorem 5.1 below pro-
vides a combinatorial formula for FSur {hλ}, FSur {eλ}, and FSur {pλ}. Since F{ f } =
FSur { f } · H for all f ∈ Λ, Theorem 5.1 can also be used to compute F{hλ}, F{eλ}, and
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F{pλ} to any desired degree. A statement equivalent to parts (a) and (b) of Theorem 5.1
has appeared in the work of Orellana and Zabrocki [14, Equation (6)], but part (c) is new.

Theorem 5.1. Let λ be a partition and let ℓ = ℓ(λ) be its length.

(a) Then
FSur {hλ} = ∑

M
∏

j∈Nℓ

hM(j),

where the sum is over all functions M : Nℓ → N such that M(0, . . . , 0) = 0 and
∑j∈Nℓ ji M(j) = λi for i = 1, . . . , ℓ.

(b) Then

FSur {eλ} = ∑
M

∏
j∈{0,1}ℓ

{
hM(j) if j1 + · · ·+ jℓ is even;
eM(j) if j1 + · · ·+ jℓ is odd,

where the sum is over all functions M : {0, 1}ℓ → N such that M(0, . . . , 0) = 0 and
∑j∈{0,1}ℓ ji M(j) = λi for i = 1, . . . , ℓ.

(c) Then

FSur {pλ} = ∑
π

∏
U∈π

 ∑
d|gcd{λi : i∈U}

d|U|−1pd

 ,

where the outer sum is over all partitions π of {1, . . . , ℓ} into nonempty sets and the
product is over all parts U of π.

Example 5.2. Let us use Theorem 5.1(a) to compute FSur {h2,2}. First, we list all the
functions M : N2 → N such that M(0, 0) = 0 and ∑j∈N2 jM(j) = (2, 2). There are nine
such functions M1, . . . , M9. Here are all of their nonzero values.2

M1(2, 2) = 1
M2(1, 1) = 2

M3(2, 1) = 1 M3(0, 1) = 1
M4(1, 2) = 1 M4(1, 0) = 1
M5(2, 0) = 1 M5(0, 2) = 1
M6(2, 0) = 1 M6(0, 1) = 2
M7(0, 2) = 1 M7(1, 0) = 2

M8(1, 1) = 1 M8(1, 0) = 1 M8(0, 1) = 1
M9(1, 0) = 2 M9(0, 1) = 2

2For readers who are familiar with the language of multisets and multiset partitions [15], it can be
helpful to remember that such functions M are in bijection with multiset partitions of {{1, 1, 2, 2}}. The
multiset partition corresponding to the function M contains M(j) copies of {{1j1 , 2j2}} for all j ∈ N2. For
example, the function M6 corresponds to the multiset partition {{{{1, 1}}, {{2}}, {{2}}}} ⊩ {{1, 1, 2, 2}}.
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Thus,

FSur {h2,2} = h1︸︷︷︸
M1

+ h2︸︷︷︸
M2

+ h2
1︸︷︷︸

M3

+ h2
1︸︷︷︸

M4

+ h2
1︸︷︷︸

M5

+ h1h2︸︷︷︸
M6

+ h1h2︸︷︷︸
M7

+ h3
1︸︷︷︸

M8

+ h2
2︸︷︷︸

M9

= h1 + h2 + 3h1,1 + 2h2,1 + h1,1,1 + h2,2.

Example 5.3. Let us use Theorem 5.1(b) to compute FSur {e5,3}. First, we list all the
functions M : {0, 1}2 → N such that M(0, 0) = 0 and ∑j∈{0,1}2 jM(j) = (5, 3). There are
four such functions M1, M2, M3, M4. Here are all of their nonzero values.

M1(1, 0) = 5 M1(0, 1) = 3
M2(1, 1) = 1 M2(1, 0) = 4 M2(0, 1) = 2
M3(1, 1) = 2 M3(1, 0) = 3 M3(0, 1) = 1

M4(1, 1) = 3 M4(1, 0) = 2

Thus,

FSur {e5,3} = e5e3︸︷︷︸
M1

+ h1e4e2︸ ︷︷ ︸
M2

+ h2e3e1︸ ︷︷ ︸
M3

+ h3e2︸︷︷︸
M4

.

