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Abstract. We associate a quotient of superspace to any hyperplane arrangement by
considering the differential closure of a “power ideal” (a particular ideal generated
by powers of certain homogeneous linear forms). This quotient is a superspace ana-
logue of the external zonotopal algebra of Holtz and Ron and also contains the central
zonotopal algebra. We show that the bigraded Hilbert series of this quotient is equal
to an evaluation of the Tutte polynomial. We also construct an explicit basis for the
Macaulay inverse. These results generalize previous work of Ardila–Postnikov and
Holtz–Ron.
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1 Introduction

Consider commutative generators xn = (x1, . . . , xn) and anticommutative generators θn =
(θ1, . . . , θn). We define rank n superspace Ωn to be C[xn] ⊗ ∧{θn}. This ring arises in
physics where the two sets of variables represent states of bosons and fermions, respec-
tively. This explains why the variables are often referred to as bosonic and fermionic vari-
ables. Additionally, Ωn is the Hochschild homology of the polynomial ring C[xn] and,
as such, may be considered as the ring of polynomial-valued holomorphic differential
forms on Cn.

In the last few years, there has been great interest in quotients of superspace. So
far, the primary impetus has come from Macdonald polynomials; in particular, a still-
open conjecture of Zabrocki [13] suggests a connection between the now-proven “Delta
conjecture” of Haglund–Remmel–Wilson [6] and a module that generalizes the diagonal
coinvariants by introducing fermionic variables. See [3, 8] for more recent work.

We instead approach superspace from the perspective of hyperplane arrangements
(or, equivalently, realizable matroids). Our point of entry is the theory of power ideals,
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as developed by Ardila–Postnikov [1] and Holtz–Ron [7]. As we hope to demonstrate,
power ideals have a superspace generalization that merits investigation.

To construct a power ideal, we begin with a size m multiarrangement A = {H1, . . . , Hm}
of hyperplanes in Cn, i.e. a collection of hyperplanes wherein we allow repeats. Associ-
ated with A is a family of homogeneous ideals JA,k ⊆ C[xn] known as power ideals:

JA,k :=
(

λ
ρA(L)+k
L | L ⊆ Cn a line

)
(1.1)

where λL is the linear form corresponding to any line L through the origin and

ρA(L) := #{1 ≤ i ≤ m | L ̸⊆ Hi}. (1.2)

The resulting quotient rings have fascinating mathematical properties with deep ties to
numerical analysis, algebra, geometry, and combinatorics, particularly when k = −1,
0, or 1 [5, 9, 10]. These cases correspond to internal, central, and external zonotopal
algebras, respectively [7].

We will move power ideals into superspace by taking their “differential closures.”
Regarding Ωn as a ring of differential forms, we have the Euler operator (or total derivative)
d : Ωn → Ωn defined by

d f :=
n

∑
i=1

(∂ f /∂xi) · θi (1.3)

where, in the evaluation of (∂ f /∂xi), the θ-variables are treated as constants. Through-
out, we treat the x-variables and θ-variables as elements of degree (1, 0) and (0, 1), re-
spectively. Let I ⊆ C[xn] be a homogeneous ideal. The differential closure Iθ ⊆ Ωn of I
is the smallest ideal in Ωn containing I and closed under the operator d. If g1, . . . , gr ∈
C[xn] are homogeneous generators of I, we have1

Iθ = (g1, . . . , gr, dg1, . . . , dgr) ⊆ Ωn. (1.4)

As the ideal Iθ ⊆ Ωn is bihomogeneous, the quotient space Ωn/Iθ acquires a bigrading
wherein the θ-degree 0 piece is the original graded quotient C[xn]/I. If the commutative
quotient C[xn]/I has interesting properties, it is natural to ask whether and how these
properties extend to the supercommutative quotient Ωn/Iθ.

In this article, we focus on the differential closure of JA,1 inside Ωn, which we denote
IA, and the resulting quotient space EA = Ωn/IA. Our first main result relates the
bigraded Hilbert series of EA to the the Tutte polynomial TA(x, y).

