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Abstract. We study Type C K-Stanley symmetric functions, which are K-theoretic
extensions of the Type C Stanley symmetric functions. Our main contribution is
Kraśkiewicz–Hecke insertion (KH), a K-theoretic analogue of Kraśkiewicz insertion.
Much like Kraśkiewicz insertion enumerates reduced words for signed permutations,
KH enumerates their 0-Hecke expressions. The former enumeration witnesses the
Type C Stanley expansion into Schur-Q functions. We conjecture that KH extends this
to give the Type C K-Stanley expansion into GQ functions, which are K-theory rep-
resentatives for the Lagrangian Grassmannian introduced by Ikeda and Naruse. We
also show Type C K-Stanleys of top fully commutative signed permutations are skew
GQ’s. This allows us to prove a conjecture of Lewis and Marberg and to give the first
conjectural formulas for the expansion of a skew GQ into GQ’s. The latter specializes
to a rule for multiplying two GQ functions where one has trapezoid shape. This would
extend Buch and Ravikumar’s Pieri rule, the only known product rule for GQ’s.

Keywords: Lagrangian Grassmannian, set-valued tableaux, insertion algorithms, sym-
metric functions, Schubert calculus, K-theory

1 Introduction

Although this paper is combinatorial in methods and results, our underlying objective
is to understand geometric properties of the Lagrangian Grassmannian. A major line of
active research is to understand combinatorially more exotic cohomology theories such
as K-theory, which encodes finer data about the boundaries of intersections of Schubert
varieties. In the Grassmannian, the K-theory of such intersections was first computed
combinatorially by Buch [5], later extended to the orthogonal Grassmannian [9, 7]. The
K-theory of the Lagrangian Grassmannian has proved far more difficult to understand,
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with the only progress being Buch and Ravikumar’s Pieri rule [6]. We offer a pathway
towards understanding such products based on Type C K-Stanley symmetric functions.

The Stanley symmetric functions Fw of the permutation w is a symmetric function
that enumerates reduced words for w [17] and expands into the Schur basis with non-
negative integral coefficients enumerated by Edelman–Greene insertion tableaux [10].
By choosing the permutation w appropriately, this expansion recovers the Littlewood–
Richardson rule for products of Schur functions. Our work continues this line of investi-
gation. We study the Type C K-Stanley symmetric functions GC

w, introduced in [12], which
is indexed by a signed permutation w. Our insertion, which we call Kraśkiewicz–Hecke
insertion, generalizes Kraśkiewicz insertion, the Type C analogue of Edelman–Greene
insertion [13]. Our insertion enumerates 0-Hecke words for w and gives a conjectural
description of GC

w into GQ functions, which represent the K-theory of the Lagrangian
Grassmannian [11].

Insertion algorithms map a word (a1, . . . , ap) to an insertion tableau P and a record-
ing tableau Q. The recording tableaux for Kraśkiewicz–Hecke insertion are standard
shifted set-valued tableaux from [11]. We introduce strict decomposition tableaux (see Def-
inition 4.2) to play the role of insertion tableaux. For λ = (λ1 > λ2 > · · · > λℓ) a strict
integer partition, let ShSetn(λ) be the set of standard shifted set-valued tableaux contain-
ing n values of shape λ and SDT(λ) be the set of strict decomposition tableaux of shape
λ. For P a strict decomposition tableau, ρ(P) is the usual reading word of P.

Theorem 1.1. For all n ∈N, the map Kraśkiewicz–Hecke insertion KH is a bijection:

KH : Nn ∼−→
⊔

λ⊢m≤n strict

SDT(λ)× ShSetn(λ).

Moreover, for KH(a) = (P, Q), the words a and ρ(P) are 0-Hecke expressions for the same signed
permutation.

The definition of Kraśkiewicz–Hecke insertion is given in Section 4 and is extraor-
dinarily technical. Checking the strict decomposition tableau column condition for two
entries requires examining the intermediate segment of the tableau’s reading word. As
a consequence, the insertion rules depend on entries in two rows.

