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Abstract. We develop a quasisymmetric analogue of the combinatorial theory of Schu-
bert polynomials. Indexed binary forests play the role of permutations, and the associ-
ated divided difference operators compose according to the “Thompson monoid” gov-
erning the Thompson group. Our main application of our theory is to study the ring
of quasisymmetric coinvariants and the associated quasisymmetric harmonics spaces.
In followup work we describe an algebraic-geometric framework which matches the
combinatorial theory.

Résumé. Nous développons un analogue quasisymétrique de la théorie combinatoire
des polynômes de Schubert. Les forêts binaires indexés jouent le rôle des permu-
tations, et les opérateurs de différences divisées associés se composent comme le
« monoïde de Thompson » correspondant au groupe de Thompson. La principale
application de notre théorie est l’étude de l’anneau de covariants quasi-symétriques et
des espaces harmoniques quasi-symétriques associés. Dans un travail ultérieur, nous
décrirons le pendant en géométrie algébrique de cette théorie combinatoire.
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1 Introduction

The ring of quasisymmetric functions QSym, first introduced in Stanley’s thesis [23] and
further developed by Gessel [11], is ubiquitous throughout combinatorics; see [1] for
a high-level explanation and [12] for thorough exposition. Truncating to finitely many
variables {x1, . . . , xn} gives the ring of quasisymmetric polynomials QSymn ⊂ Z[x1, . . . , xn]:
these are the polynomials such that for any sequence a1, . . . , ak ≥ 1, the coefficients of
xa1

i1
· · · xak

ik
and xa1

j1
· · · xak

jk
are equal whenever 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · <

jk ≤ n.
We let Poln := Z[x1, . . . , xn]. Letting Sym+

n denote the ideal in Poln generated by
positive degree homogenous symmetric polynomials, the coinvariant algebra Coinvn :=
Poln / Sym+

n has been a central object of study for the past several decades. An important
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reason for this is its distinguished basis of Schubert polynomials [15] and the divided
difference operators [6] that interact nicely with this family– see [4, 7, 8, 9, 10, 13, 14, 17]
for a sampling of the combinatorics underlying this story. In fact Schubert polynomials
lift to a basis of Pol := Z[x1, x2, . . . ]. The close relationship between the combinatorics
of symmetric and quasisymmetric polynomials leads to the natural question, first posed
in [2], of what can be said about the analogous quotient QSCoinvn := Poln /QSym+

n ,
where QSym+

n is the ideal generated by positive degree homogenous quasisymmetric
polynomials?

In this paper we develop a quasisymmetric analogue of the combinatorial theory
of Schubert polynomials Sw and the divided differences ∂i =

f−si· f
xi−xi+1

which recursively
generate them. The reader well-versed with the classical story should refer to Table 2 for
a comparison. The role of Schubert polynomials Sw is played by the forest polynomials
PF of [21], and the role of the ∂i operators are played by certain new trimming operators
Ti. Just as Schubert polynomials generalize Schur polynomials, the forest polynomials
generalize fundamental quasisymmetric polynomials, a distinguished basis of QSymn.
The duality between compositions of trimming operators and forest polynomials allows
us to expand any polynomial in the basis of forest polynomials. In fact, a special case
of our framework gives a remarkably simple method for directly extracting the coef-
ficients of the expansion of a quasisymmetric polynomial in the basis of fundamental
quasisymmetric polynomials.

The interaction between forest polynomials and trimming operators descends nicely
to quotients by QSym+

n , and we thus obtain a basis comprising certain forest polynomi-
als for QSCoinvn as well. Our techniques are robust enough to gain a complete under-
standing even in the case one quotients by homogenous quasisymmetric polynomials of
degree at least k for any k ≥ 1. In the longer form version of this paper [18], we use
this theory to construct QSym+

n -harmonics, which turn out to have a basis given by the
volume polynomials of certain polytopes, answering a question of Aval–Bergeron–Li [3].
Therein we also generalize the theory to m-ary forests.

Remark 1.1. In Section 8, see Table 1 for a list of small forest polynomials by forest code
c(F) and Table 2 for a side by side comparison of our theory to the symmetric story.

In [20] we investigate the underlying geometric theory, drawing upon the geometric
significance of the ordinary divided difference operator.

2 Quasisymmetric polynomials via Ri and Ti

The following result is at the heart of our understanding of quasisymmetric polynomials.
This characterization does not seem to be widely known, although it was implicitly used
in the study of the connection between quasisymmetric functions and James spaces by
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Pechenik–Satriano [22]. We call this the Bergeron–Sottile map as they were the first to
introduce this [4] in the context of Schubert calculus (see also [5, 16]).