Theorem 1.1. For any rank r multiarrangement A of size m in Cn we have the bigraded Hilbert
series

Hilb (EA; q, t) = (1 + t)rqm−rTA

(
1 + q + t

1 + t
,

1
q

)
.

1This is due to the product rule d( f · g) = d f · g ± f · dg for bihomogeneous f , g ∈ Ωn together with
the relation d ◦ d = 0, which follows from the anticommutativity of the fermionic variables.
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where q tracks bosonic degree and t tracks fermionic degree.

Setting t = 0 recovers results of Ardila–Postnikov [1] and Holtz–Ron [7]. The proof
of Theorem 1.1 involves a short exact sequence (3.7) that witnesses a deletion-restriction
type recursion. We discuss corollaries of this theorem involving objects such as zono-
topal algebras, face vectors, and bigraphical arrangements in Section 4.

Our second main result provides a basis of the Macaulay inverse space I⊥A , which
is isomorphic to EA as a bigraded vector space. Let B denote the set of bases for the
matroid MA corresponding to A. Given B ∈ B, we let EPA(B), IPA(B), IAA(B) denote
the sets of externally passive elements, internally passive elements, and internally active
elements, respectively. These notions are defined more precisely in Section 3.4.

Theorem 1.2. For H ∈ A, let αH denote the2 homogeneous linear form with zero set H. The
following set forms a basis for I⊥A :

MA :=
⋃

B∈B

{
∏
e∈ E

αe × ∏
i ∈ I

dαi × ∏
s∈ S

αs × ∏
t∈ T

dαt :
E = EPA(B), I ⊆ IPA(B),
S, T ⊆ IAA(B), S ∩ T = ∅

}
. (1.5)

In the rest of this abstract, we provide necessary background in Section 2 before
discussing our main results in Section 3 and some of their consequences and related
open questions in Section 4.

2 Background

2.1 Superspace

As mentioned in the introduction, superspace Ωn is the tensor product of the symmetric
algebra C[xn] in n bosonic variables with the exterior algebra ∧{θn} in n fermionic
variables. A monomial in Ωn is defined to be a product of a monomial in the x-variables
with a nonzero monomial in the θ-variables. Monomials in the θ-variables, i.e. fermionic
monomials, are indexed up to sign by subsets J = {j1 < · · · < jr} ⊆ [n]. Given such
a J, we set θJ := θj1 · · · θjr . If xa1

1 · · · xan
n θJ is a monomial in Ωn, its bosonic degree is

a1 + · · · + an, its fermionic degree is |J|, and its bidegree is (a1 + · · · + an, |J|). The C-
algebra Ωn admits a direct sum decomposition

Ωn =
⊕

i,j≥ 0

(Ωn)i,j (2.1)

where (Ωn)i,j = C[xn]i ⊗∧j{θn} consists of bihomogeneous elements of bidegree (i, j).

2This linear form is unique up to a nonzero scalar.
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For 1 ≤ i ≤ n, the usual partial derivative ∂i := ∂/∂xi acts on the first tensor factor
of Ωn while the contraction operator ∂θ

i := ∂/∂θi acts on the second factor by extending its
action on fermionic monomials: given distinct indices 1 ≤ j1 < · · · < jr ≤ n, we let

∂θ
i (θj1 · · · θjr) =

{
(−1)s−1θj1 · · · θ̂js · · · θjr js = i for some 1 ≤ s ≤ r

0 otherwise
(2.2)

where the hat denotes omission. The operators ∂i and ∂θ
i satisfy

∂i∂j = ∂j∂i ∂i∂
θ
j = ∂θ

j ∂i ∂θ
i ∂θ

j = −∂θ
j ∂θ

i (2.3)

for 1 ≤ i, j ≤ n. Given f = f (x1, . . . , xn, θ1, . . . , θn) ∈ Ωn, we therefore have a well-
defined differential operator ∂ f := f (∂1, . . . , ∂n, ∂θ

1, . . . , ∂θ
n) of superspace on itself by

f ⊙ g := ∂ f (g). Given a bihomogeneous ideal I ⊆ Ωn, the Macaulay inverse system I⊥ is
the bigraded subspace of Ωn given by