For w a signed permutation, let Hn(w) be the set of 0-Hecke expressions for w of
length n. Also, let aC

w(λ) be the number of strict decomposition tableaux of shape λ

whose reading word is a 0-Hecke expression for w. By Theorem 1.1, we have:

Corollary 1.2. For w a signed permutation and n ∈N, we have

|Hn(w)| = ∑
λ⊢m≤n strict

aC
w(λ) · |ShSetn(λ)|. (1.1)

Corollary 1.2 is precisely analogous to the use of Edelman–Greene and Kraśkiewicz
insertions for reduced word enumeration and Hecke insertion for 0-Hecke expression
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enumeration in Type A. All three of these results are enumerative shadows of (K-)Stanley
symmetric function expansions. Unfortunately, as discussed in Remark 5.3 an insertion
algorithm extending Kraśkiewicz insertion cannot be used to directly compute the analo-
gous expansion for GC

w. That said, we believe KH is correctly identifying GQ-coefficients.

Conjecture 1.3. For w a signed permutation,

GC
w = ∑

λ strict
(−1)|λ|−ℓ(w)aC

w(λ) · GQλ. (1.2)

In Section 3, we show GC
w ∈ Z[GQλ : λ strict]. However, establishing the positiv-

ity implied by Conjecture 1.3 is an open problem, even using geometric methods. As
evidence, the coefficient of x1 . . . xn on both sides of (1.2) gives Corollary 1.2.

In Section 5, we present several important corollaries of Conjecture 1.3 for GQ expan-
sions. For a < b, let τ(a, b) = (b+a−1, b+a−3, . . . , b−a+1). Conjecture 1.3 specializes to
provide unknown combinatorial GQ-expansions for GQλ · GQτ(a,b). Note τ(1, b) = (b) is
a single row, so this would generalize the Buch–Ravikumar Pieri rule [6]. In forthcoming
work, the first author reproves their result using strict decomposition tableaux. To show
rules for GQλ · GQτ(a,b) and related results follow from Conjecture 1.3, we show using
Stembridge’s theory of fully commutative elements [18] that GC

w can express various
GQ-expansions (see Corollary 3.6).

Paper Structure: Section 2 introduces necessary background material on signed permu-
tations, set-valued tableaux and GQ functions. In Section 3, we give a precise definition
for Type C K-Stanley symmetric functions and identify the signed permutations whose
GC’s are used in our conjectures. We introduce strict decomposition tableaux and define
Kraśkiewicz–Hecke insertion in Section 4, giving a sketch of the proof for Theorem 1.1.
We discuss Conjecture 1.3 and its applications, most notably Conjecture 5.1, in Section 5.

2 Background

For n a positive integer, let n = −n, [n] = {1, 2, . . . , n} and [n] = {1, 2, . . . , n}. Define the
total order ≺ on Z− {0} by 1 ≺ 1 ≺ 2 ≺ 2 ≺ . . . .

A signed permutation w is a permutation of [n] ∪ [n] such that w(i) = −w(i). By
antisymmetry, w is determined by w([n]). For example v = 231 is a signed permutation.
Signed permutations with composition form Wn, the Coxeter group of Type B/C. The
generators of Wn are s0, s1, . . . sn−1 where s0 = (1, 1) = 12 . . . n and si = (i+1, i)(i, i+1) =
1 . . . i+1 i . . . n for i > 0. These generators satisfy the relations

(i) s2
i = 1, (ii) sisj = sjsi |i− j| > 1, (iii) sisi+1si = si+1sisi+1 i > 0, (iv) s0s1s0s1 = s1s0s1s0,
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which are called (i) Self-inverse, (ii) Commutation, (iii) Braid and (iv) Long Braid.
The 0-Hecke monoid (Wn, ◦) is the monoid on signed permutations obtained by re-

placing the Self-inverse relation with the Idempotent relation si ◦ si = si. A 0-Hecke
expression for w ∈Wn is an expression of the form w = sa1 ◦ sa2 ◦ . . . ◦ sap with associated
Hecke word (a1, a2, . . . , ap). Let Hp(w) be the set of Hecke words for w with p letters and
H(w) = ∪p≥0Hp(w). The length ℓ(w) of w is minimal so that Hℓ(w)(w) is non-empty, and
Hℓ(w)(w) is the set of reduced words for w.

