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Abstract. For specific trace functions on the Hecke algebra of a finite Weyl group W,
we establish formulas for their values at positive braids in terms of point counts of
Deodhar-type cells in associated algebraic varieties. For irreducible W, we deduce a
uniform enumeration result that interpolates between its rational Catalan and parking
combinatorics, generalizing our earlier work with Galashin and Lam. The key is a new
relationship between the varieties from that work and the braid Steinberg varieties
introduced by Trinh. For W = Sn, we prove a similar point-counting formula for each
a-degree in the HOMFLYPT polynomial of the link closure of the braid, generalizing
work of Shende–Treumann–Zaslow for the “highest” degree.

Keywords: Hecke algebra, link invariant, Coxeter–Catalan combinatorics, Deodhar
cell, braid variety, Springer fiber

1 Introduction

In this work, we present a collection of formulas for special values of special traces on
the Hecke algebras HW(v) associated with finite Weyl groups W. These formulas arise
from point counting on algebraic varieties over finite fields. Nonetheless, the traces
subsume various polynomials studied in combinatorics and knot theory: in the former,
polynomials interpolating between the rational q-Catalan and parking numbers of W; in
the latter, arbitrary a-degrees of the HOMFLYPT polynomials of positive links.

The role of Hecke algebras in both subjects is well-known. Our new contribution is
to focus attention on central elements of the form

∑
w∈Ω

σwσw−1 ,

where Ω is a subset of W, and (σw)w∈W denotes the standard basis of the Hecke algebra
in a particular normalization. These central elements interact nicely with certain cell

*minh-tam.trinh@yale.edu. M. Q. Trinh was partially supported by an NSF Mathematical Sciences
Research Fellowship, Award DMS-2002238.

†nathan.f.williams@gmail.com. N. Williams was partially supported by NSF Grant DMS-2246877.

mailto:minh-tam.trinh@yale.edu
mailto:nathan.f.williams@gmail.com


2 Minh-Tâm Quang Trinh and Nathan Williams

decompositions of our algebraic varieties, which generalize and take inspiration from
similar decompositions studied by Deodhar [4].

In the rest of this introduction, we review all necessary background. In Section 2,
we introduce various algebraic varieties associated with positive elements in the braid
group of W, and state our results about their cell decompositions. In Section 3, we state
applications to relative norms for Hecke algebras, link invariants, and combinatorial
enumeration, as well as some directions of ongoing work. Throughout, we use the
standard “q-notations” [k]q := 1 + q + · · ·+ qk−1 and [k]q! := [k]q · · · [2]q[1]q.

1.1 HOMFLYPT and Catalan

The relationship between algebraic geometry, knot theory, and Catalan combinatorics
can be traced back to a link invariant discovered in the 80s, now called the (reduced)
HOMFLYPT polynomial [5]:

P : {links in R3}/isotopy→ Z[a±1](v).

On the one hand, pieces of the HOMFLYPT polynomials of certain links, called torus
knots, recover q-analogues of the rational Catalan numbers defined by

Catn,p =
(p + n− 1)!

n!p!
for all coprime n, p > 0,

which themselves recover the classical Catalan numbers at p = n + 1; explicitly, the
rational q-Catalan number Catn,p(q) is defined by replacing each factorial k! above with
[k]q!. On the other hand, the HOMFLYPT polynomials of links more general than torus
knots can be expressed in terms of the point counts of certain algebraic varieties built
from the groups GLn(Fq) and their flag varieties.

The phenomena described above were discovered through a particular construction
of HOMFLYPT due to Ocneanu. First recall the fact, due to Alexander, that every link is
the closure of some braid β up to isotopy. In this case we denote the link isotopy class by
Lβ. From the braid group on n strands

Brn =

〈
σ1, . . . , σn−1

∣∣∣∣ σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2,
σiσj = σjσi for |i− j| > 1

〉
,

or rather, its group algebra over Z[v±1], one constructs the Hecke algebra

Hn(v) =
Z[v±1]Brn

⟨(σi − v)(σi + v−1) for all i⟩
.