I⊥ := {g ∈ Ωn : f ⊙ g = 0 for all f ∈ I }. (2.4)

Let V =
⊕

i,j≥0 Vi,j be a bigraded complex vector space with each piece Vi,j finite-
dimensional. The bigraded Hilbert series of V is

Hilb(V; q, t) := ∑
i,j≥0

dimC(Vi,j) · qitj (2.5)

in the variables q, t. For our purposes, V will always be a bihomogeneous subspace or
quotient of superspace Ωn, the variable q will track bosonic degree, and the variable t
will track fermionic degree.

If I ⊆ Ωn is a bihomogeneous ideal, we have the bigraded direct sum Ωn = I ⊕
I⊥, where the · operator reverses the order of the θ-monomials and takes the complex
conjugate of the coefficients. The bigraded Hilbert series of the quotient ring Ωn/I
therefore coincides with that of the inverse system I⊥:

Hilb(Ωn/I; q, t) = ∑
i,j≥0

dimC (Ωn/I)i,j · qitj = ∑
i,j≥0

dimC(I⊥) · qitj = Hilb(I⊥; q, t). (2.6)

2.2 Multiarrangements

A linear hyperplane H is a codimension one subspace of Cn. Any linear hyperplane H
is the zero set of a homogeneous linear form αH = a1x1 + · · · anxn for (a1, . . . , an) ∈
Cn \ {0}. We refer to αH as the normal vector of H; it is unique up to a nonzero scalar.

An affine hyperplane H is an affine translate of a linear hyperplane; the normal vector
of an affine hyperplane is that of its linear translate. A multiarrangement A of hyperplanes
is a collection {H1, . . . , Hm} of hyperplanes of size m where we allow repeats. For a given
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hyperplane H in A, we refer to the number of times it appears in the collection A as its
multiplicity. An arrangement is simple if the multiplicity of any hyperplane in it is equal
to 1. Henceforth, we employ the term “arrangement” for multiarrangements.

Let A be an arrangement and let H ∈ A be a hyperplane. The deletion A− H is the
arrangement obtained from A by removing one copy of H. The restriction A | H is the
arrangement

A | H := {H′ ∩ H : H′ ∈ A− {H}, H′ ∩ H ̸= ∅}. (2.7)

Given a matroid M on a ground set E with rank function rk : 2E → Z≥0, its Tutte
polynomial TM(x, y) is

TM(x, y) = ∑
A⊆E

(x − 1)r−rk(A)(y − 1)|A|−rk(A), (2.8)

where r := rk(M). Tutte [12] famously showed that this implies a combinatorial expan-
sion in terms of internal and external activities as we range over matroid bases of M:

TM(x, y) = ∑
basis B

xia(B)yea(B) ∈ N[x, y]. (2.9)

We postpone the formal definition of the notion of activity (and passivity) until Sec-
tion 3.4. If a matroid M is the vector matroid of all normal vectors of hyperplanes in A,
we may talk about the Tutte polynomial TA without any ambiguity.

3 Main construction and results

3.1 Superpower ideals

Given (ℓ1, . . . , ℓn) ∈ Cn \ 0, consider the line L = C · (ℓ1, . . . , ℓn) in Cn and let λL be the
linear form

λL := ℓ1x1 + · · ·+ ℓnxn ∈ C[xn]. (3.1)

The linear form λL is defined up to a nonzero scalar.
Let A = {H1, . . . , Hm} be a arrangement of linear hyperplanes in Cn and let k ≥ −1

be an integer. Ardila–Postnikov [1, Section 3.1] defined the ideal JA,k ⊆ C[xn] by

JA,k :=
(

λ
ρA(L)+k
L | L ⊆ Cn a line

)
(3.2)

where
ρA(L) := #{1 ≤ i ≤ m | L ̸⊆ Hi}. (3.3)

The cases k ∈ {−1, 0, 1} are of particular interest, as the respective quotients C[xn]/JA,k
are the internal, central and external zonotopal algebras [1, 7]. The (singly-graded) Hilbert
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series of these algebras are obtained as univariate specializations of the Tutte polynomial
of MA. More precisely, if r is the rank of A we have [1, 7]

Hilb(C[xn]/JA,0; q) = qm−rTA(1, q−1), (3.4)

Hilb(C[xn]/JA,1; q) = qm−rTA
(

1 + q, q−1
)

. (3.5)

The following superspace ideals are our object of study.