Example 5.4. Let us use Theorem 5.1(c) to compute FSur {p15,10,6}. Take λ = (15, 10, 6)
and ℓ = 3. There are five partitions of [ℓ] into nonempty sets: {{1, 2, 3}}, {{1, 2}, {3}},
{{1, 3}, {2}}, {{2, 3}, {1}}, and {{1}, {2}, {3}}. Thus,

FSur {pλ} =

 ∑
d|gcd(λ1,λ2,λ3)

d2pd

+

 ∑
d|gcd(λ1,λ2)

dpd

∑
d|λ3

pd


+

 ∑
d|gcd(λ1,λ3)

dpd

∑
d|λ2

pd

+

 ∑
d|gcd(λ2,λ3)

dpd

∑
d|λ1

pd


+

∑
d|λ1

pd

∑
d|λ2

pd

∑
d|λ3

pd


= p1 + (p1 + 5p5)(p1 + p2 + p3 + p6)

+ (p1 + 3p3)(p1 + p2 + p5 + p10) + (p1 + 2p2)(p1 + p3 + p5 + p15)

+ (p1 + p3 + p5 + p15)(p1 + p2 + p5 + p10)(p1 + p2 + p3 + p6).

Remark 5.5. One consequence of Theorem 5.1(c) is that the matrix entries of FSur in the
power sum basis are all nonnegative integers. The same is not true of F ; for example,
F{1} = H = 1 + p1 +

1
2(p2 + p2

1) + · · · certainly has some non-integer coefficients.



The restriction problem and the Frobenius transform 9

5.2 Formulas for the inverse surjective Frobenius transform

Now, we turn to the inverse surjective Frobenius transform F−1
Sur. It follows from a

2019 result of Assaf and Speyer [2, Theorem 3] that F−1
Sur {sλ} is Schur-alternating for all

partitions λ. That is, we may write

F−1
Sur {sλ} = ∑

µ

uµ
λsµ, (5.1)

where the coefficients uµ
λ (which have appeared in Definition 4.3) satisfy (−1)|λ|−|µ|uµ

λ ≥
0 for all partitions µ [7, Theorem 4.2(c)]. It would be interesting to find a combinatorial
interpretation of (−1)|λ|−|µ|uµ

λ, or, equivalently, to find an explicit formula for F−1
Sur {sλ}

that is manifestly Schur-alternating.
Such a formula is still not known. However, Theorem 5.11 below provides a formula

for F−1
Sur {eλ}. The formula implies that F−1

Sur {eλ} is e-alternating for all partitions λ. That
is, we may write

F−1
Sur {eλ} = ∑

µ

dµ
λeµ, (5.2)

where the coefficients dµ
λ satisfy the property that (−1)|λ|−|µ|dµ

λ is a nonnegative integer
for all µ. Moreover, the formula provides an explicit combinatorial intepretation of the
number (−1)|λ|−|µ|dµ

λ.
Before we proceed to the statement of Theorem 5.11, let us recall some definitions

from the combinatorics of words. For a more complete introduction, see [10, Chapter 5].

Definition 5.6. Let A be a set. A word over the alphabet A is a sequence w = w1 · · ·wn
with w1, . . . , wn ∈ A. Given a letter a ∈ A, we write ma(w) to denote the number of
times the letter a appears in w.

Definition 5.7 ([11]). Let A be a totally ordered set. We say that a nonempty word
w = w1 · · ·wn over the alphabet A is a Lyndon word if it is lexicographically less than its
suffix wi · · ·wn for i = 2, . . . , n. Let Lyndon(A) be the set of all Lyndon words over the
alphabet A.

Theorem 5.8 (Chen–Fox–Lyndon Theorem [3]). Let A be a totally ordered set. Any word w
over the alphabet A has a unique Lyndon factorization; that is, an expression as a (lexicograph-
ically) non-increasing concatenation of Lyndon words.