A trace on Hn(v) is a Z[v±1]-linear function that takes the same value on αβ and βα for
all α, β ∈ Hn(v). Ocneanu constructed such a trace ξn : Hn(v) → Z[a±1](v) for all n,
and showed how to construct P(Lβ) for all β ∈ Brn by renormalizing ξn(β) [10].
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The Hecke algebra, in turn, specializes at v→ 1 to the group ring ZSn. Through the
close connection between the representation theories of Hn(v) and Sn, Jones computed
the HOMFLYPT polynomial of the (n, p)-torus knot Ln,p := L(σ1···σn−1)

p , for p > 0 coprime
to n [10]. In modern conventions, the powers of a in this polynomial range between µ

and µ + 2(min(n, p)− 1), where µ = (n− 1)(p− 1).
For a general link L, it will be convenient to write Pi(L) for the Z[v±1]-coefficient

of alow+i in P(L), where alow is the lowest power of a occurring in P(L). Inspection of
Jones’s formula shows a relationship to rational q-Catalan numbers:

v−µCatSn,p(v2) = P0(Ln,p) = (−1)n−1P2(n−1)(Ln,p+n).

1.2 Geometry over Fq

It turns out that the algebras Hn(v) do have an enumerative meaning that involves their
relation to the groups G = PGLn(Fq). To explain, fix a Borel subgroup B ⊆ G, like the
image of the upper-triangular subgroup of GLn, and recall the Bruhat decomposition

G = ⨿
w∈Sn

BẇB,

where ẇ ∈ G is (the image of) the permutation matrix of w. By a classical theorem of
Iwahori, Hn(q1/2) := Hn(v)|v=q1/2 is isomorphic to a certain convolution algebra formed
by (B× Bop)-invariant functions on G.

The quotient G/B can be identified with the set of complete flags in Fn
q . Iwahori’s

result can be rewritten in terms of G/B as follows. First, a pair of cosets (yB, xB) is
said to be in relative position w ∈ Sn if and only if By−1xB = BwB. In this case, we
write yB w−→ xB. The stratification of G/B × G/B by relative position is precisely its
stratification into orbits under the diagonal action of G. Thus Hn(q1/2) also forms a
convolution algebra of G-invariant functions on G/B× G/B. The indicator functions of
the G-orbits lift to the elements of a basis for Hn(v) as a free module over Z[v±1], called
the standard basis {1w}w∈Sn .

In our conventions, σi = v−11si , where si = (i, i + 1) ∈ Sn. Fix a word s⃗ = (si1 , . . . , siℓ)
and set β⃗s = σi1 · · · σiℓ ∈ Brn. In [12], Shende–Treumann–Zaslow observed that

|X(⃗s)|
|G| =

[
vℓ−n+1 P2(n−1)(Lβ⃗s

)
]∣∣∣

v→q1/2
, (1.1)

where the left-hand side uses the set

X(⃗s) = {(x1B, . . . , xℓB) ∈ (G/B)ℓ | xℓB
si1−→ x1B

si2−→ · · ·
siℓ−→ xℓB}.

Their original proof involved a partition of X(⃗s) into subsets indexed by so-called rulings
of a Legendrian representative of Lβ⃗s

. We now know a more direct proof. The main step
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is to show that |X(⃗s)| = τ(β⃗s)|v→q1/2 , where τ : Hn(v)→ Z[v±1] is the trace given by

τ(1id) = 1 and τ(1w) = 0 for w ̸= id. (1.2)

In what follows, let G, B, X(⃗s) be the algebraic groups and varieties over F̄q that recover
G, B, X(⃗s) on Frobenius-fixed points. Here we use the Frobenius map F : G→ G induced
by the map xi,j 7→ xq

i,j on matrix coordinates. Note that the G-action on G/B induces a
G-action on X(⃗s).

In the mid-2000s, Khovanov–Rozansky discovered a link invariant now called triply-
graded link homology and denoted HHH, whose (triply)-graded dimension is a refinement
of P . Let HHHi ⊆ HHH be the summand corresponding to Pi. In [6], Galashin–
Lam strengthened (1.1) for so-called Richardson braids β⃗s, by matching HHH2(n−1)(Lβ⃗s

)
with the weight-graded, G-equivariant compactly-supported cohomology of X(⃗s). It is
explained there that when Lβ⃗s

= Ln,p, the cohomological and weight gradings recover the
rational q, t-Catalan number Catn,p(q, t) studied by Loehr–Warrington, Hikita, and others,
via a Dyck-path formula for HHH(Ln,p) conjectured by Gorsky–Neguţ and proved by
Mellit. These q, t-numbers specialize to our q-numbers.