Definition 3.1. Let A be a arrangement in Cn. We let IA ⊆ Ωn be the differential closure
of the ideal JA,1. In terms of generators, we have

IA :=
(

λ
ρA(L)+1
L , dλ

ρA(L)+1
L : L ⊆ Cn a line

)
⊆ Ωn. (3.6)

The ideal IA is bihomogeneous. We write EA := Ωn/IA for the associated bigraded
quotient ring and I⊥A ⊆ Ωn for the inverse system of IA.

We will be interested in the bigraded Hilbert series Hilb(EA; q, t). By setting the
θ-variables equal to zero, we see from Equation (3.5) that

Hilb(EA; q, 0) = Hilb(I⊥A ; q, 0) = Hilb(C[xn]/JA,1; q) = qm−rTA
(

1 + q, q−1
)

Less obviously (see Corollary 4.1), the top t-degree of Hilb(EA; q, t) is a polynomial in
q coinciding with Hilb(C[xn]/JA,0; q). Various features of EA interpolate between the
external and central zonotopal algebras.

Example 3.2. Consider the hyperplane arrangement A in C2 determined by the hyper-
plane x1 − x2 = 0. For L = C · (a, b) with a ̸= b, we know that ρA(L) = 1. If a = b ̸= 0,
on the other hand, then ρA(L) = 0. In turn, this means that the ideal IA is generated by
(ax1 + bx2)

2 where a ̸= b are not both 0, x1 + x2, as well as their differentials, i.e.

IA = (x2
1, x2

2, x1 + x2, θ1x1, θ2x2, θ1 + θ2).

It can be checked that {1, x1, θ1} is a monomial basis for EA, so Hilb(EA; q, t) = 1+ q + t.

We find the Hilbert series of EA by studying I⊥A . First, we give a spanning set for I⊥A .

3.2 A spanning set via an exact sequence

Let us consider the case of an arrangement A = {H1, H2, . . . , Hm} of m linear hyper-
planes in Cn. Changing coordinates if necessary, we may assume that H1 is given by x1 = 0
and we will work under this assumption for the remainder of this section.

Let A− H1 = {H2, . . . , Hm} and A | H1 = {Hj ∩ H1 : j ≥ 2} be the deletion and
restriction of A with respect to H1. We claim that the following is an exact sequence

0 → I⊥A−H1

φ−→ I⊥A
ψ−→ I⊥A|H1

⊕ I⊥A|H1
→ 0 (3.7)

where
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• the map φ : I⊥A−H1
→ I⊥A is given by φ( f ) := x1 · f , and

• the map ψ : I⊥A → I⊥A|H1
⊕ I⊥A|H1

is given by

ψ( f ) := ( f |x1=0, θ1=0, θ1 ⊙ f |x1 = 0). (3.8)

In the second coordinate of ψ, the notation θ1 ⊙ f |x1 = 0 is justified because differentiation
θ1 ⊙ (−) with respect to θ1 commutes with evaluation (−) |x1 = 0 at x1 = 0. In the full
version of this abstract[11], we prove that the maps φ and ψ in (3.7) map into their
claimed targets and that the sequence (3.7) is indeed exact, which implies

Hilb(EA; q, t) = q · Hilb(EA−H1 ; q, t) + (1 + t) · Hilb(EA|H1
; q, t). (3.9)

We will use (3.9) to relate the Hilbert series of EA to the Tutte polynomial of A.

Example 3.3. Let A be the arrangement in C2 determined by two copies of the hyper-
plane H given by x1 = 0. The reader may check that a basis for I⊥A is given by

{1, x1, x2
1, θ1, θ1x1}.