We now introduce several important families of signed permutations. A signed per-
mutation w is Grassmannian if w(i) < w(i + 1) for all i ∈ [n − 1], that is w1, . . . , wn is
an increasing sequence. Grassmannian signed permutations are in bijection with strict
partitions: Grassmannian w maps to λ with λi = w(i) for each i such that w(i) < 0. For
example, w = 4123 is a Grassmannian signed permutation associated with λ = (4, 1).
Note the identity corresponds to the empty partition. A signed permutation w is vexil-
lary if it avoids a list of 18 patterns [3, Theorem 7]. Each vexillary permutation has an
associated shifted shape λ(w); see [3] for an algorithmic construction of λ(w).

The shifted Young Diagram of strict partition λ is Dλ = {(i, j) ∈ Z2 : 1 ≤ i ≤ j ≤ λi + i}.
A shifted tableau is a function T whose domain is Dλ. A set-valued tableau T has entries
that are finite, non-empty sets of integers. The shifted set-valued tableau T is standard if
its entries partition [n] and for each entry (assuming such cells exist):

max Tij ≤ min Ti+1 j, min Ti j+1.

Similarly, T is semistandard with entries in Z−{0} if max(Tij) ⪯ min(Ti+1 j) with equality
only for negative values and max(Tij) ⪯ min(Ti j+1) with equality only for positive values.
For T a set-valued tableau of shape λ/µ, the size of T is |T| = ∑(i,j)∈Dλ/µ

|Tij| and the
weight of T is

xT = ∏
(i,j)∈λ(T)

xTij where xS = x|s1| . . . x|sk| for S = {s1, . . . , sk} ⊆ Z.

Example 2.1. For λ = (4, 3, 1) we depict, from left to right, Dλ and shifted Young tableaux
of shape λ that are standard, set-valued standard and set-valued semistandard:

, 1 2 4 5
3 6 8

7

, 1 2,3 4,6 8
5,7 9 10

11

, 1′ 1,2 2,4’ 6′
3,4’ 6′ 7

10

.

The rightmost tableau has size 11 and weight x2
1x2

2x3x2
4x2

6x7x10.

Let ShSet∗(λ/µ) be the set of shifted set valued semistandard Young tableaux of shape
λ/µ. Then

GQλ/µ = ∑
T∈ShSet∗(λ/µ)

(−1)|T|−|λ/µ|xT. (2.1)
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We write GQλ := GQλ/∅. For µ = ∅, the GQ’s were first introduced in [11] as K-theory
representatives for Schubert classes in the Lagrangian Grassmannian. Though it is not
obvious, GQλ/µ is a symmetric in the variables x. For λ a strict partition with ℓ(λ) = k,
µ = (k− 1, . . . , 1) and ν = (λ1 − (k−1), . . . λk), define GSν = GQλ/µ. Note GS functions
are generating functions for unshifted marked set-valued tableaux.

3 Type C K-Stanley symmetric functions

In [12], Kirillov and Naruse introduce Type C K-Stanley symmetric functions GC
w as part

of their construction of Type C double Grothendieck polynomials.

Definition 3.1. The Type C K-Stanley symmetric function for w ∈Wn is

GC
w(x) = ∑

p≥0
∑

a∈Hp(w)
∑

i∈κ(a)
(−1)p−ℓ(w)x|i1| . . . x|ip| where

κ(a) =

{
(i1 ⪯ · · · ⪯ ip) ∈ (Z− {0})p : ik = ik+1 implies

{
ak > ak+1 ik < 0
ak < ak+1 ik > 0

}
.

We call the pair (a, i) a compatible sequence.

Proposition 3.2. Let w ∈Wn and v ∈ Sn+m with v(i) = i for i ∈ [n]. Then:

1. GC
w ∈ Z[GQλ : λ strict];

2. The coefficient of x1 . . . xp in GC
w is (−1)p−ℓ(w) · 2n · |Hp(w)|;

3. GC
wv = GC

u · GC
v ;

4. If w is vexillary, then GC
w = GQλ(w).

These properties are not stated in [12]. The first is an easy consequence of their work
and [8], while the second and third follow easily from the definition. The fourth follows
by specializing a Pfaffian formula of Anderson [1].