Definition 2.1. For f ∈ Poln and i ∈ {1, . . . , n} we define the i’th Bergeron–Sottile map

Ri f = f (x1, . . . , xi−1, 0, xi, . . . , xn−1). (2.1)

In other words, Ri sets xi = 0 and shifts xj 7→ xj−1 for all j ≥ i+ 1. Note that Ri is well-
defined on Pol. The following is then an elementary reformulation of quasisymmetry
that allows us to work with the condition algebraically.

Theorem 2.2. Let f ∈ Poln. Then f ∈ QSymn if and only if R1 f = · · · = Rn f .

The typical proof that QSymn is closed under multiplication involves identifying an
explicit basis whose multiplication can be explicitly computed. With Ri this is immediate
as the equalizer of the algebra maps Ri,Ri+1 is a subring of Poln, and the intersection of
subrings is a subring.

Corollary 2.3. QSymn is a subring of Poln.

Using these operators we can define our quasisymmetric divided difference operator,
which we also dub trimming operator for reasons that will become clear shortly.

Definition 2.4. We define the operator Ti : Pol → Pol by any of the equivalent expres-
sions

Ti f := Ri∂i f = Ri+1∂i f =
Ri+1 f − Ri f

xi
. (2.2)

This is the quasisymmetric divided difference at the core of this work. Because
Ti( f ) = 0 if and only if Ri+1( f ) = Ri( f ), we deduce the following.

Theorem 2.5. f ∈ Poln is quasisymmetric if and only if T1 f = · · · = Tn−1 f = 0.

3 Forests and the Thompson monoid

A binary tree T has internal nodes v ∈ IN(T) that have two children vL and vR, and leaf
nodes that have no children. We define |T| = | IN(T)|, and let ∗ be the unique tree with
| ∗ | = 0. An indexed forest F is an infinite sequence T1, T2, . . . of binary trees where all but
finitely many of the trees are ∗. We write For for the set of all indexed forests.

There is a monoid structure on For where we define F · G ∈ For by identifying the ith
leaf of F with the ith root node of G. The empty forest ∅ ∈ For is the identity element.

Definition 3.1. The Thompson monoid is the monoid

ThMon := ⟨1, 2, . . . | i · j = j · (i + 1) for all i > j⟩.
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Figure 1: The products F ·G and G · F for F, G ∈ For, with both roots and leaves labeled

This monoid is both left and right cancellative, and its fraction group is naturally
identified with Thompson’s group F which has the standard presentation

⟨x1, x2, . . . | x−1
j xixj = xi+1 for i > j⟩

via the map i 7→ x−1
i . It is a folklore fact in the theory of Thompson groups that ThMon ∼=

For under the map sending

i 7→ i := ∗ · · · ∗︸ ︷︷ ︸
i−1

· ∧ · ∗ · ∗ · · ·

where ∧ is the unique binary tree with | ∧ | = 1.

Theorem 3.2. The map i 7→ Ti is a representation of the Thompson monoid on Pol.
Equivalently,

TiTj = TjTi+1 for all i > j.

Because of this, it makes sense to define TF for F ∈ For by declaring

TF := Ti1 · · ·Tik for any factorization F = i1 · · · ik.

For a permutation w the descent set is the set of all i such that w(i) > w(i + 1). The
analogue for forests is the left terminal set LTer(F). We call an internal node v ∈ IN(F)
terminal if both of v’s children are leaves, and we say that i ∈ LTer(F) if there is a
terminal node with left child i. This happens if and only if we can write F = (F/i) · i for
a (necessarily unique) forest F/i, and so

LTer(F) = {i | F/i exists}.

A reduced word for w is a sequence (i1, . . . , iℓ(w)) such that w = si1 · · · siℓ(w)
. Analogously,

the set of trimming sequences for F is defined as

Trim(F) := {(i1, . . . , i|F|) | F = i1 · · · i|F|}.
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Finally, we note that there is a code map c(F) = (a1, a2, . . .) where ai is the number
of internal nodes whose leftmost leaf descendent is the i’th leaf. Then i ∈ LTer(F) is
equivalent to ai > 0 and ai+1 = 0, and F 7→ F/i is given by (a1, . . . , ai−1ai, 0, ai+1, . . .) 7→
(a1, . . . , ai−1, ai − 1, ai+1, . . .).

We will list small forest polynomials by code in Section 8.