The arrangement A − H is determined by a single copy of H and I⊥A−H has basis
{1, x1, θ1}. Multiplying each element by x1 produces the subset {x1, x2

1, x1θ1} of the
basis for I⊥A . Restricting A to H produces a “degenerate” hyperplane which may be
deleted. Thus I⊥A|H = C{1}. Finally, observe that the only basis element that survives
the specialization x1 = 0 and θ1 = 0 is 1, and the unique element that that survives the
⊙ action of θ1 and then the specialization x1 = 0 is θ1. Each element of the given basis
for I⊥A has appeared exactly once in this description.

3.3 Hilbert series and Tutte polynomials

We can now describe the consequences of the exact sequence (3.7).

Theorem 3.4. For any rank r arrangement A of size m in Cn, we have

Hilb (EA; q, t) = Hilb(I⊥A ; q, t) = (1 + t)rqm−rTA

(
1 + q + t

1 + t
,

1
q

)
where q tracks bosonic degree and t tracks fermionic degree.

Proof. It suffices to consider the Hilbert series for I⊥A . We interpret Hilb(−; q, t) as a func-
tion from the class of realizable matroids over C (which are equivalent to arrangements
A that allow for degenerate hyperplanes) to N[q, t] and proceed to show that it meets
the criteria of a Tutte–Grothendieck invariant as outlined in [4].3

3Note that the class of realizable matroids is a minor-closed family, which means we are justified in
applying this strategy.
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Begin by noting that, if A is the empty arrangement, then Hilb(I⊥A ; q, t) is indeed
equal to 1. So we may suppose that A is nonempty. Note further that if H is a degenerate
hyperplane in A then Hilb(I⊥A ; q, t) = Hilb(I⊥A−H; q, t).

Now suppose that A contains a hyperplane H that is not degenerate. Then (3.7) gives

Hilb(I⊥A ; q, t) = q · Hilb(I⊥A−H; q, t) + (1 + t) · Hilb(I⊥A|H; q, t). (3.10)

If we were to further assume that H is a coloop, i.e. its normal vector belongs to every
basis in MA, then (3.10) may be rewritten as

Hilb(I⊥A ; q, t) = (1 + q + t) · Hilb(I⊥A|H; q, t). (3.11)

Finally observe that the preceding equalities inductively imply that if arrangements A
and B determine isomorphic matroids MA and MB then Hilb(I⊥A ; q, t) = Hilb(I⊥B ; q, t).

Now our claim follows from the fact that the Tutte polynomial is a universal Tutte–
Grothendieck invariant, which implies Hilb is a specialization of the Tutte polynomial. The
precise specialization can be read off from the preceding equations.

Example 3.5. Consider the arrangement A in R2 determined by the hyperplanes x1 = 0,
x2 = 0, and x1 + x2 = 0, shown on the left in Figure 1. One may check that

IA = (x3
1, x3

2, (x1 − x2)
3, x2

1x2
2, θ1x2

1, θ2x2
2, (θ1 − θ2)(x1 − x2)

2, x1x2(θ1x2 + θ2x1)).

One can then compute the following monomial basis for EA:

{1, x1, x2, x2
1, x1x2, x2

2, x1x2
2, θ1, θ2, x1θ1, x1θ2, x2θ1,

x2θ2, x1x2θ1, x1x2θ2, x2
2θ1, θ1θ2, x1θ1θ2, x2θ1θ2}.

We thus see that

Hilb(EA; q, t) = (1 + 2q + 3q2 + q3) + t(2 + 4q + 3q2) + t2(1 + 2q).

The Tutte polynomial of MA is TA(x, y) = x2 + x + y, and it can be checked that substi-
tuting as per Theorem 3.4 produces Hilb(EA; q, t).