Later, for general s⃗, Trinh proved a formula for the entire triply-graded homology
HHH(Lβ⃗s

), in terms of an Sn-action on the weight-graded, G-equivariant cohomology
of a larger Steinberg variety Z(⃗s). Taking the anti-invariant part of the formula gives an
extension of the Galashin–Lam result to all s⃗ [13]. For our purposes, we only need a
more elementary construction that produces a rational character of Sn depending on q,
which we will define in Section 2.2 and denote by χq,Z(⃗s) : QSn → Q.

Theorem 1.1 (Trinh [13]). For any word s⃗ in s1, . . . , sn−1 of length ℓ, we have

(−1)kqℓ−n+1P2k(Lβ⃗s
)|v→q1/2 = χq,Z(⃗s)(eSn,Λk),

where eSn,Λk ∈ QSn is defined in Section 3.3.

1.3 From Sn to W

The varieties above generalize beyond G = PGLn to any (connected, smooth) reductive
algebraic group G over F̄q. Any such algebraic group is determined by a root datum
(Φ ⊆ X, Φ∨ ⊆ X∨), consisting of dual lattices X, X∨ and root systems Φ, Φ∨ satisfying
certain conditions. In this setting, the symmetric group Sn is replaced by the Weyl group
W of Φ, a reflection group of the vector space V := X∨ ⊗Q. The set of transpositions
{si}i ⊆ Sn is replaced by a minimal generating set of simple reflections S ⊆ W. Thus,
any word s⃗ in S gives rise to a G-variety Z(⃗s) with a W-action on some version of its
cohomology, and to a rational character χq,Z(⃗s) : QW → Q, also defined in Section 2.2.

The pair (W, S) forms an example of a finite Coxeter system. This structure gives
rise to a group BrW generalizing Brn, and to an algebra HW(v) generalizing Hn(v). The
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analogue of σ1 · · · σn−1 ∈ Brn is an element βc⃗ ∈ BrW , where c⃗ is a fixed ordering of S, or
Coxeter word. In general, the elements of BrW are no longer related to knot theory in the
way that classical braids are.

By a classical theorem of Chevalley, the graded ring of invariants Q[V]W , where V
is placed in degree 1, is freely generated by homogeneous elements. Their degrees
d1 ≤ · · · ≤ dr, where r = dim V, are called the (fundamental) degrees of the W-action on
V. If W is irreducible, meaning it is not a direct product of smaller reflection groups,
then dr is the unique largest degree, called the Coxeter number h. For such W, we also
assume that G is semisimple, so that V is irreducible. Coxeter–Catalan combinatorics studies
enumerative interpretations of the rational Catalan numbers of irreducible W, defined by

CatW,p = ∏
1≤i≤r

p + di − 1
di

for all p > 0 coprime to h.

The rational q-Catalan number CatW,p(q) is formed by replacing the ith factor above with
[p + di − 1]q/[di]q. It turns out that CatW,p(q) ∈ Z[q]. When W = Sn, the fundamental
degrees are 2, 3, . . . , n, giving CatSn,p(q) = Catn,p(q).

A major tool in this subject is a finite-dimensional graded representation of W that we
will call the (algebraic) rational parking space and denote by ΠW,p =

⊕
i Πi

W,p. Its graded
dimension is [p]rq, the rational q-parking number, whereas the graded dimension of its
W-invariant subspace is the rational q-Catalan number CatW,p(q). By character theory,
ΠW,p is determined up to isomorphism by requiring that

∑
i

qi tr(w | Πi
W,p) =

det(1− qpw | V)

det(1− qw | V)
for all w ∈W. (1.3)

As explained in [1], it can be realized as a quotient of the polynomial ring Q[V] by an
ideal depending on p, arising from the representation theory of the so-called rational
Cherednik algebra of W. It can also be realized via the Steinberg varieties of [13]:

Theorem 1.2 (Trinh [13]). If W is irreducible, c⃗ is a Coxeter word for (W, S), and c⃗p is its
p-fold concatenation for p > 0 coprime to h, then χq,Z(⃗cp)(w) matches the expressions in (1.3).