4 Forest polynomials and Trimming operations

Let S∞ =
⋃

Sn, the set of permutations of N with all but finitely many points fixed.
We recall that Schubert polynomials are the unique family of homogenous polynomials
indexed by S∞ such that Sid = 1 and ∂iSw = δi∈Des(w)Swsi . They form a basis of Pol,
those with Des(w) ⊂ {1, . . . , n} are a Z-basis for Poln; those with Des(w) ⊂ {1, . . . , n}
and w ̸∈ Sn are a Z-basis for Sym+

n ; and the Schubert polynomials with w ∈ Sn are a Z-
basis for Coinvn := Poln / Sym+

n . Using our theory we arrive at analogous conclusions.

Theorem 4.1. There is a unique family of homogenous polynomials
(
PF

)
F indexed by

F ∈ For such that P∅ = 1 and

TiPF = δi∈LTer(F)PF/i.

These are the forest polynomials of the first and third authors [21]. Furthermore,

• The forest polynomials are a Z-basis for Pol.

• The forest polynomials with LTer(F) ⊂ {1, . . . , n} are a Z-basis for Poln.

• The forest polynomials with LTer(F) ⊂ {1, . . . , n} and supp F ̸⊂ {1, . . . , n} are a
Z-basis for QSym+

n .

• The forest polynomials with supp F ⊂ {1, . . . , n} are a Z-basis for QSCoinvn =
Poln /QSym+

n .

Corollary 4.2. Every f ∈ Pol can be uniquely written as

f = ∑
F∈For

aFPF where aF = (TF f )(0, 0, . . .).

Remark 4.3. The monomial expansion of forest polynomials doesn’t play any role in
our theory, and no simple seed generates all forest polynomials unlike with Schubert
polynomials. For an explicit definition see [21], and [19] for further discussion, and see
Section 8 for a list of forest polynomials.
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5 Algebraically decomposing QSymn into fundamentals

Forests F with LTer(F) ⊂ {n} play an analogous role to the n-Grassmannian permuta-
tions (those permutations with Des(w) ⊂ {n}) which index the Schur polynomials sλ.
We call these forests Zigzag forests, and denote the set of them ZigZagn. For an integer
sequence a = (a1, . . . , ak) with ai ≥ 1 we define the set of compatible sequences

C(a) := {(i1, . . . , ik) : aj ≥ ij ≥ ij+1, and if aj > aj+1 then ij > ij+1}.

Given a sequence i = (i1, . . . , ik) we denote xi := xi1 · · · xik . Let QSeqn be the set of
sequences (a1, . . . , ak) satisfying n = a1 ≥ · · · ≥ ak ≥ 1 and ai − ai+1 ≤ 1 for 1 ≤ i ≤
k − 1. If (a1, . . . , ak) ∈ QSeqn then

Fa = ∑
i∈Cm(a)

xi.

is called a fundamental quasisymmetric polynomial.

Theorem 5.1. The forest polynomials with F ∈ ZigZagn are a Z-basis for QSymn, and
coincide with the fundamental quasisymmetric polynomials: the mapping (a1, . . . , ak) 7→
F = ak · · · a1 is a bijection QSeqn → ZigZagn under which we have Fa = PF.

Example 5.2. Suppose we want to decompose the quasisymmetric polynomial
f (x1, x2, x3) = 2x2

1x2 + 2x2
1x3 + 2x2

2x3 + x1x2
2 + x1x2

3 + x2x2
3 ∈ QSym3 into fundamental

quasisymmetrics. Using Corollary 4.2, we track in Figure 2 the nonzero applications
Ti3Ti2Ti1 f where (i1, i2, i3) ∈ QSeq3, and read off f = F332 + 2F322 − 3F321.

f 2x2
1 + 2x2

2 + x1x3 + x2x3

x1 + x2

−x1 + 2x2

1

2

−3

T3

T3

T2

T2

T2

T1

Figure 2: Trimming f ∈ QSym3

6 Diagrammatics

We define the quasisymmetric nil-Hecke algebra to be the subalgebra of End(Poln) gener-
ated by multiplication by Pol, Ti, and Ri. Many of the relations between these operations
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are formal commutation relations. Write Poln = V⊗n where V = Pol1. Then we can write

multiplication by xi = id⊗i−1 ⊗x ⊗ id⊗n−i,

Ri = id⊗i−1 ⊗R ⊗ id⊗n−i, and

Ti = id⊗i−1 ⊗T ⊗ id⊗n−i−1,

where x : Pol1 → Pol1 is multiplication by x, R : Pol1 → Pol0 = Z is the map f 7→ f (0),
and T : Pol2 → Pol1 is the map f (x, y) 7→ f (z,0)− f (0,z)