Let w(a, b, n) = 12 . . . k ℓ+1 ℓ+2 . . . n k+1 k+2 . . . ℓ where k = n− a− b and ℓ = a + k.
Since w(a, b, n) is vexillary of shape τ(a, b) as asserted in [3], Proposition 3.2 (4) implies:

Corollary 3.3. For a < b positive integers and a + b ≤ n,

GC
w(a,b,n) = GQτ(a,b).

Combined with Theorem 3.5, this result implies [4, Conjecture 4.23].
Say w ∈Wn is fully commutative if its reduced words contain no braid relations and top

if its reduced words also avoid the consecutive subword (1, 0, 1). Top fully commutative
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elements are in bijection with skew strict shapes, and there is a transparent bijection
between shifted standard tableaux of strict shape λ/µ and reduced words for the top
element w(λ/µ) due to Stembridge [18]. We extend this bijection to a weight preserving
map res from ShSSYTp(λ/µ) to compatible sequences for w(λ/µ) of length p.

Example 3.4. To compute res, label each cell (i, j) in Dλ/µ with its content j− i. Then read
the entries of T in increasing order with respect to ≺ to form i and the contents to form
a, breaking ties to enforce compatibility. For example, we have

T = 10 11 12 2′3 3′4 5′5
20 21 3′2 34′3

40 41 42

50 51

, res(T) =

Ç
i
a

å
=

Ç
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5
0, 1, 2, 3, 0, 1, 4, 2, 3, 3, 0, 1, 2, 5, 0, 1

å
.

Here, the contents are depicted using red subscripts inside of T for reference.

As a consequence, we have:

Theorem 3.5. For µ ⊆ λ strict shapes, GC
w(λ/µ) = GQλ/µ.

As an important special case, we have:

Corollary 3.6. Let µ ⊆ λ be strict partitions and ν be a partition (not necessarily strict). Then
for appropriately chosen strict partitions ρ, τ the signed permutation w(λ/µ) ·w(τ/ρ) is top and

GC
w(λ/µ)·w(τ/ρ) = GQλ · GSν.

Remark 3.7. A (possibly equivalent) formula for GC
w using tableaux with straight shapes

appears in [19], though the connection to GQ-functions is not made in that work.

4 Kraśkiewicz–Hecke Insertion

In order to define Kraśkiewicz–Hecke insertion KH, we first define strict decomposition
tableaux. These generalize reduced decomposition tableaux from [13, 14] and standard
decomposition tableaux from [16]1. These are the insertion tableaux for KH.

Definition 4.1. Let Ri = riri+1 . . . rk be the ith row in a shifted tableau T. We say Ri
is (strictly) unimodal if there exists i ≤ j ≤ k so that ri > ri+1 > · · · > rj < · · · <
rk. Depending on context, we refer to both j and rj as the dip of Ri. The decreasing
and increasing parts of Ri are R↓i = ri . . . rj−1 and R↑i = rj . . . rk, respectively. Note the

1Confusingly, reduced decomposition tableaux are referred to as ‘standard’ in [14]. We introduce the
term ‘reduced’ as the Serrano tableaux more closely resemble the conventional meaning of ‘standard’.
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increasing part is always non-empty, which is at odds with the conventions in [14]. For
a unimodal row Ri with dip j, it is frequently convenient to view it as

T(Ri) := −ri < · · · < −rj−1 < rj < rj+1 < · · · < rk, or

B(Ri) := −ri < · · · < −rj−1 < −rj < rj+1 · · · < rk,

which are increasing sequences of integers.

Definition 4.2. Let λ be a strict partition with ℓ(λ) = k. A strict decomposition tableau
is a tableau T : Dλ → N with unimodal rows R1 . . . Rk such that for each i ∈ [k − 1]
every entry of Ri+1 is less than the first entry of Ri and the following witness condition
is satisfied. For increasing sequences T(Ri) = ai . . . ai+λi , B(Ri+1) = bi+1 . . . bi+1+λi+1 and
for all i + 1 ≤ j ≤ i + 1 + λi+1,

{±ai, . . . ,±aj−1,±bj+1, . . . ,±bi+1+λi+1} ∩ (bj, aj] = ∅. (4.1)

Note that aj appears immediately above bj in T. If aj ≤ bj, then (bj, aj] = ∅, so Equa-
tion (4.1) is satisfied vacuously. If x is an element of the LHS of Equation (4.1), we say x
witnesses bj < aj, showing T is not a strict decomposition tableau.