3.4 A basis for the Macaulay inverse

Fix a total order on the hyperplanes of A; this induces a lexicographical order on the
subsets of A. Given a matroid basis B of A and a hyperplane H ∈ A− B, the hyperplane
H is externally active with respect to B if B is the lexicographically largest basis contained
in B ∪ H. Otherwise, the hyperplane H is externally passive with respect to B. Similarly,
a hyperplane H ∈ B is internally active with respect to B if B is the lexicographically
smallest basis containing B − H. Otherwise H is internally passive with respect to B. By
Theorem 3.4, we have

Hilb(I⊥A ; q, t) = ∑
B∈B

(1 + q + t)ia(B)(1 + t)ip(B)qep(B). (3.12)
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Example 3.6. Consider the hyperplane arrangement from Example 3.5 with the normal
vectors to the hyperplanes H1 = {x1 = 0}, H2 = {x2 = 0}, and H3 = {x1 + x2 = 0}
recorded as columns of a 2 × 3 matrix below. Assume our total order on hyperplanes in
A is obtained by reading the columns left to right, i.e. H1 < H2 < H3.[

1 0 1
0 1 1

]
For the basis {H1, H2}, the hyperplane H3 is externally passive whereas H1 and H2 are
internally active. For the basis {H1, H3}, the hyperplane H2 is externally passive, H1
is internally active while H3 is internally passive. Finally for the basis {H2, H3}, the
hyperplane H1 is externally active whereas both H2 and H3 are internally passive. Thus
the right-hand side of (3.12) equals

(1 + q + t)2q1(1 + t)0 + (1 + q + t)1q0(1 + t)1 + (1 + q + t)0q0(1 + t)2,

which the reader may verify is the same as the Hilbert series obtained earlier.

Recall from the introduction that we write EAA(B), EPA(B), IAA(B), and IPA(B) for
the externally active, externally passive, internally active, and internally passive hyper-
planes in A with respect to a given basis B. Note also that, if we have a total order on the
hyperplanes in an arrangement A, then the deleted and restricted arrangement A− H
and A | H both inherit total orders. We consider the family MA of superspace elements

MA :=
⋃
B

{
∏
e∈ E

αe × ∏
i ∈ I

dαi × ∏
s∈ S

αs × ∏
t∈ T

dαt :
E = EPA(B), I ⊆ IPA(B),
S, T ⊆ IAA(B), S ∩ T = ∅

}
(3.13)

where the union is over matroid bases B of A.

Theorem 3.7. The set MA forms a monomial basis for the bigraded vector space I⊥A .

4 Further remarks

4.1 The classical external and central zonotopal algebras

Corollary 4.1. Let r be the rank of the arrangement A ⊆ Cn and let m = |A|.

(1) Hilb(EA; q, 0) = Hilb(C[xn]/JA,1; q).

(2) [tr]Hilb(EA; q, t) = Hilb(C[xn]/JA,0; q) where [tr](−) extracts the coefficient of tr.

(3) Let top(A) denote the summand of maximal total degree in Hilb(EA; q, t) ∈ N[q, t]. Then

top(A) = (−1)rqm−rtrχA
(
−q

t

)
.

where χA is the characteristic polynomial of A.
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Going back to Example 3.5, we see that the coefficients of t0 and t2 are indeed the
Hilbert series for the classical external and central zonotopal algebras. For top(A), we
get q3 + 3q2t + 2qt2 = q(q + t)(q + 2t), and this is clearly a homogenized version of the
characteristic polynomial of the central arrangement in Figure 1.

Remark 4.2. Corollary 4.1(2) on the bosonic Hilbert series of the top fermionic degree
of EA may be upgraded to a stronger algebraic fact – namely, that there is a natural
isomorphism of graded vector spaces

C[xn]/JA,0
∼−→ (EA)∗,r

identifying the central zonotopal algebra of A with the top fermionic-degree piece of EA.

4.2 Real arrangements

Suppose A is a complexified real arrangement corresponding to a matroid M that is
realizable over R. Let Agen be a generic affine arrangement determined by M. Thus
hyperplanes in Agen are obtained as affine translates of linear hyperplanes in A with the
constraint that k hyperplanes have a nonempty intersection if and only if the normals to
these hyperplanes form a linearly independent set. Let fi(Agen) for 0 ≤ i ≤ n denote
the number of i-dimensional faces in the polyhedral complex on Rn induced by Agen.