z .
We can represent these via diagrams which we should think of taking inputs on the

bottom to outputs on the top, and compose two operations F ◦G by stacking the diagram
for F on top of the diagram for G. Representing Ri and Ti as in Figure 3, and putting
a dot on a strand to represent multiplication by x, isotopy classes of diagrams give the
same operations and encode all formal commutation relations. These are the Thompson
monoid relations TiTj = TjTi+1 for i > j as well as the relations RiRj = RjRi+1 for i ≥ j,
TiRj = RjTi+1 for i ≥ j + 2, TiRj = Rj−1Ti for i ≤ j, xixj = xjxi, Tixj = xjTi for i ≥ j + 1,
Tixj = xj−1Ti for i ≤ j − 2, Rixj = xjRi for i ≥ j + 1, and Rixj = xj−1Ri for i ≤ j − 1.

i

i i+ 1

1 2

1 2

i

i i+ 1

1 2

1 2

· · · · · ·Ti = Ri =

Figure 3: Diagram generators for the quasisymmetric nil-Hecke algebra

Theorem 6.1. The nontrivial relations in the quasisymmetric nil-Hecke algebra are Rx =
0, T(x ⊗ id) = id⊗R and T(id⊗x) = −R ⊗ id, and xT = id⊗R − R ⊗ id, which have
the diagrammatics of Figure 4.

= 0 = = − =

Rx = 0 T(x⊗ id) = id⊗R T(id⊗x) = −R⊗ id xT = id⊗R− R⊗ id

−−

Figure 4: Diagram relations for the quasisymmetric nil-Hecke algebra

7 Positive multiplication and Schubert decompositions

Recall that for Schubert polynomials, it is wide open to establish the nonnegativity of
the generalized Littlewood–Richardson coefficients arising in the expansion

SuSw = ∑
v∈Sn

cv
u,wSv
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in a combinatorial manner. The primary difficulty is that the Leibniz rule

∂i( f g) = ∂i( f )g + (si · f )∂i(g)

involves the non-Schubert positive operation f 7→ si · f . However, for forest polynomials
certain straightening rules for these operations allow us to bypass these problems.

Lemma 7.1 (Twisted Leibniz rule). For f , g ∈ Pol we have

Ti( f g) = Ti( f )Ri+1(g) + Ri( f )Ti(g).

Theorem 7.2. We have

RiPF = ∑ bG
i,FPG with bG

i,F ≥ 0;

PFPG = ∑ cH
F,GPH with cH

F,G ≥ 0;

Sw = ∑
F∈For

aF
wPF with aF

w ≥ 0.

Proof sketch. Denote by ev0 f = f (0, 0, . . .), the constant term map. Suppose Φ is a com-
posite of Ri and Tj operations in some order. The relations

TiRj =


RjTi+1 if i ≥ j + 2
Ri+1Ti + RiTi+1 if i = j + 1
Rj−1Ti if i ≤ j

allow us to iteratively “move Rj to the left” in any composite it appears in, and then
together with the relation ev0 Rj = ev0 we conclude

ev0 Φ = ∑ dΦ
K ev0 TK with dΦ

K ≥ 0. (7.1)

We see that bG
i,F = ev0 TGRiPF ≥ 0 by applying (7.1) ev0 TKPG = δK,G. To see

cH
F,G = ev0 TH(PFPG) ≥ 0, we apply induction on |F|+ |G| together with the twisted

Leibniz rule and (7.1) on each of the resulting terms. Finally, by induction on ℓ(w)
we have for any i ∈ LTer(F) that aF

w = ev0 TFSw = ev0 TF/iTiSw = ev0 TF/iRi∂iSw =
δi∈Des(w) ev0 TF/iRiSwsi , and we conclude by induction and (7.1).
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8 Tables

c(F) PF
(0, 0, 0, 0, 0) 1
(1, 0, 0, 0, 0) x1
(0, 1, 0, 0, 0) x1 + x2
(0, 0, 1, 0, 0) x1 + x2 + x3
(0, 0, 0, 1, 0) x1 + x2 + x3 + x4
(2, 0, 0, 0, 0) x2