The reading word of a strict decomposition tableau T is ρ(T) = RℓRℓ−1 . . . R1.

Lemma 4.3. A shifted tableau with unimodal rows is a strict decomposition tableau if and only
if the tableau avoids the following five configurations:

(i) a ···
··· b

, (ii) ··· a ···
··· c ··· b

, (iii) ··· v z ···
··· ··· x ··· y

, (iv) y ··· z
··· x

, (v) ··· y ··· z
··· ··· x

with a ≤ b < c, x < y ≤ z, and v < z.

Example 4.4. The leftmost tableau is a strict decomposition tableau, the rest are not:

5 2 1 0 3 4
2 0 1 2 4

3 0 2
0 4

5 2 1 0 2 4
3 0 1 2 4

7 2 1 0 5 6
2 0 1 2 5

5 4 1 0 5 6
2 0 1 4 6

5 3 1 0 3 4
2 0 1 2 4

(4.2)

The entries highlighted in blue are aj, bj so that aj < bj, while their witnesses, if they
exist, are in red. Further notice each of the non-examples exhibits the configurations in
Lemma 4.3 from left to right.

For λ a strict partition with ℓ(λ) = k, a reduced decomposition tableau of shape λ is a
tableau T : Dλ →N with rows R1 . . . Rk so that Ri is a unimodal subsequence of maximal
length in RkRk−1 . . . Ri for all i ∈ [k] and whose reading word ρ(T) is a reduced word for
some signed permutation. For KH to generalize Kraśkiewicz insertion, we require:

Proposition 4.5. Every reduced decomposition tableau is also a strict decomposition tableau.
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We will now construct Kraśkiewicz–Hecke insertion, which maps words in the al-
phabet N = {0, 1, 2, . . . } to pairs of tableaux P, Q of the same shape where P is a strict
decomposition tableau and Q is a standard set-valued shifted tableau. We first present the row
insertion rule, which is very similar to Kraśkiewicz row insertion but requires a plethora
of additional cases to ensure the insertion tableau is a strict decomposition tableau.

Definition 4.6. (Kraśkiewicz–Hecke) row insertion is an algorithm with inputs a ∈N and a
two-row strict decomposition tableau RS that outputs a′ ∈ N ∪ {∞} and two-row strict
decomposition tableau R′S. Note S is unchanged and may be empty. Row insertion is a
two step procedure, first applying right insertion and then left insertion.

Let R = r1 . . . rℓ with dip rq and S = s2 . . . sk with dip sp and k ≤ ℓ. Set r0, s1 = −∞,
rℓ+1 = ∞ and sm = ∞ for m > k. Note ri appears immediately above si in RS.

We first define right insertion, which outputs a′ ∈N∪ {∞} and row R′′, which is an
input for left insertion. If a equals the dip rq, set i = q. Otherwise, let q < i ≤ ℓ+ 1 be
minimal such that ri ≥ a. Set Ai = {si+1, . . . , sk, r1, . . . , ri−1}.

1. If a ̸= ri, then set a′ = ri and create R′′ by changing ri to a.

2. If a = ri and ri−1 > ri+1, then set a′ = ri+1 and create R′′ by setting ri+1 = ri. Note
the resulting tableau will not have unimodal rows, however the left insertion step
afterwards will always restore unimodal rows.

3. If a = ri and ri−1 ≤ ri+1, then let R′′ = R and set a′ = min({ri+1} ∪ [(si, ri+1)∩ Ai]).

We now define left insertion. If a′ = ∞, then set b = ∞ and R′ = R′′. Otherwise, let
1 ≤ j ≤ q be minimal such that rj ≤ a′ where here rj indicates the jth entry of R′′.

1. If a′ ̸= rj, set b = rj and create R′ by changing rj to a′.

2. If a′ = rj, then set R′ = R′′.

(a) If j < p, we define

b =


max(Aj ∩ (rj+1, sj)), if j + 1 < q and Aj ∩ (rj+1, sj) ̸= ∅
max(Aj ∩ (−∞, sj)), if j + 1 ≥ q and Aj ∩ (−∞, sj) ̸= ∅
rj+1, otherwise.

