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Abstract. The fundamental connections of the Grassmannian with both weak sep-
arability and Plücker relations are well known. In this work we focus on the totally
nonnegative (TNN) part of the Grassmannian, and discover the intrinsic connection
between weak separability and Plücker relations. In particular, we show that certain
natural sums of terms in a long Plücker relation for pairs of weakly separated Plücker
coordinates oscillate around 0 over the TNN Grassmannian. This generalizes the clas-
sical oscillating inequalities by Gantmacher–Krein (1941) and recent results on TNN
matrix inequalities by Fallat–Vishwakarma (2024). In fact we obtain a characteriza-
tion of weak separability, by showing that no other pairs of Plücker coordinates satisfy
this property. Moreover, our work uncovers the natural connections between weak
separability, Plücker relations, as well as Temperley–Lieb immanants, and provides a
general and natural class of additive inequalities in Plücker coordinates on the totally
nonnegative part of the Grassmannian.

Keywords: Determinantal inequalities, total nonnegativity, Plücker relations, oscillat-
ing inequalities, weak separability, totally nonnegative Grassmannian, cluster algebras

1 Introduction and main results

A real matrix is referred to as totally nonnegative (TNN) if the determinants of all its
square submatrices are nonnegative. Total nonnegativity arose initially in a few different
areas: by Gantmacher–Krein [10] in oscillations of vibrating systems, by Fekete–Pólya [8]
(following Laguerre) in understanding the variation diminishing property of linear op-
erators, and by Schoenberg and coauthors [1] in applications to the analysis of real roots
of polynomials and spline functions. These matrices play significant roles in algebraic
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and enumerative combinatorics, integrable systems, probability, classical mechanics, and
many other areas [2, 4, 11, 14]. Lusztig extended the notion of total positivity to reduc-
tive Lie groups G [17], where the totally nonnegative part G≥0 of G is a semialgebraic
submonoid of G generated by Chevalley generators. G≥0 is the subset of G where all
elements of the dual canonical basis are nonnegative [18]. This concept could be gener-
alized even further to varieties V. The totally nonnegative subvariety is defined as the
subset of V where certain regular functions on V have nonnegative values [3, 9, 12].
Lusztig proved that specializations of elements of the dual canonical basis in the repre-
sentation theory of quantum groups at q = 1 are totally nonnegative polynomials. Thus,
it is important to investigate classes of functions on matrices that are nonnegative on
totally nonnegative matrices. We will discuss a source of such functions that are closely
related to the (long) Plücker relations.

This project traces its roots to the classical work by Gantmacher–Krein [10] where they
modify the Laplace formula (1772) for the determinant expansion along the first row of
the matrices to derive a sequence of inequalities oscillating about 0 and holding for all
totally nonnegative matrices. These were expanded into new systems of inequalities
by Fallat–Vishwakarma [5], who similarly derived an oscillating set of inequalities from
the generalized Laplace identity. To state this result more precisely we introduce some
notations: for a matrix A, define AP,Q as the submatrix with rows indexed by P and
columns indexed by Q, [m, n] := {m, . . . , n} and [n] := [1, n] for integers 0 ≤ m ≤ n.

Theorem 1.1 (Fallat–Vishwakarma [5]). Let 1 ≤ d < n be integers. Suppose Pd := [d], and
Qdk := [n − d, n] \ {n − d + k}, for all k ∈ [0, d]. Then

l

∑
k=0

(−1)l+k det APd,Qdk det A[n]\Pd,[n]\Qdk
≥ 0, for all l ∈ [0, d],

for all n × n totally nonnegative matrices A.

In this extended abstract we explain why these inequalities refine certain long Plücker
relations, via the Temperley–Lieb immanants introduced by Rhoades–Skandera [21]. An-
other classical identity, which can also be viewed as one of the Plücker relations, is the
well-known Karlin’s identity [14]. Fallat and Vishwakarma provided a complete refine-
ment of this identity for TNN matrices (see Theorem B in [5]). These two examples
suggest investigating the potential existence of a broader set of “Plücker inequalities”
over the totally nonnegative Grassmannian. This is exactly the focus of our main theo-
rem; to present it, we establish some classical facts.