Definition 5.9. Let w be a word over a totally ordered alphabet. Define π(w) to be
the partition obtained by listing the number of times each Lyndon word appears in the
Lyndon factorization of w, and then sorting the resulting positive numbers in decreasing
order.
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w Lyndon factorization π(w)
11122 (11122) (1)
11212 (11212) (1)
11221 (1122)(1) (1, 1)
12112 (12)(112) (1, 1)
12121 (12)(12)(1) (2, 1)
12211 (122)(1)(1) (2, 1)
21112 (2)(1112) (1, 1)
21121 (2)(112)(1) (1, 1, 1)
21211 (2)(12)(1)(1) (2, 1, 1)
22111 (2)(2)(1)(1)(1) (3, 2)

Figure 1: For each word w over the alphabet [2] that consists of three 1’s and two 2’s,
we compute the Lyndon factorization of w and the partition π(w).

Example 5.10. If A = {1, 2} and w = 21212121111, then the Lyndon factorization of w
is w = (2)(12)(12)(12)(1)(1)(1)(1). The Lyndon words appearing in this factorization
are 2, 12, and 1, which appear once, three times, and four times, respectively, so π(w) =
(4, 3, 1).

We are now ready to state our formula for F−1
Sur {eλ}.

Theorem 5.11. Let λ = (λ1, . . . , λℓ) be a sequence of nonnegative integers (not necessarily
weakly decreasing). Then

F−1
Sur {eλ} = ∑

w∈W
(−1)|λ|−|π(w)|eπ(w),

where W is the set of all words w over [ℓ] such that mi(w) = λi for all i ∈ [ℓ].

In other words, if dµ
λ is the coefficient of eµ in F−1

Sur {eλ} as in (5.2), then (−1)|λ|−|µ|dµ
λ

is the number of words w such that mi(w) = λi for all i ∈ [ℓ] and π(w) = µ.

Example 5.12. Let us use Theorem 5.11 to compute F−1
Sur {e3,2}. In Figure 1, we list all

the words w over [2] such that mi(w) = λi for all i ∈ [2]. These are exactly the words
that consist of three 1’s and two 2’s. For each such word w, we record the Lyndon
factorization of w and the partition π(w). Reading from the table, we find that

F−1
Sur {e3,2} = 2e1 − 3e1,1 + e1,1,1 + 2e2,1 − e2,1,1 + e3,2.

We also have a similar alternating formula for F−1
Sur {hλ} [7, Theorem 7.7(b)], but it is

more complicated and we will not reproduce it here.
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6 Vanishing of restriction coefficients

One important question about rµ
λ is the following: under what circumstances do we have

rµ
λ = 0? Using the Frobenius transform, we can partially answer this question. For any

partition µ, let D(µ) denote the size of the Durfee square of µ. That is, D(µ) is the largest
integer d such that µd ≥ d [1, Chapter 8].

Theorem 6.1. Let µ be a partition and let k ≥ 1 be an integer. The following are equivalent:

(A) There exists a partition λ such that λ1 ≤ k and rµ
λ > 0.

(B) D(µ) ≤ 2k−1.

In particular, if λ and µ are partitions with D(µ) > 2λ1−1, then rµ
λ = 0.

We also have the following. For any partitions λ, µ, let λ ∩ µ denote the partition
whose Young diagram is the intersection of the Young diagrams of µ and λ. Explicitly,
ℓ(λ ∩ µ) = min(ℓ(λ), ℓ(µ)) and (λ ∩ µ)i = min(λi, µi) for all i.

Theorem 6.2. Let λ, µ be partitions. If the surjective restriction coefficient tµ
λ does not vanish,

then |λ ∩ µ| ≥ 2|µ| − |λ|.

Theorem 6.3. Let λ, µ be partitions. If the restriction coefficient rµ
λ does not vanish, then |λ ∩

µ̂| ≥ 2|µ̂| − |λ|, where µ̂ = (µ2, . . . , µℓ(µ)) is the partition formed by removing the first part
of µ.
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