2 Cell Decompositions

Henceforth, we reserve boldface uppercase for algebraic varieties and algebraic groups
over F̄q, and ordinary italics for the corresponding sets and groups formed by their F-
fixed points, where F : G → G is the Frobenius map arising from a split Fq-form of
G. We mention without further comment that some q-identities below require that the
characteristic of Fq not divide |W|.
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We fix an F-stable Borel subgroup B ⊆ G and an F-stable, maximally split maximal
torus T ⊆ B. Once we identify W with NG(T)/T, we get a Bruhat decomposition of G,
resp. G, into double cosets BwB, resp. BwB. (“Maximally split” implies that NG(T)/T ≃
NG(T)/T.) Note that r = dim T.

Recall that for any w ∈W, the Bruhat length ℓ(w) is the minimal length among words
in S that represent w: equivalently, dim BwB/B. We set σw = v−ℓ(w)1w.

The Bruhat order on W is the partial order < generated by the relations w < ws for
all w ∈ W and s ∈ S such that ℓ(w) < ℓ(ws), and the analogous relations with sw in
place of ws. There is a unique, involutive, longest element w◦ ∈W; multiplication by w◦
inverts the Bruhat order.

2.1 Richardson Varieties and Deodhar Cells

As a warm-up, we review a simpler construction from our joint work with Galashin and
Lam [7]. For any word s⃗ = (s(1), . . . , s(ℓ)) in S, let

O(⃗s) = {x⃗B = (x0B, x1B, . . . , xℓB) ∈ (G/B)1+ℓ | x0B s(1)−→ x1B s(2)−→ · · · s(ℓ)−→ xℓB}.

For any v ∈W, the v-twisted (open) Richardson variety of s⃗ in [7] is

R(v) (⃗s) = {x⃗B ∈ O(⃗s) | x0vw◦B = B vw◦←−− xℓB}.

These varieties admit cell decompositions of the following form.
Recall that a subword of s⃗ is a sequence ω⃗ = (ω(1), . . . , ω(ℓ)) such that ω(i) ∈ {id, s(i)}

for all i. It will be convenient to write ω(i) := ω(1) · · ·ω(i) below. For any v ∈ W, a
v-distinguished subword of s⃗ is a subword ω⃗ such that vω(i) ≤ vω(i−1)s(i) for all i. For any
such ω⃗, we set

dω⃗ = {i | vω(i) < vω(i−1)} and eω⃗ = {i | ω(i) = id}.

Let D(v) (⃗s) be the set of v-distinguished subwords ω⃗ of s⃗ for which ω(ℓ) = id, and let
M(v) (⃗s) ⊆ D(v) (⃗s) be the subset of ω⃗ such that |eω⃗| = r. Then Deodhar essentially
observed in [4] that R(v) (⃗s) is partitioned by disjoint, B-stable subvarieties R(v) (⃗s, ω⃗),
now called Deodhar cells, for ω⃗ running over D(v) (⃗s) and

R(v) (⃗s, ω⃗) := {x⃗B ∈ R(v) (⃗s) | B
w◦vω(i)−−−−→ xiB for all i}

≃
{⃗

t ∈ Aℓ

∣∣∣∣ ti ̸= 0 for i ∈ eω⃗,
ti = 0 for i /∈ dω⃗ ∪ eω⃗

}
.

Above, Aℓ denotes ℓ-dimensional affine space. In particular,

|R(v) (⃗s, ω⃗)| = q|dω⃗ |(q− 1)|eω⃗ |. (2.1)
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This relates the point count |R(v) (⃗s)| to the trace (1.2), as results from [7] show that

vℓτ(β⃗sσvw◦σ(vw◦)−1) = ∑
ω⃗∈D(v) (⃗s)

v2|dω⃗ |(v2 − 1)|eω⃗ |, (2.2)

Indeed, when W = Sn, the Deodhar cell decomposition recovers the ruling partition
mentioned in loc. cit.

2.2 Springer Theory

Recall that B = T ⋉ U, where U is the unipotent radical of B, i.e., its unique maximal,
connected, normal unipotent subgroup. The Springer resolution is the variety of pairs
(u, xB) ∈ G×G/B that satisfy u ∈ xUx−1, which forms a resolution-of-singularities of
the unipotent variety of G. The fibers of the resolution map are called Springer fibers. In
the 70s, Springer showed that W acts on the cohomology of any Springer fiber (G/B)u
with u ∈ U = UF. This gives rise to a character χq,(G/B)u : QW → Q:

χq,(G/B)u(w) = tr(wF | H∗((G/B)u)).