Throughout this article we assume 1 ≤ m ≤ n are integers. The Grassmannian
Gr(m, m + n) is the manifold of m-dimensional subspaces of Rm+n. Such subspaces can
be represented by matrices X ∈ R(m+n)×m of full rank. Let XI denote the submatrix
corresponding to rows indexed by m element subsets I ⊆ [m + n] and columns indexed
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by [m]. Here ∆I(X) := det XI denotes the corresponding maximal minor of X. Note
that right multiplication by an invertible m × m matrix B rescales each ∆I(X) by det B.
Thus, the minors ∆I(X) together form projective coordinates of Gr(m, m + n), known
as the corresponding Plücker coordinates. These are related via Plücker relations: defined
for m-element ordered subsets I := (i1, . . . , im), J := (j1, . . . , jm) of [m + n], and Ik,r :=
(i1, . . . , ir−1, jk, ir+1, . . . , im) and Jk,r := (j1, . . . , jk−1, ir, jk+1, . . . , jm) for k, r ∈ [1, m] [12, 20]:

∆I∆J = ∑
k∈[m]

∆Ik,r ∆Jk,r at each point in Gr(m, m + n) (and conversely). (1.1)

Here ∆(i1,...,im) is labelled by an ordered sequence, and equals ∆{i1,...,im} if i1 < · · · <

im. Also, ∆(i1,...,im) = (−1)sgn(w)∆(iw(1),...,iw(m))
for all permutations w ∈ Sm. The totally

nonnegative (TNN) Grassmannian Gr≥0(m, m + n) ⊂ Gr(m, m + n) contains those vector
subspaces which have a representative matrix X ∈ R(m+n)×m with all ∆I ≥ 0 [20].

The main idea in this paper involves two steps: (1) restricting the Plücker relations
to the TNN Grassmannian, and (2) showing that natural families of inequalities can be
“extracted” from these relations. That is, we show that for weakly separated I, J (Defini-
tion 1.2), one can extract inequalities out of (1.1) that look like

∆I∆J ≤ ∑
k∈M

∆Ik,r ∆Jk,r , and hold for each point in Gr≥0(m, m + n), (1.2)

for “nice” subsets M ⊆ [m]. In fact we describe all I, J for which such natural inequalities
can be obtained. We now discuss the required notations. For cI,J ∈ R and Plücker
coordinates ∆I and ∆J , we say

∑
I,J

cI,J∆I∆J is nonnegative
(
≥ 0

)
over Gr≥0(m, m + n)

if for all subspaces V ∈ Gr≥0(m, m + n) and all representative matrices X ∈ R(m+n)×m

of V, ∑I,J cI,J∆I(X)∆J(X) ≥ 0. The main result in this paper unifies the classical [10]
and recent [5] oscillating inequalities mentioned above for TNN matrices, by refining the
Plücker relations for Gr≥0(m, m + n). To state it, we require some notations:

Definition 1.2. Fix integers m, n ≥ 1, and let I and J be ordered m-element subsets
of [m + n]. Imagine that the elements of I and J are on the circle, among the points
1, 2, . . . , m + n which are marked in clockwise order.

1. We call I, J weakly separated if the sets I \ J and J \ I can be separated by a chord in
the circle.

2. Suppose η = |I \ J| = |J \ I|. Denote I \ J := {i1, . . . , iη} and J \ I := {j1, . . . , jη},
such that i1 <c · · · <c iη <c jη and i1 <c j1 <c · · · <c jη in the clockwise or-
der <c, where each order is decided by moving in the clockwise direction on
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the circle starting from i1. (For example: if m = n = 6, I = (1, 5, 3, 4, 10, 11)
and J = (2, 6, 7, 8, 9, 11), then (i1, i2, i3, i4, i5) = (10, 1, 3, 4, 5) and (j1, j2, j3, j4, j5) =
(2, 6, 7, 8, 9). In particular, we choose i1 and jη such that all other ik, jk lie in be-
tween them while we traverse in the clockwise order starting from i1.) Now define
the following pair of tuples for k, r ∈ [1, η]:

Ik,r := (. . . , jk, . . . ), and Jk,r := (. . . , ir, . . . ), (1.3)

where jk and ir replace each other in I and J, respectively.

