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Abstract. We prove a result on order ideals in distributive lattices, called the Order
Ideal Lemma. We indicate how the Order Ideal Lemma implies log-concavity and
log-convexity of various sequences involving lattice paths, intervals in Young’s lattice,
order polynomials, specializations of Schur and Schur Q-functions, Lucas sequences,
descent and peak polynomials of permutations, pattern avoidance, set partitions, and
noncrossing partitions.
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1 Introduction

Let (an)n≥0 = a0, a1, a2, . . . be a sequence of real numbers. The sequence is log-concave if

a2
n ≥ an−1an+1 (1.1)

for all n ≥ 1. A log-convex sequence is one satisfying

a2
n ≤ an−1an+1 (1.2)

for all n ≥ 1. Log-concave and log-convex sequences abound in combinatorics, algebra,
and geometry. The purpose of the present work is to provide a new combinatorial tool
for proving log-concavity and log-convexity using order ideals in distributive lattices.

Let us review some basic concepts from the theory of partially ordered sets (posets).
All of our posets will be finite. A lower order ideal in a poset (P,⪯) is I ⊆ P such that if
x ∈ I and y ⪯ x then y ∈ I. Similarly, an upper order ideal is J ⊆ P satisfying x ∈ J and
y ⪰ x implies y ∈ J. We will use “order ideal” to refer to a subset which could be either.
Say that poset L is a lattice if every pair x, y ∈ L has a greatest lower bound or meet, x ∧ y,
as well as a least upper bound or join, x ∨ y. The lattice is distributive if it satisfies either
of the two equivalent distributive laws that, for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
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or
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

We can now state our fundamental result which we call the Order Ideal Lemma. It
is an easy consequence of the FKG Inequality [4]. But since its proof involves concepts
not needed in the rest of this abstract, we omit the demonstration and refer interested
readers to a forthcoming paper [5] by the present authors for detailed proofs. For a set
S we will use both |S| and #S for its cardinality.

Lemma 1.1 (The Order Ideal Lemma). Let L be a distributive lattice and suppose that I, J ⊆ L
are ideals.

(a) If I, J are both lower ideals or both upper ideals then

|I| · |J| ≤ |I ∩ J| · |L|.

(b) If one of I, J is a lower order ideal and the other is upper then

|I| · |J| ≥ |I ∩ J| · |L|.

Our general strategy for proving log-convexity of a sequence (an)n≥0 will be to con-
struct lattices Ln with |Ln| = an. If we can find inside Ln+1 two lower order ideals I, J
such that |I| = |J| = an and |I ∩ J| = an−1 then we will be done by part (a) of the Order
Ideal Lemma. Similarly, part (b) can be used to prove log-concavity.

The rest of this abstract is structured as follows. In the next section we will use lattice
paths to prove log-convexity of sequences involving the Catalan, Motzkin, and large
Schröder numbers. We begin Section 3 by showing that for any poset, the sequence
obtained by evaluating its (enriched) order polynomial at nonnegative integers is always
log-concave. As a consequence, we obtain log-concavity of sequences of specializations
of Schur and Schur Q-functions. Section 4 is dedicated to generalized Lucas sequences
i.e. those satisfying an = an−1 + an−2 for n ≥ 2. We show that any such sequence
which has positive initial conditions alternates between satisfying (1.1) and (1.2). In
Section 5 we consider sequences of descent (peak) polynomials. The focus of Section 6
is set partitions and we show log-concavity of sequences involving Stirling numbers of
the second kind and Narayana numbers. The last section contains directions for future
research.

Before continuing, we note that not all of our results are included in this extended
abstract due to the page limit. For example, we have also used various intervals in
Young’s lattice to give log-concavity and log-convexity results. Some of these specialize
to show that various sequences of binomial coefficients are log-concave. In addition, we
have investigated various sequences related to permutations. In this extended abstract,
We will usually only provide the construction of the corresponding distributive lattice
for a given sequence, while the detailed proof will be omitted. Full details are available
in [5].
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2 Lattice paths

In this section we will show how lattice paths together with the Order Ideal Lemma can
be used to give unified proofs of the log-convexity of the sequences of Catalan, Motzkin,
and large Schröder numbers. We begin with a review of some basic definitions.