When W = Sn, it can be computed in terms of q-Kostka polynomials. We can now define
the character χq,Z(⃗s) mentioned earlier: For s⃗ of length ℓ, it is

χq,Z(⃗s) =
(−1)r−ℓ

|G| ∑
u∈U
|O(⃗s)u|χq,(G/B)u ,

where O(⃗s)u is the set of Frobenius-fixed points of

O(⃗s)u = {x⃗B ∈ O(⃗s) | uxℓB = x0B}.

Indeed, at the level of sets, Z(⃗s) = ⨿u∈U (O(⃗s)u × (G/B)u).
We will not actually use the variety Z(⃗s) in what follows. It turns out that to obtain

clean cell decompositions, we need a “gauged” version

Z□(⃗s) = {(u, x⃗B) ∈ U×O(⃗s) | x0B = uxℓB}.

It contains equivalent information, in the sense that |Z(⃗s)|/|G| = |Z□(⃗s)|/|B|, and more-
over, the G-action on Z(⃗s) restricts to a B-action on Z□(⃗s).

In [3], Borho–MacPherson studied a generalization of Springer theory depending on
a choice of subset J ⊆ S. To explain their work, let WJ ⊆ W be the subgroup generated
by J, and let PJ = BWJB, so that PJ forms an example of a parabolic subgroup of G. We
have PJ = LJ ⋉ UJ , where LJ is a reductive algebraic group containing T, called the Levi
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factor of PJ , while UJ is the unipotent radical of PJ . We can identify WJ with NLJ (T)/T,
so WJ is also a Weyl group. Let

eWJ ,± =
1
|WJ | ∑

w∈WJ

(±1)ℓ(w)w,

so that eWJ ,+, resp. eWJ ,−, is the symmetrizer, resp. anti-symmetrizer, in QWJ .
The (smaller) partial Springer resolution is the variety of pairs (u, xPJ) ∈ G × G/PJ

that satisfy u ∈ xPJx−1, which forms a resolution-of-singularities of the Zariski closure
of a certain unipotent conjugacy class in G determined by J. Borho–MacPherson’s work
implies that the point count of the partial Springer fiber over u ∈ U is given by

|(G/PJ)u| = χq,(G/B)u(eWJ ,−). (2.3)

We now introduce parabolic generalizations of the varieties Z□(⃗s). Let wJ,◦ be the longest
element of WJ , and let

ZJ,+
□ (⃗s) = {(u, x⃗B, yB) ∈ UJ ×O(⃗s)×G/B | x0B

wJ,◦−−→ yB
wJ,◦←−− uxℓB},

ZJ,−
□ (⃗s) = {(u, x⃗B) ∈ UJ ×O(⃗s) | x0B = uxℓB}.

Note that Z∅,+
□ (⃗s) = Z∅,−

□ (⃗s) = Z□(⃗s), whereas ZS,−
□ = X(⃗s). Using (2.3), we show that:

|Z J,±
□ (⃗s)|
|PJ |

= χq,Z(⃗s)(eWJ ,±). (2.4)

We can stratify ZJ,±
□ (⃗s) into disjoint Pj-stable subvarieties Z[v],±

□ (⃗s), corresponding to the
conditions PJxℓB = PJv−1B, for [v] running over W/WJ . Let W J,+ be the set of minimal-
length(!) left coset representatives for WJ in W. Let W J,− be the set of maximal-length
representatives. Our main geometric result is:

Theorem 2.1. If v ∈ W J,±, then Z[v],±
□ (⃗s) forms a PJ-equivariant affine-space bundle over

(R(v) (⃗s)× PJ)/B in the smooth topology on F̄q-schemes. In the +, resp. −, case, its relative
dimension is ℓ(w◦), resp. ℓ(w◦wJ,◦). Moreover,

|Z[v],+
□ (⃗s)|
|PJ |

=
|R(v) (⃗s)|
|T| , resp.

|Z[v],−
□ (⃗s)|
|PJ |

=
|R(v) (⃗s)|
|B ∩ LJ |

.