We begin by first describing our main result for weakly separated I, J. Let l, r ∈ [η],
then we have a family of inequalities extracted from Plücker relations (1.1):

±
( l

∑
k=1

∆Ik,r ∆Jk,r − ∆I∆J

)
≥ 0 ∀ l ≥ η − r + 1, over Gr≥0(m, m + n). (1.4)

This provides a novel class of “Plücker-type” determinantal inequalities that hold over
the entire TNN Grassmannian for the class of weakly separated I, J. It also suggests two
natural follow-up questions: (1) Are there analogous Plücker-type inequalities that hold
over Gr≥0(m, m + n) for the remaining cases of l, r ∈ [1, η]? (Here we continue to work
with weakly separated I, J.) (2) If yes, then does this also have a converse, in that certain
Plücker-type determinantal inequalities do not hold if I, J are not weakly separated?
Our main theorem provides an affirmative answer to both of these questions, and in the
process also characterizes weak separability. We also provide the precise meaning of
“±” in (1.4), and show that it refers to the sign of ∆Il,r ∆Jl,r in the inequalities, defined via:

sgn(I) = (−1)sgn(w) where w ∈ Sm such that iw(1) < · · · < iw(m)

for ordered m element subsets I := (i1, . . . , im) of [m + n].

Theorem 1.3 (Main result). Let I, J be ordered m-element subsets of [m + n]; notation as in
Definition 1.2. Consider the following system of oscillating inequalities for l, r ∈ [1, η] over
Gr≥0(m, m + n):

sgn(Il,r) sgn(Jl,r)
l

∑
k=1

∆Ik,r ∆Jk,r ≥ 0 ∀ l < η − r + 1, and

sgn(Il,r) sgn(Jl,r)
( l

∑
k=1

∆Ik,r ∆Jk,r − ∆I∆J

)
≥ 0 ∀ l ≥ η − r + 1.

(1.5)

This system holds for all l, r ∈ [1, η] if and only if I and J are weakly separated.

One may refer to [23] for several (worked out) novel examples of these oscillating
inequalities, including Theorem 1.1 and the refinement of Karlin’s identity. Next we
recall the tools needed to prove Theorem 1.3, including Temperley–Lieb immanants and
Kauffman diagrams. We demonstrate the proof ideas assuming that m = n = η, and
refer the reader to [23] for the the general case.
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2 Temperley–Lieb immanants

Some determinantal inequalities can be stated in terms of polynomials p(x) in the matrix
entries x = (xij)

n
i,j=1, for integer n ≥ 1. Such a polynomial is called totally nonnegative

(TNN) if it attains nonnegative values on TNN matrices. Next, following Littlewood [16]
and Stanley [24], given a function f : Sn → C define the f -immanant to be the polynomial

Imm f (x) := ∑
w∈Sn

f (w)x1,w1 · · · xn,wn ∈ C[x]. (2.1)

A particular family of immanants are defined for the Temperley–Lieb algebra, defined next.
Fix ξ ∈ C; a Temperley–Lieb algebra Tn(ξ) is generated by t1, . . . , tn−1 over C subject to:

t2
i = ξti for i ∈ [n − 1]; titjti = ti if |i − j| = 1; and titj = tjti if |i − j| ≥ 2. (2.2)

When ξ = 2 we have the isomorphism Tn(2) ∼= C[Sn]/(1 + s1 + s2 + s1s2 + s2s1 + s1s2s1)
[6], [13, Sections 2.1 and 2.11], and [25, Section 7]. Specifically, the isomorphism is via

σ : C[Sn] → Tn(ξ) with si 7→ ti − 1. (2.3)

Let Bn be the multiplicative monoid generated by t1, . . . , tn−1 subject to (2.2), taking
ξ = 1, i.e. modulo the powers of ξ. This is also known as a standard basis of Tn(ξ). It is
known that |Bn| is the nth Catalan number Cn = 1

n+1(
2n
n ). Diagrams of the basis elements

of Tn(ξ), made popular by Kauffman [15, Section 4] are (undirected) graphs with 2n
vertices and n noncrossing edges, such that each edge lies in the convex hull of these 2n
vertices (similar to one of the definitions of Catalan numbers involving n noncrossing
chords on a circle with 2n vertices). Now define the Temperley–Lieb immanant Immτ(x)
for each τ ∈ Bn in terms of the function

fτ : Sn → C with w 7→ coefficient of τ in σ(w), (2.4)

and extend it linearly over C[Sn]. Finally, define the Temperley–Lieb immanants as

Immτ(x) := Imm fτ
(x) = ∑

w∈Sn

fτ(w)x1,w1 · · · xn,wn .