1
(1, 1, 0, 0, 0) x1x2
(1, 0, 1, 0, 0) x2

1 + x1x2 + x1x3
(1, 0, 0, 1, 0) x2

1 + x1x2 + x1x3 + x1x4
(0, 2, 0, 0, 0) x2

1 + x1x2 + x2
2

(0, 1, 1, 0, 0) x1x2 + x1x3 + x2x3
(0, 1, 0, 1, 0) x2

1 + 2x1x2 + x2
2 + x1x3 + x2x3 + x1x4 + x2x4

(0, 0, 2, 0, 0) x2
1 + x1x2 + x2

2 + x1x3 + x2x3 + x2
3

(0, 0, 1, 1, 0) x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + x3x4
(3, 0, 0, 0, 0) x3

1
(2, 1, 0, 0, 0) x2

1x2
(2, 0, 1, 0, 0) x2

1x2 + x2
1x3

(2, 0, 0, 1, 0) x3
1 + x2

1x2 + x2
1x3 + x2

1x4
(1, 2, 0, 0, 0) x1x2

2
(1, 1, 1, 0, 0) x1x2x3
(1, 1, 0, 1, 0) x2

1x2 + x1x2
2 + x1x2x3 + x1x2x4

(1, 0, 2, 0, 0) x3
1 + x2

1x2 + x1x2
2 + x2

1x3 + x1x2x3 + x1x2
3

(1, 0, 1, 1, 0) x2
1x2 + x2

1x3 + x1x2x3 + x2
1x4 + x1x2x4 + x1x3x4

(0, 3, 0, 0, 0) x3
1 + x2

1x2 + x1x2
2 + x3

2
(0, 2, 1, 0, 0) x2

1x2 + x2
1x3 + x1x2x3 + x2

2x3
(0, 2, 0, 1, 0) x2

1x2 + x1x2
2 + x2

1x3 + x1x2x3 + x2
2x3 + x2

1x4 + x1x2x4 + x2
2x4

(0, 1, 2, 0, 0) x1x2
2 + x1x2x3 + x1x2

3 + x2x2
3

(0, 1, 1, 1, 0) x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4
(4, 0, 0, 0, 0) x4

1
(3, 1, 0, 0, 0) x3

1x2
(3, 0, 1, 0, 0) x3

1x2 + x3
1x3

(3, 0, 0, 1, 0) x3
1x2 + x3

1x3 + x3
1x4

(2, 2, 0, 0, 0) x2
1x2

2
(2, 1, 1, 0, 0) x2

1x2x3
(2, 1, 0, 1, 0) x2

1x2
2 + x2

1x2x3 + x2
1x2x4

(2, 0, 2, 0, 0) x2
1x2

2 + x2
1x2x3 + x2

1x2
3

(2, 0, 1, 1, 0) x2
1x2x3 + x2

1x2x4 + x2
1x3x4

(1, 3, 0, 0, 0) x1x3
2

(1, 2, 1, 0, 0) x1x2
2x3

(1, 2, 0, 1, 0) x1x2
2x3 + x1x2

2x4
(1, 1, 2, 0, 0) x1x2x2

3
(1, 1, 1, 1, 0) x1x2x3x4

Table 1: Table of forest polynomials PF.
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QSymn Symn

Divided differences Ti ∂i

Indexing combinatorics F ∈ For w ∈ S∞

Fully supported forests Forn Sn

Forest code c(F) Lehmer code lcode(w)

Left terminal set LTer(F) Descent set Des(w)

F/i for i ∈ LTer(F) wsi for i ∈ Des(w)

Trimming sequences Trim(F) Reduced words Red(w)

Zigzag forests Z ∈ ZigZagn Grassmannian permutations λ

Monoid Thompson monoid nilCoxeter monoid

Pol-basis Forest polynomials PF Schuberts Sw

Composites TF = Ti1 · · ·Tik for i ∈ Trim(F) ∂w = ∂i1 · · · ∂ik for i ∈ Red(w)

Poln-basis {PF | LTer(F) ⊂ [n]} {Sw | Des(w) ⊂ [n]}
Duality ev0 TFPG = δF,G ev0 ∂wSw′ = δw,w′

Positive expansions PFPH = ∑ cG
F,HPG, cG

F,H ≥ 0 SuSw = ∑ cv
u,wSv, cv

u,w ≥ 0

Invariant basis Fundamental qsyms PZ Schur polynomials sλ

Coinvariant basis {PF | F ∈ Forn} {Sw | w ∈ Sn}
Coinvariant action Ti : QSCoinvn → QSCoinvn−1 ∂i : Coinvn → Coinvn

Harmonic basis Forest volume polynomials Degree polynomials

Table 2: Comparing the symmetric and quasisymmetric stories
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