Corollary 4.3. For any complexified real arrangement A,

Hilb(EA; 1, t) =
n

∑
i=0

fn−i(Agen) · ti.

Observe that fn and f0 give the dimensions of the external and central zonotopal
algebras, respectively, which agrees with Corollary 4.1(1)–(2).

Given a matroid M and d ≥ 1, let dM denote its d-fold thickening, i.e. the matroid
obtained obtained by including (d − 1) additional parallel elements for each element in
M. Given a central arrangement A ⊆ Rn, we denote the two-fold thickening of the
underlying matroid by 2A.

Corollary 4.4. Let A ⊆ Rn be a central arrangement. The following equality holds:

Hilb(EA; q, t)|(q, t)=(q2, q) = Hilb(C[xn]/J2A,1; q).

Thus dim(EA) equals the number of regions in 2Agen.

As an example, the rightmost arrangement in Figure 1 is the generic hyperplane
arrangement in R2 obtained by “doubling” each hyperplane in the arrangement in Ex-
ample 3.5. This arrangement has 19 regions, matching the size of the example basis.
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Figure 1: A central arrangement A (left), the corresponding generic affine arrangment
Agen (center), and the two-fold thickening 2Agen (right).

4.3 A conjecture regarding the classical internal zonotopal algebra

The reader may wonder why the internal zonotopal algebra does not make an appear-
ance in this work. We aim to clarify this matter here. Consider the superspace ideal

I′A := IA,0 :=
(

λ
ρA(L)
L , dλ

ρA(L)
L : L ⊆ Cn a line

)
⊆ Ωn. (4.1)

This ideal is the differential closure of the ideal JA,0 defined in (3.2). In analogy with
Corollary 4.1, we expect that the quotient Ωn/I′A contains not just the classical central
zonotopal algebra but also the internal zonotopal algebra, as explained below. Even
though the Hilbert series of the internal zonotopal algebra is known and, keeping with
the theme, equals a specialization of the Tutte polynomial (cf. [1, Proposition 4.15]), there
is no known basis for its Macaulay inverse [2].

Conjecture 4.5. Let A be a rank r central arrangement in Cn with |A| = m. The bigraded
Hilbert series of Ωn/I′A satisfies the equality

Hilb
(
Ωn/I′A; q, t

)
= (1 + t)rqm−rTA

(
1

1 + t
,

1
q

)
.

At t = 0 we recover Hilb(C[xn]/JA,0; q) as is expected. Developing the right-hand
side in Conjecture 4.5 following (2.8) gives

(1 + t)rqm−rTA

(
1

1 + t
,

1
q

)
= qm−r ∑

A⊆E

(−1)r−r(A)tr−r(A)(1 + t)r(A)

(
1
q
− 1

)|A|−r(A)

,

(4.2)

and extracting the coefficient of tr gives qm−rTA
(
0, q−1). This last quantity is the singly

graded Hilbert series of the internal zonotopal algebra C[xn]/JA,−1. In fact, an analogue
of Corollary 4.3 holds for real arrangements as well, except that one now records the
f -vector of the “bounded” polyhedral complex of Agen.
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Example 4.6. Consider A ⊆ R2 determined by the hyperplanes x1 = 0, x2 = 0, and
x1 + x2 = 0. One may check that I′A = (x2

1, x2
2, x1x2, θ1x1, θ2x2, θ1x2 + θ2x1) and that

Ωn/I′A has monomial basis {1, x1, x2, θ1, θ2, θ1x2, θ1θ2}. Hence

Hilb(Ωn/I′A; q, t) = (1 + 2q) + t(2 + q) + t2.

It is easily checked that (1 + t)2qTA(1/(1 + t), 1/q) for TA(x, y) = x2 + x + y is precisely
the Hilbert series computed above, agreeing with Conjecture 4.5. Note that setting q = 1
gives the polynomial 3 + 3t + t2 whose sequence of coefficients agrees with the f -vector
corresponding to the unique bounded face of the arrangement in the center of Figure 1.
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