Rhoades–Skandera [21] showed that Temperley–Lieb immanants are a basis of the space

spanR{det xP,Q det xPc,Qc | P, Q ⊆ [n] with |P| = |Q|}, (2.5)

and that they are TNN. Infact, these are the extreme rays of the cone of TNN immanants:
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Theorem 2.1 ([21]). Given a function f : Sn → R, the immanant

Imm f (x) = ∑
P,Q⊆[n]
|P|=|Q|

cP,Q det xP,Q det xPc,Qc (2.6)

is TNN if and only if it is a nonnegative linear combination of Temperley–Lieb immanants.

In fact, each complementary product of minors is a 0-1 linear combination of
Temperley–Lieb immanants [21, Proposition 4.4]. Next we briefly demonstrate how The-
orem 2.1 is used in identifying inequalities that involve products of pairs of Plücker
coordinates. For this, recall that the n × n TNN matrices embed inside Gr≥0(n, 2n):

{n × n TNN matrices} ↪→ Gr≥0(n, 2n) via x 7→ x :=
(

x
W0

)
, (2.7)

where W0 :=
(
(−1)i+1 · δj,n−i+1

)n
i,j=1. This yields a one-to-one correspondence between

the minors of x and the maximal minors of x via det xP,Q = det xI,[m] = ∆I(x), for all
P ⊆ [n], Q ⊆ [n] with |P| = |Q|, where I := P∪{2n+ 1− j | j ∈ [n] \ Q}. This, along with
the density of Gr>(n, 2n) in Gr≥0(n, 2n), and the projective geometry of Gr(n, 2n), yield a
correspondence between inequalities in products of pairs of minors of TNN matrices and
inequalities in products of pairs of Plücker coordinates over the TNN Grassmannian,
which is in fact compatible with the Temperley–Lieb immanant idea:

Theorem 2.2 ([21, 23]). Suppose I runs over n-element subsets of [2n], and cI ∈ R. Then

∑
I

cI∆I∆Ic ≥ 0 over Gr≥0(n, 2n), (2.8)

if and only if ∑I cI∆I(x)∆Ic(x) is a nonnegative linear combination of Temperley–Lieb im-
manants. Moreover, we have for each I that

∆I(x)∆Ic(x) = ∑
τ∈Bn

bτImmτ(x), (2.9)

where bτ = 1 if each edge in the Kauffman diagram of τ connects elements from I and Ic, and 0
otherwise.

In light of Theorem 2.2, it is necessary and sufficient for the validity of (2.8) that

the replacements ∆I∆Ic ↔ ∑
τ∈Bn

bτImmτ(x) in (2.8)

yield a nonnegative linear combination of immanants Immτ(x), where bτ = 1 if each
edge in the Kauffman diagram of τ connects elements from I and Ic, and 0 other-
wise. Now, one of the possible methods to keep track of these immanants is to count
2-colorings of the Kauffman diagrams, where each edge connects vertices of opposite
colors. We show this via the following example (see [23] for more details).
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Figure 1: Kauffman diagrams τ1; τ1 and τ2, respectively, as refered to in Example 2.3.

Example 2.3. Suppose we aim to verify if

∆(1,2,4)∆(3,5,6) − ∆(1,2,3)∆(4,5,6) ≥ 0 over Gr≥0(3, 6). (2.10)

For this, we make the following replacement/identification in (2.10):

∆(1,2,3)∆(4,5,6) ↔ Immτ1(x), and ∆(1,2,4)∆(3,5,6) ↔ Immτ1(x) + Immτ2(x),

where the diagrams τ1 and τ2 are shown in Figure 1, and the vertices corresponding to
the sets I and Ic are colored in black and white, respectively. The first coloring admits
only one bi-colored matching τ1, while the second coloring admits exactly two bi-colored
matchings τ1 and τ2. We substitute these replacements in (2.10) to get,

∆(1,2,4)∆(3,5,6) − ∆(1,2,3)∆(4,5,6) ↔
(
Immτ1(x) + Immτ2(x)

)
− Immτ1(x) = Immτ2(x) ≥ 0.