(b) If j ≥ p, then define

b =

{
sj+1, if (a) j + 1 ≥ q and (b) rj+1 > sj+1 or rj+2, sj+2 > rj > sj+1

rj+1, otherwise.

We extend row insertion to an insertion algorithm by repeated application.



Kraśkiewicz–Hecke insertion 9

Definition 4.7. For P = R1 . . . Rℓ a strict decomposition tableau and a ∈ N, we
Kraśkiewicz–Hecke insert a into P by row inserting a into R1R2, updating R1 and inserting
the output b into R2R3 and so on until the output is ∞. The insertion terminates in row i
where i is the row whose output from row insertion is ∞.

For a = (a1, . . . , ap) ∈ Np and a′ = (a1, . . . , ap−1), we define the Kraśkiewicz–Hecke
insertion tableau PHK(a) recursively by row inserting ap into PHK(a′). The Kraśkiewicz–
Hecke recording tableau Q = QHK(a) is also constructed recursively from Q′ = QHK(a′).
Let λ and λ′ be the shapes of PHK(a) and PHK(a′), respectively.

1. If λ ̸= λ′, they differ by a single cell (i, j). We obtain Q from Q′ by setting Qij = {p}.

2. If λ = λ′, then construct Q from Q′ by adding p to Q′k (λk+k) where k is the row
where insertion of ap terminated. Note by (R3) that insertion can only terminate in
row k if λk > λk+1 + 1 or λk+1 = 0.

Example 4.8. We present two examples of Kraśkiewicz–Hecke insertion:

4 3 2 0 2←1
0 1 2 3

2→ 4 3 2 0 1
0 1 2 3

4 3 2 0 1
0 1 2 3←0

4 3 2 0 1
1→ 1 0 2 3

4 3 2 0 1
1 0 2 3
←0

4 3 2 0 1
1 0 2 3

0

5 2 0 4←0
1 0 4

2→ 5 2 0 4
1 0 4

5 2 0 4
1 0 4←0

5 2 0 4
4→ 1 0 4

5 2 0 4
4 0 4
←1

5 2 0 4
4 0 4

1

The arrows on the right side represent right insertion, while the arrows of the left side
represent left insertion. Bumping occurs in the green cells, while red cells highlight the
next element to be inserted (if distinct from the green cell). Blue cells are relevant for
determining which element to insert next.

When inserting a = (5, 3, 0, 5, 2, 4, 0, 4, 0), we present some insertion tableaux starting
with P((5, 3, 0, 5)) = 5 3 0 5 and ending with P = PKH(a) as well as Q = QKH(a):

5 3 0 2
3

5 3 0 2 4
3

5 3 2 0 4
3 0

5 3 2 0 4
3 0

P = 5 4 2 0 4
3 0 3

Q = 1 2 3 4 6, 8

5 7 9

The following proposition implies KH is well-defined.

Proposition 4.9. Given an a ∈N and T a strict decomposition tableau, the tableau T′ = T ← a
is also a strict decomposition tableau.

Our proof of Proposition 4.9 proceeds by showing if T′ = T ← a contains one of
the configurations in Lemma 4.3, then T was not a strict decomposition tableau. The
argument is case by case, some of which rely on a lemma showing that row bumping
paths of right and left insertion both move weakly to the left. Two words with the same
Kraśkiewicz insertion tableaux P are necessarily reduced words for the same signed
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permutation. Similarly, the Kraśkiewicz–Hecke insertion tableau for a word determines
its 0-Hecke product.

Proposition 4.10. Let T be a SDT and w a signed permutation so that ρ(T) ∈ H(w). For a ∈N

and T′ = T ← a we have ρ(T′) ∈ H(w ◦ sa).

The inverse of Kraśkiewicz–Hecke insertion is defined similarly, first defining in-
verses to left and right insertion, then using the recording tableau to determine the row
and value to begin inverse insertion with. For space considerations, we omit the details.