A lattice path is a sequence P : p0, p1, . . . , pn of points in the integer lattice so pi ∈ Z2

for all i. A step of P is the vector [xi, yi] from pi−1 to pi. An up step is a step U = [1, 1]
and a down step is D = [1,−1]. Note that we use brackets for vectors and parentheses
for points. A Dyck path of semilength n is a lattice path P satisfying

1. P starts at p0 = (0, 0) and ends at p2n = (2n, 0),

2. P uses steps U and D, and no point on P has negative y-coordinate.

Let Dn = {P | P is a Dyck path of semilength n}. It is well known that the cardinality of
Dn is the Catalan number

Cn =
1

n + 1

(
2n
n

)
. (2.1)

We wish to turn Dn into a distributive lattice. If P ∈ Dn then we let A(P) be the
area of P which is the set of all points of R2 between P and the x-axis. We now define a
partial order on Dn by

P ⪯ Q if and only if A(P) ⊆ A(Q). (2.2)

We note that Dn is a distributive lattice. This follows from the fact that it is isomorphic
to an interval in Young’s lattice. It is also a consequence of a more general theorem of
Ferrari and Pinzani [3] giving a criterion for a family of lattice paths ordered by (2.2)
to be a distributive lattice. The next result follows from easy algebraic manipulations
of (2.1), and there are other combinatorial proofs that the Catalan sequence is log-convex
such as the one given by Sun and Wang [12]. But with the Order Ideal Lemma, the proof
is combinatorial and will generalize to other families of paths for which closed-form
formulae are not known.

Theorem 2.1. The sequence (Cn)n≥0 of Catalan numbers is log-convex.

Proof. We begin with the distributive lattice Dn+1 and note that |Dn+1| = Cn+1. Let

I = {P ∈ Dn+1 | P = UDP′ for some translated Dyck path P′ of semilength n}.

It follows that I is a lower order ideal because if P ∈ I and Q ⪯ P then (2.2) forces
Q = UDQ′ for some Q′. Furthermore, we have an isomorphism of posets I ∼= Dn given
by P = UDP′ 7→ P′. Thus |I| = Cn.
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Now consider

J = {P ∈ Dn+1 | P = P′UD for some Dyck path P′ of semilength n}.

Similar considerations to those in the previous paragraph show that |J| = Cn. Further-
more

I ∩ J = {P ∈ Dn+1 | P = UDP′UD for some Dyck path P′ of semilength n − 1}

so that |I ∩ J| = Cn−1. Now applying part (a) of the Order Ideal Lemma gives

C2
n = |I| · |J| ≤ |I ∩ J| · |L| = Cn−1Cn+1

finishing the proof.

We now consider the Motzkin numbers. A Motzkin path of length n is a lattice path P
which satisfies

1. P starts at p0 = (0, 0) and ends at pn = (n, 0),

2. P uses steps U, D, and horizontal H = [1, 0], and no point on P has negative
y-coordinate.

Let Mn = {P | P is a Motzkin path of length n} so that |Mn| = Mn is the nth Motzkin
number. The set Mn ordered by (2.2) is a distributive lattice as demonstrated in [3].
Showing that the Motzkin sequence is log-convex is much like the proof of the previous
theorem.

Theorem 2.2. The sequence (Mn)n≥0 of Motzkin numbers is log-convex.

Finally, we investigate the large Schröder numbers. A Schröder path of semilength n is
a lattice path P satisfying

1. P starts at p0 = (0, 0) and ends at pn = (n, 0),

2. P uses steps U, D, and twice horizontal T = [2, 0], and no point on P has negative
y-coordinate.

If we let Sn = {P | P is a Schröder path of semilength n} then |Sn| = Sn is the nth large
Schröder number. As usual, we order Sn using (2.2). However, this poset is not covered
by the general theorem of [3], although they remark that it can be shown that the poset
is a lattice. It is, in fact, distributive.

Lemma 2.3. The poset Sn is a distributive lattice.

The next result follows in the way to which we have become accustomed.

Theorem 2.4. The sequence (Sn)n≥0 of Schröder numbers is log-convex.
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3 Order polynomials

The order polynomial of a labeled poset was introduced by Stanley in his thesis [10]
and has since been shown to be a fundamental invariant. In this section we outline
why the sequence of values of the order polynomial of any labeled poset is log-concave.
This permits us to prove log-concavity of sequences formed by specializing the Schur
function corresponding to any partition.

Let (P,⪯) be a poset on [p]. The reader should be sure to distinguish the use of ⪯
for the partial order on P and ≤ for the total order on the integers. A P-partition with
range [n] is a map f : P → [n] such that for all x ≺ y we have

1. f (x) ≤ f (y) (that is, f is order preserving), and

2. if x > y then f (x) < f (y).

Let OP(n) denote the set of P-partitions with range n. The order polynomial of P is
ΩP(n) = #OP(n).

Theorem 3.1 ([10]). For any P on [p] we have ΩP(n) is a polynomial in n.