3 Weak separability and Plücker inequalities

In the theory of cluster algebras, one of the central examples is the cluster algebra of the
Grassmannian Gr(m, m + n) [22]. Clusters of minors are in correspondence with subsets
of Plücker coordinates which can be described by set-theoretic properties. To recall, two
m-element sets I, J ⊂ [m + n] are weakly separated if I \ J and J \ I can be separated
by a chord on the circle labeled with 1, 2, . . . , m + n enumerated clockwise. A family of
Plücker coordinates is said to be weakly separated if all pairs of Plücker coordinates in it
are weakly separated [26]. It is known that maximal (by inclusion) weakly separated sets
of Plücker coordinates are in bijection with the clusters consisting of Plücker coordinates
in the cluster algebra of Gr(m, m + n) [7]. This makes weak separability important in the
theory of cluster algebras (for instance also see [19]). Now recall our main result: weak
separability provides the exact classification of indices I, J for which the Plücker-type
inequalities hold. We demonstrate one part of this via the next proof idea.

Proof idea for Theorem 1.3: weak separability =⇒ the system of inequalities (1.5). First we
consider the case when m = n = η = 4, the weakly separated (ordered) sets are I =
(1, 2, 3, 4) and J = (5, 6, 7, 8), and r = 4, i.e. ir = i4 = 4. Thus we have:

I1,r = (1, 2, 3, 5), J1,r = (4, 6, 7, 8); I2,r = (1, 2, 3, 6), J2,r = (5, 4, 7, 8);
I3,r = (1, 2, 3, 7), J3,r = (5, 6, 4, 8); I4,r = (1, 2, 3, 8), J4,r = (5, 6, 7, 4).
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Figure 2: For (3.2): ∆I↑∆J↑ ↔ Immτ0(x), ∆I↑1,r
∆J↑1,r

↔ Immτ0(x) + Immτ1(x), ∆I↑2,r
∆J↑2,r

↔
Immτ1(x) + Immτ2(x), and ∆I↑3,r

∆J↑3,r
↔ Immτ2(x) + Immτ3(x), respectively.

The set of inequalities that we need to verify over Gr≥0(4, 8) are

∆I↑1,r
∆J↑1,r

− ∆I↑∆J↑ ≥ 0,

−
(
∆I↑1,r

∆J↑1,r
− ∆I↑∆J↑

)
+ ∆I↑2,r

∆J↑2,r
≥ 0,(

∆I↑1,r
∆J↑1,r

− ∆I↑∆J↑
)
− ∆I↑2,r

∆J↑2,r
+ ∆I↑3,r

∆J↑3,r
≥ 0,

(3.1)

and the last inequality is the Plücker relation itself. For this verification, we identify

∆I↑∆J↑ ↔ Immτ0(x), ∆I↑1,r
∆J↑1,r

↔ Immτ0(x) + Immτ1(x),

∆I↑2,r
∆J↑2,r

↔ Immτ1(x) + Immτ2(x), ∆I↑3,r
∆J↑3,r

↔ Immτ2(x) + Immτ3(x),
(3.2)

where the corresponding Kauffman diagrams are shown in Figure 2. Indeed these in-
equalities are true since upon making immanant replacements in (3.1) we get nonnega-
tive linear combinations of Temperley–Lieb immanants.

To show another possibility in the combinatorics of the general proof, we discuss
another (slightly more complicated) example. Suppose m = n = η = 5, the weakly
separated sets are K = (1, 2, 3, 4, 10) and L = (5, 6, 7, 8, 9). Therefore (k1, k2, k3, k4, k5) =
(10, 1, 2, 3, 4) and (ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) = (5, 6, 7, 8, 9). Fix s := r = 3, i.e. ks = 2. We have:

K1,s = (1, 5, 3, 4, 10), L1,s = (2, 6, 7, 8, 9); K2,s = (1, 6, 3, 4, 10), L2,s = (5, 2, 7, 8, 9);
K3,s = (1, 7, 3, 4, 10), L3,s = (5, 6, 2, 8, 9); K4,s = (1, 8, 3, 4, 10), L4,s = (5, 6, 7, 2, 9);
K5,s = (1, 9, 3, 4, 10), L5,s = (5, 6, 7, 8, 2).