Corollary 2.2. For any subset J ⊆ S and word s⃗ in S, we have

χq,Z(⃗s)(eWJ ,+) =
1

(q− 1)r ∑
v∈W J,+

∑
ω⃗∈D(v) (⃗s)

q|dω⃗ |(q− 1)|eω⃗ |,

χq,Z(⃗s)(eWJ ,−) =
1

qℓ(wJ,◦)(q− 1)r ∑
v∈W J,−

∑
ω⃗∈D(v) (⃗s)

q|dω⃗ |(q− 1)|eω⃗ |.

Proof. Combine (2.4), Theorem 2.1, and (2.1).



Cell Decompositions of Hecke Traces and Link Polynomials 9

3 Applications

3.1 Relative Norms

As explained in [9], Hoefsmit–Scott observed that the formula

NJ(β) := ∑
v∈W J

v−2ℓ(v)1vβ1v−1 = ∑
v∈W J

σvβσv−1

defines an injective Z[v±1]-linear relative norm NJ : Z(HWJ (v)) → Z(HW(v)), where we
write Z(H) to denote the center of an algebra H. As special cases,

NJ(1) = ∑
v∈W J,+

σvσv−1 and NJ(σ
2
wJ,◦) = ∑

v∈W J,−
σvσv−1 . (3.1)

Combining Corollary 2.2 with (2.2), we deduce:

Corollary 3.1. For any word s⃗ in S of length ℓ, the trace vℓτ(β⃗sNJ(σ
2
wJ,◦)), resp. vℓτ(β⃗sNJ(1)),

specializes to (q− 1)rχq,Z(⃗s)(eWJ ,+), resp. qℓ(wJ,◦)(q− 1)rχq,Z(⃗s)(eWJ ,−), at v→ q1/2.

When W = Sn, this result recovers formulas that Lascoux proved with symmetric
functions: See [14, Proposition 3.8, Theorem 4.1]. In ongoing work, we establish a more
general compatibility between NJ and parabolic induction of class functions from LJ to G.

3.2 Parabolic Rational Parking Numbers

Henceforth, W is irreducible with Coxeter number h. By varying J, we can define
polynomials interpolating between the rational q-Catalan and q-parking numbers of
W. Let dJ,1, . . . , dJ,r be the degrees of the WJ-action on V, and let eJ,1(V), . . . , eJ,r(V)
be the degrees in which V occurs as a simple QWJ-submodule of the coinvariant module
Q[V]/IJ(V), where IJ(V) ⊆ Q[V] is the ideal of WJ-invariants of positive degree. When
J = S, we have dJ,i = di and eJ,i(V) = di + 1. For p > 0 coprime to h, we define the
parabolic rational parking numbers by

ParkJ,±
W,p = ∏

i

p± eJ,i(V)

di
.

We define the parabolic rational q-parking numbers ParkJ,±
w,p(q) by replacing the ith factor

above with [p± eJ,i(V)]q/[di]q. Extending work of Bessis–Reiner [2], we prove:

Theorem 3.2. ParkJ,+
w,p(q), resp. ParkJ,−

w,p(q), is the graded dimension of the subspace of WJ-
invariants, resp. WJ-anti-invariants, of ΠW,p.
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Corollary 3.3. For any J ⊆ S, Coxeter word c⃗, and p > 0 coprime to h, we have

ParkJ,+
W,p(q) =

1
(q− 1)r ∑

v∈W J,+
∑

ω⃗∈D(v) (⃗cp)

q|dω⃗ |(q− 1)|eω⃗ |,

ParkJ,−
W,p(q) =

1
qℓ(wJ,◦)(q− 1)r ∑

v∈W J,−
∑

ω⃗∈D(v) (⃗cp)

q|dω⃗ |(q− 1)|eω⃗ |.

In particular, ParkJ,+
W,p = ∑v∈W J,+ |M(v) (⃗cp)| and ParkJ,−

W,p = ∑v∈W J,− |M(v) (⃗cp)|.

Proof. Combine Theorem 1.2, Corollary 2.2, and Theorem 3.2.

Note that Park∅,+
w,p (q) = Park∅,−

w,p (q) = [p]rq and ParkS,+
w,p (q) = CatW,p(q). Therefore,

Corollary 3.3 interpolates between the parking and Catalan enumeration results of [7].