We now turn Op(n) into a poset by ordering P-partitions component-wise, that is,
f ≤ g if and only if f (x) ≤ g(x) for all x ∈ P. Our next result was proved in the
special case that P is naturally labeled (that is, x ≺ y implies x < y) by Chan, Pak and
Panova [2].

Theorem 3.2. For any P on [p], the sequence (ΩP(n))n≥0 is log-concave.

We now use the well-known connection between order polynomials and Schur func-
tions to derive an interesting special case of the previous theorem. If λ is an integer
partition then a semistandard Young tableau (SSYT) of shape λ is a filling of the boxes of λ

with positive integers such that rows weakly increase left-to-right and columns strictly
increase top-to-bottom. The partition λ = (5, 3, 1) and a semistandard Young tableau T
of that shape are displayed in the first row of Figure 1. We let (i, j) be the cell of λ in
row i and column j where rows and columns are indexed as in a matrix. Given an SSYT
of shape λ we denote by Ti,j the element of T in box (i, j). In the tableau of Figure 1 we
have T2,3 = 5. Let SSYTλ denote the set of SSYT of shape λ. Let x = {x1, x2, . . .} be a
set of variables indexed by the positive integers. The Schur function corresponding to λ

is the generating function
sλ(x) = ∑

T∈SSYTλ

∏
(i,j)∈λ

xTi,j .

The Schur functions are symmetric and form an important basis for the algebra of sym-
metric functions. For more information about them, see the texts of Sagan [8] or Stan-
ley [9].
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λ = T = 1 1 1 2 4

2 2 5
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45

14

Figure 1: The shape λ = (5, 3, 1), a semistandard Young tableau, T of that shape, as
well as the corresponding poset Pλ and Pλ-partition.

To make the connection with P-partitions, we first turn λ = (λ1, λ2, . . . , λk) into a
poset component-wise, that is, (i, j) ⪯ (i′, j′) if and only if i ≤ i′ and j ≤ j′. We now
make this a poset Pλ on the interval [m] where m = ∑l λl by labeling the last row of λ

with 1, 2, . . . , λk left-to-right (viewing λ as its original Young diagram). Then labeling
the penultimate row left-to-right with λk + 1, λk + 2, . . . , λk + λk−1, and so forth. This
labeling is displayed in Figure 1 at the bottom left. It is easy to see that a Pλ-partition is
the same as an SSYT of shape λ. The partition for the SSYT T in Figure 1 is displayed
directly below the tableau. It should now be clear that we have sλ(1n) = ΩPλ

(n) where
1n indicates the specialization that xi = 1 for i ≤ n and xi = 0 for i > n.

As an immediate consequence of Theorem 3.2, we have the following result.

Corollary 3.3. For any partition λ, the sequence (sλ(1n))n≥0 is log-concave.

We can also apply the Order Ideal Lemma to show that the sequences derived from
the enriched order polynomials of Stembridge [11] are log-concave, again independent
of the underlying poset. This gives rise to log-concave sequences of specializations of
Schur Q-functions.
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Figure 2: The poset L5(3, 7).

4 Generalized Lucas sequences

A sequence (ln)n≥0 of real numbers is a generalized Lucas sequence if it satisfies the recur-
sion

ln = ln−1 + ln−2 (4.1)

for n ≥ 2. These sequences were originally studied by Lucas [6]. Of course, the two
most famous examples of such sequences are the Fibonacci numbers, (Fn)n≥0, and (ordi-
nary) Lucas numbers, (Ln)n≥0, with initial conditions F0 = F1 = 1 and L0 = 2, L1 = 1,
respectively.

In this section we will study positive Lucas sequences which are generalized Lucas
sequences with l0, l1 > 0. In order to state our result precisely, call a sequence (an)n≥0
log-concave at index n if a2

n ≥ an−1an+1. Note that this definition says nothing about
indices other than n. Similarly define log-convexity at index n. We will show that any
positive Lucas sequence, suitably reindexed, alternates between being log-concave at
odd indices and log-convex at even ones. This generalizes a well-known result about
Fibonacci numbers.

It will be convenient in our approach to restrict the initial values even further. To do
this, we extend a generalized Lucas sequence to negative indices by insisting that the
recurrence relation (4.1) continue to hold for n < 0 to give an extended Lucas sequence
(ln)n∈Z. Call two extended Lucas sequences (ln)n∈Z and (l′n)n∈Z shift equivalent if there
is k ∈ Z such that ln = l′n+k for all n ∈ Z.