The set of inequalities that we need to verify over Gr≥0(5, 10) are:

∆K↑
1,s

∆L↑
1,s

≥ 0,

−∆K↑
1,s

∆L↑
1,s
+ ∆K↑

2,s
∆L↑

2,s
≥ 0,

∆K↑
1,s

∆L↑
1,s
− ∆K↑

2,s
∆L↑

2,s
+

(
∆K↑

3,s
∆L↑

3,s
− ∆K↑∆L↑

)
≥ 0,

−∆K↑
1,s

∆L↑
1,s
+ ∆K↑

2,s
∆L↑

2,s
−

(
∆K↑

3,s
∆L↑

3,s
− ∆K↑∆L↑

)
+ ∆K↑

4,s
∆L↑

4,s
≥ 0,

(3.3)
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Figure 3: For (3.4): ∆K↑∆L↑ ↔ Immτ′
0
(x), and ∆K↑

1,s
∆L↑
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Figure 4: For (3.4): ∆K↑
2,s
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2,s
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and the last inequality is the Plücker relation itself. We perform the replacements:

∆K↑∆L↑ ↔ Immτ′
0
(x),

∆K↑
1,s

∆L↑
1,s

↔ Immτ′
1
(x) + Immτ′

2
(x),

∆K↑
2,s

∆L↑
2,s

↔ Immτ′
1
(x) + Immτ′

2
(x) + Immτ′

3
(x) + Immτ′

4
(x),

∆K↑
3,s

∆L↑
3,s

↔ Immτ′
3
(x) + Immτ′

4
(x) + Immτ′

5
(x) + Immτ′

6
(x) + Immτ′

0
(x),

∆K↑
4,s

∆L↑
4,s

↔ Immτ′
5
(x) + Immτ′

6
(x) + Immτ′

7
(x) + Immτ′

8
(x),

∆K↑
5,s

∆L↑
5,s

↔ Immτ′
7
(x) + Immτ′

8
(x),

(3.4)

where the corresponding Kauffman diagrams are shown in Figures 3 to 6. (We skipped
the Kauffman diagrams for ∆K↑

5,s
∆L↑

5,s
as the last inequality is the Plücker relation.) One

can see that these replacements yield nonnegative linear combinations of Temperley–
Lieb immanants for each inequality in (3.3), as desired.

Towards the general proof. Suppose we call ir = i4 = 4 and ks = k3 = 2 as the moving
indices in the two examples in the proof idea above. Note that ir is an end-point of
(i1, . . . , i4), while ks is not so in (k1, . . . , k5). There are a few things that one can observe:

1. The moving indices ir, ks provide the “mid-points” (1 for ir and 3 for ks) at which
the term ∆I↑∆J↑ and ∆K↑∆L↑ appear in the systems of inequalities. In particular, the
moving index is an end-point if and only if the mid-point is so. And in general it
is given by η − r + 1 for the moving index given by ir (see the main Theorem 1.3).

2. Suppose we disregard Immτ0(x) (↔ ∆I↑∆J↑) and Immτ′
0
(x) (↔ ∆K↑∆L↑) that refer

to “no switch” by the moving indices, in this and (3) below. Then ir being the end-
point and ks being not so – along with weak separability – causes each ∆I↑−,r

∆J↑−,r
to

identify with the sum of either 1 or 2 immanants, and each ∆K↑
−,s

∆L↑
−,s

with that of

2 or 4. In general, it is 1, 2 if the moving index is an end-point, and 2, 4 otherwise.

3. Moreover, one can observe the telescoping phenomena as we successively verified
the inequalities in (3.1) and (3.3), respectively via (3.2) and (3.4): the immanant(s)
for ∆∗↑1,−

∆∗↑1,−
constitute a half of ∆∗↑2,−

∆∗↑2,−
; the other half of ∆∗↑2,−

∆∗↑2,−
match half of

those in ∆∗↑3,−
∆∗↑3,−

; the other half of ∆∗↑3,−
∆∗↑3,−

match half of those in ∆∗↑4,−
∆∗↑4,−

; . . .

The proof in the general case demands a bit more work. However, because of the
weak separability, the story about the mid-point, the number of immanants (1, 2 or 2, 4),
and the telescoping phenomenon – all remain the same. In fact, if one goes back to
Gantmacher–Krein [10] and its various refinements in [5], it is this telescoping which is
at the center of the theory of oscillating inequalities, and which we completely capture
in the main Theorem 1.3 as Plücker inequalities.
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To conclude here, we refer the reader to [23] for the detailed general proof, and the
proof of the converse, i.e., the system of inequalities (1.5) =⇒ weak separability of I, J.
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