Since KH is invertible, Proposition 4.9 implies Theorem 1.1. Then Proposition 3.2 (2)
and 4.10 imply Corollary 1.2.

5 Conjectures

Our original goal in this project was to compute the GQλ-expansion of GC
w. As we

will explain in Remark 5.3, insertion methods exhibit a fundamental inadequacy for the
task. Despite this shortcoming, empirically Kraśkiewicz–Hecke insertion computes this
expansion as asserted in Conjecture 1.3, which has been tested up to degree 9 for signed
permutation in W4. By taking the x1 . . . xn coefficient on each side, we see Conjecture 1.3
and Proposition 3.2 (2) would imply Corollary 1.2:

|Hp(w)| = ∑
λ strict

aC
w(λ) · |ShSetp(λ)|.

Note we have removed the factor 2p from each side, on the right by not allowing barred
entries in our tableaux. We view this as very strong evidence for Conjecture 1.3. To see
why, assume the conjecture were to fail for w ∈Wn. By Proposition 3.2, (1) we have

GC
w = ∑

λ strict
bC

w(λ) · GQλ

for some coefficients bC
w(λ) ∈ Z, and conjecturally in N. Then for fixed p, we have

∑
λ strict

aC
w(λ) · |ShSetp(λ)| = ∑

λ strict
bC

w(λ) · |ShSetp(λ)|. (5.1)

Additionally, when |λ| = ℓ(w), we know from [14] that aC
w(λ) = bC

w(λ) for all λ. Therefore,
and especially assuming the positivity of bC

w(λ), the failure of Conjecture 1.3 gives a
striking relation on the number of shifted set-valued standard tableaux of given sizes.

By combining Conjecture 1.3 with Corollary 3.6, we have:

Conjecture 5.1. For strict partitions µ ⊆ λ, partition ν and appropriate signed permutation w,

GQλ/µ · GSν = ∑
ρ

aC
w(ρ) · GQρ.
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As special cases, with ν = ∅ we would recover [15, Conjecture 4.36] and with µ = λ

we would recover [4, Conjecture 5.14]. Both conjectures are statements of GQ-positivity,
and do not combinatorial descriptions of the coefficients. These basic facts about skew
GQ’s have resisted explanation for several years. As mentioned in the introduction,
it is an open problem to find the GQ expansion for products of GQ functions. By
Corollary 3.3, Conjecture 5.1 specializes to a rule for computing GQλ · GQτ(a,b).

Example 5.2. For w = 52134891067, we have aC
w((10, 3, 2)) = 2 with tableaux

9 6 4 3 2 1 0 6 7 8
8 1 0

0 7

, 9 6 4 3 2 1 0 6 7 8
8 1 0

7 0

.

This correctly computes the coefficient of GQ1032 in GQ521 · GQ42.

Remark 5.3. For Kraśkiewicz–Hecke insertion to extend to a proof of Conjecture 1.3, we
need a and Q(a) to have the same peak sets. We present an example showing an insertion
algorithm generalizing Kraśkiewicz insertion cannot have this property.

For u = s1s0s2, v = s1s0s2s1, w = s1s0s2s1s0,

GC
u = GQ(3) + GQ(21) + βGQ(31) , GC

v = GQ(31) , GC
w = GQ(32)

The strict decomposition tableaux witnessing these expansions are:

u : U1 = 1 0 2 , U2 = 2 0
1

, U3 = 2 0 2
1

v : V = 2 0 1
1

w : W = 2 1 0
1 0

.

For a word x = (x1, . . . , xk) and j ≤ k, let x[j] = (x1, . . . , xj). Consider the words
a = (1, 0, 2, 0, 1, 0), b = (1, 2, 0, 2, 1, 0) ∈ H(w), so P(a) = P(b) = W by Proposition 4.10.
Similarly, P(a[5]) = P(b[5]) = V since v is vexillary. From Kraśkiewicz insertion, we
know P(a[3]) = U1 and P(b[3]) = U2. Any reasonable generalization of Kraśkiewicz
insertion will have P(a[4]) = P(b[4]) = U3, with the former since the peak in position
3 must be preserved. However, the associated recording tableaux for these insertions
would not preserve peak sets at position 5. We will give a more detailed discussion of
this example in the complete version of this paper [2].
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