Proposition 4.1. Suppose that (ln)n≥0 is a positive Lucas sequence. Then its extension is shift
equivalent to an extended Lucas sequence (l′n)n∈Z such that 0 < 2l′0 ≤ l′1.

We will now introduce the posets whose lattices of order ideals will permit us to
study the behaviour of positive Lucas sequences (ln)n≥0. Say that such a sequence is
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well-indexed if 0 < 2l0 ≤ l1. Note that, by the previous proposition, every positive Lucas
sequence is shift equivalent to a well-indexed one. To simplify notation, we will relabel
r := l0 and s := l1. Define a poset Ln(r, s) to have elements x1, . . . , xs−1 and y2, . . . , yn
and order relation ⪯ subject to the covers

1. x1 ≺ x2 ≺ . . . ≺ xs−1,

2. y2 ≺ y3 ≻ y4 ≺ y5 ≻ . . ., and

3. y2 ≺ xr.

So the xi form a chain Cs−1 and the yj form what we will call an alternating poset An−1.
For example, Figure 2 shows the poset L5(3, 7).

Let J(P) denote the set of lower order ideals of a finite poset P. It is a fundamental
result that J(P) is a distributive lattice for any P. In particular, we can use the distributive
lattice J(Ln(r, s)) to prove the following theorem.

Theorem 4.2. A well-indexed Lucas sequence (ln)n≥0 is log-concave at odd indices and log-
convex at even ones.

5 Descent polynomials

We now prove that sequences of evaluations of descent polynomials are log-concave.
The descent set of π ∈ Sn is Des π = {i | πi > πi+1}. Let S be any finite set of positive
integers and consider Dn(S) = {π ∈ Sn | Des π = S} as well as dn(S) = #Dn(S), where
the latter is called the descent polynomial corresponding to S. The following is a classic
result of MacMahon [7].

Theorem 5.1 ([7]). For any set S and all n > max S we have that dn(S) is a polynomial in n.

There are two standard partial orders on Sn: the weak and strong Bruhat orders. Re-
cently, Bouvel, Ferrari and Tenner [1] defined a partial order which they call the middle
order because it refines the weak order and is refined by the strong. This order has the
advantage of being a distributive lattice and is built using inversions. In order to prove
that (dn(S))n≥0 is always log-concave we will need a variant of the middle order which
considers positions. The positional inversion table of π ∈ Sn is κ(π) = (κ1, κ2, . . . , κn)
where κi = #{j > i | πj < πi}. Clearly 0 ≤ κi ≤ n − i for all i ∈ [n]. Consider

Kn = {κ = (κ1, κ2, . . . , κn) | 0 ≤ κi ≤ n − i for all i ∈ [n]}.

The map Kn → Sn given by κ 7→ π where κ(π) = κ is a bijection.
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We now define the κ-middle order (Sn,⊴) by π ⊴ σ if and only if κ(π) ≤ κ(σ)
component-wise. In this partial order we have

Sn ∼= [0, n − 1]× [0, n − 2]× · · · × [0, 0],

where [0, i] = {0, 1, . . . , i} with the usual total order on the integers. It follows that this
order is a distributive lattice. We define a partial order (Dn(S),⊴) by restricting the
κ-middle order on Sn to Dn(S). We need to show that we still have a distributive lattice.
In fact, we can show that Dn(S) is a sublattice of Sn under ⊴.

Lemma 5.2. For any S the κ-middle order on Dn(S) forms a distributive lattice.

Theorem 5.3. For any set S, the sequence (dn(S))n≥0 is log-concave.

With a proof that closely parallels the one for the descent polynomial, one can show
that sequences of evaluations of peak polynomials are log-concave.

6 Set partitions

For our last applications of the Order Ideal Lemma, we will indicate how to use set
partitions and noncrossing set partitions to prove log-concavity results about Stirling
numbers of the second kind and Narayana numbers. In both cases, it will be convenient
to express the distributive lattices in terms of restricted growth functions.

6.1 Stirling numbers of the second kind

A set partition of [n], β = B1/B2/ . . . /Bk ⊢ [n], is a family of disjoint subsets Bi called
blocks whose disjoint union is ⊎iBi = [n]. In examples, we will eliminate the set braces
and commas from the Bi. We will also always write our partitions in standard form which
means that 1 = min B1 < min B2 < . . . < min Bk. We let S([n], k) be the set of partitions
of [n] with k blocks. The Stirling numbers of the second kind are S(n, k) = #S([n], k).

Set partitions are in bijection with certain sequences called restricted growth func-
tions. A restricted growth function (RGF) is a sequence ρ = ρ1ρ2 . . . ρn of positive integers
satisfying

1. ρ1 = 1, and

2. for i ≥ 2 we have ρi ≤ 1 + max(ρ1ρ2 . . . ρi−1).