3.3 HOMFLYPT a-Degrees and Kirkman Numbers

Observe that W J,+, resp. W J,−, consists of those w ∈W whose (right) ascent set Asc(w) :=
{s ∈ S | ws > w}, resp. descent set Des(w) := {s ∈ S | ws < w}, contains J. Hence, the
elements in (3.1) respectively decompose as sums, over supersets I ⊇ J, of elements

ζ+I := ∑
Asc(v)=I

σvσv−1 and ζ−I := ∑
Des(v)=I

σvσv−1 .

Note that ζ+S = ζ−∅ = 1 and ζ+∅ = ζ−S = σ2
w◦ . By inclusion-exclusion on the elements in

(3.1), the elements ζ±I are again central in HW(v).

Question 3.4. For general W and I, is there a more familiar description of the traces on HW(v)
that send β 7→ τ(βζ±I )?

Henceforth, W = Sn. Identifying S with the index set {1, . . . , n − 1}, we see that
Des(w) consists of the indices i ∈ S such that w, as a permutation, satisfies w(i + 1) <
w(i). An analogous statement holds for Asc(w).

Recall that the irreducible characters of Sn are indexed by partitions λ ⊢ n. The hook
partition (n− k, 1, . . . , 1) corresponds to the character of Λk(V), the kth exterior power
of the reflection representation V. For general irreducible W, let eW,Λk ∈ QW be the
symmetrizer for Λk(V), determined by the identity

1
|W| ∑

w∈W
det(1− tw | V)w = ∑

k
(−t)keW,Λk .

Using work of Isaev–Ogievetsky on central elements in Hn(v) [8], we show:

Theorem 3.5. If I = {1, 2, . . . , n− 1− k}, then χq,Z(⃗s)(eSn,Λk) = 1
(q−1)n−1 τ(β⃗sζ

−
I )|v→q1/2 .
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27 J = ∅ 0

s1s2s1

18 J = {3} 1

s1s3 s1s3 s1s3s2

18 J = {2} 3

s2s3s2

18 J = {1} 1

s1 s1 s1

s1s2 s1s2

10 J = {2, 3} 5

s3s3s3

s3s2s3s2

10 J = {1, 2} 5

s2s2s2

s2s3s2s3s2s1s2s1

12 J = {1, 3} 7

e e e e e

5 J = {1, 2, 3} 5

Figure 1: We take W = S4 and c⃗ = (s1, s2, s3) and p = 3. Each box is a set D J (⃗cp) :=
⨿v∈W J,+ D(v) (⃗cp) for some J. Edges between boxes are containments between J’s. Each
ω⃗ ∈ D J (⃗cp) is drawn as a 3× 3 box, with elements of eω⃗ in black. For example,
represents ω⃗ = (id, s2, s3, s1, id, s3, s1, s2, id). In each box, the number to the left, resp.
right, of J is the number of w ∈ W with Des(w) ⊇ J, resp. Des(w) = J. The former is
ParkJ,+

W,p. The rightmost number in the (k + 1)th row is P2k(L4,3)|v→1.

By Theorem 1.2, the values χq,Z(⃗cp)(eSn,Λk) for Coxeter words c⃗ and p coprime to n
are the rational q-Kirkman numbers of [11] in type A. Via (2.2), Theorems 1.1 and 3.5 give:

Corollary 3.6. For any word s⃗ in s1, . . . , sn−1 of length ℓ and 0 ≤ k ≤ n− 1, we have

(−1)kvℓ−n+1P2k(Lβ⃗s
) =

1
(v2 − 1)n−1 ∑

v∈Sn
Des(v)={1,2,...,n−1−k}

∑
ω⃗∈D(v) (⃗s)

v2|dω⃗ |(v2 − 1)|eω⃗ |. (3.2)

That is, each a-degree of P(Lβ⃗s
) is a sum of Deodhar-cell point counts.

Figure 1 illustrates Corollaries 3.3 and 3.6 simultaneously. When k = n− 1, the outer
sum on the right-hand side of (3.2) collapses to v = id, and we recover the “Legendrian
ruling filtration” formula of Shende–Treumann–Zaslow mentioned in Section 1.2.

It is natural to seek a generalization of Corollary 3.6 to other W. For example, when
s⃗ = c⃗h+1, this would recover the f -vectors of the W-associahedron. We have been unable
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to find such a construction. This may be related to the absence of uniform formulas for
q-Kirkman numbers in general. Attractive formulas do exist for coincidental types, where
the degrees of W form an arithmetic sequence [11, Section 10].
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