We call n the length of ρ and write |ρ| = n. We will use the notation RGF(n, k) for the set
of RGFs ρ where |ρ| = n and max ρ = k.

There is a well-known bijection S([n], k) → RGF(n, k) defined by sending a set parti-
tion β = B1/B2/ . . . /Bk to ρ = ρ1ρ2 . . . ρn where ρi = j if and only if i ∈ Bj.
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1112

1121

1211 1122

1221 1212

1222

∼=

(14, 11)

(13, 11)

(12, 11) (13, 12)

(12, 21) (12, 12)

(12, 22)

Figure 3: The partial order on RGF(4, 2) both in terms of RGFs and (F, R) pairs.

To describe the partial order on RGF(n, k) we will need two sequences. If ρ ∈
RGF(n, k) then its sequence of first occurrences (firsts) is F(ρ) = f1 f2 . . . fk defined by fi = j
where ρj is the first i in ρ. Note that since ρ is an RGF we always have 1 = f1 < f2 < . . . <
fk. We will also use the rest of ρ, denoted by R(ρ), which is ρ with its first occurrences
removed. Note that |R(ρ)| = n − k. Finally, we define a partial order (RGF(n, k),⪯) by
ρ ⪯ τ if and only if F(ρ) ≥ F(τ) and R(ρ) ≤ R(τ), where the orders on F and R are
component-wise. Figure 3 illustrates this order both on the restricted growth functions
ρ ∈ RGF(4, 2) on the left and on the pairs (F(ρ), R(ρ)) on the right.

Lemma 6.1. The partial order (RGF(n, k),⪯) is a distributive lattice.

With this distributive lattice, we can show that a sequence of Stirling numbers of the
second kind is log-concave.

Theorem 6.2. For any k ≥ 0, the sequence (S(n, k))n≥0 is log-concave.

6.1.1 Narayana numbers

The Narayana numbers can be defined, for 1 ≤ k ≤ n, as

N(n, k) =
1
n

(
n

k − 1

)(
n
k

)
.

They refine the Catalan numbers in that Cn = ∑n
k=1 N(n, k) and count various refine-

ments of the combinatoiral objects enumerated by Cn. We will give the log-concavity
of sequences of Narayana numbers using their interpretation in terms of non-crossing
partitions.
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1112

1121

1211 1122

1221

1222

∼=

(14, {{1, 1}})

(13, {{1, 1}})

(12, {{1, 1}}) (13, {{1, 2}})

(12, {{1, 2}})

(12, {{2, 2}})

Figure 4: The partial order on NC(4, 2) both in terms of RGFs and (F, M) pairs.

Call a set partition β = B1/B2/ . . . /Bk crossing if there exist positive integers a <
b < c < d with a, c ∈ Bi and b, d ∈ Bj for some i ̸= j, and non-crossing otherwise.
Clearly a partition is non-crossing if and only if the associate restricted growth function
ρ = r1 . . . rn has no subsequence of the form ijij. We call such RGFs non-crossing as
well. For example, in Figure 3 on the left, all the partitions are non-crossing except 1212.
We let NC(n, k) be the set of non-crossing RGFs in RGF(n, k). It is well known that
N(n, k) = # NC(n, k).

Define M(ρ) to be the multiset underlying R(ρ). We now partially order NC(n, k)
by letting ρ ⊴ σ if and only if F(ρ) ≥ F(σ) and M(ρ) ≤ M(σ) where we compare two
multisets component-wise after writing them out in weakly increasing order. In Figure 4
we have written out the order on NC(4, 2) in terms of RGFs (left) and (F, M) pairs (right).

Lemma 6.3. The poset (NC(n, k),⊴) is a distributive lattice.

This leads to the main result of this subsection.

Theorem 6.4. For an k ≥ 0, the sequence of Narayana numbers (N(n, k))n≥0 is log-concave.

7 Future directions

There are various sequences to which it might be possible to apply our method but
which have so far resisted proof. For instance, given the nice behaviour of the Stirling
numbers of the second kind, one could ask what happens with those of the first. Recall
that the signless Stirling numbers of the first kind are

c(n, k) = #{π ∈ Sn | π has k cycles in its disjoint cycle decomposition}.

We have checked the following conjecture for 1 ≤ k ≤ n ≤ 100.
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Conjecture 7.1. Given k, there is an integer Nk such that (c(n, k))n≥0 is log-concave for n < Nk
and log-convex for n ≥ Nk.
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