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A degeneration of the brick variety and a mixed
subdivision of the associahedron into cubes
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Abstract. We study a degeneration of Escobar’s brick variety in cases where it is toric.
We show that the components of the central fibre of the degeneration are reduced toric
products of Richardson varieties. We write the moment polytope of the variety, which
has the same normal fan as the brick polytope of Pilaud and Santos, as a Minkowski
sum of Bruhat interval polytopes and show that the polyhedral subdivision induced by
the degeneration is a mixed subdivision. As corollaries, we obtain a characterization
of toric Richardsons, and a subdivision of the associahedron into combinatorial cubes.
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1 Introduction

Toric geometry provides a bridge between algebraic geometry and discrete geometry.
Every projectively embedded toric variety has a moment polytope, and every lattice
polytope satisfying certain conditions comes from a toric variety. Characteristics of the
moment polytope can be read off from its toric variety (e.g., the dimension of the moment
polytope is the dimension of the effective torus action on the variety.)

Our focus is on brick varieties and brick polytopes. Let Q be a word in the simple
generators of Sn, and let w ∈ Sn. The brick polytope was defined by Pilaud and Santos
in [10] as a polytopal realization of certain subword complexes ∆(Q, w); the subword
complex was originally defined by Knutson and Miller [6]. The brick variety BrickQ, with
respect to Q, was defined by Escobar in [4]. There, Escobar showed that, under certain
conditions on Q, the brick variety BrickQ is a toric variety, and, moreover, that it is
the toric variety of the brick polytope. We introduce a slight variation on the brick
polytope called the bulky brick polytope which is the moment polytope of the brick variety
with respect to a different choice of projective embedding from [4]. Our first result is
that the bulky brick polytope has a Minkowski sum decomposition into Bruhat interval
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Figure 1: Left: Subdivision of the 2D associahedron into combinatorial cubes. Center:
Projection of subdivision of the 3D associahedron into combinatorial cubes. Right:
Projections of the skeletons of the 3D associahedron and 3D bulky associahedron.

polytopes (Theorem 4.6). Using this, we prove a new characterization of toric Richardson
varieties (Theorem 4.7).

In [13], Sturmfels proved that Gröbner degenerations of toric varieties correspond to
regular subdivisions of their moment polytopes. Applying this principle, we describe
a degeneration of BrickQ in Section 5 and study the corresponding subdivision of the
brick polytope. We show that the central fibre of this degeneration is a union of reduced
products of toric Richardsons, and that the degeneration induces a mixed subdivision of
the corresponding brick polytope. In a special case, we apply results of [9] to produce
a subdivision of the associahedron into pieces combinatorially equivalent to cubes. See
Figure 1 for illustrations of the subdivisions of the 2D and 3D associahedra.

2 The brick polytope

We recall the brick polytope of [10] and [11], closely following the exposition in [4], and
we define the bulky brick polytope, laying the foundations for this paper.

Consider the symmetric group Sn on n letters. The simple transposition si ∈ Sn swaps
i and i + 1 and fixes all other j. Any element w ∈ Sn can be expressed w = si1 · · · sik ,
where the sij are simple transpositions in Sn. The length ℓ(w) of an element w ∈ Sn is the
minimal k over all expressions w = si1 · · · sik of w as a product of simple transpositions
sij in Sn. Any expression w = si1 · · · sik with k = ℓ(w) is called reduced. A word
Q = (sq1 , . . . , sqm) in Sn is a sequence of simple transpositions sqi ∈ Sn, and a subword of
Q is a subsequence of Q. We can associate to any word Q = (sq1 , . . . , sqm) a permutation
sq1 · · · sqm . If v ∈ Sn, then a word for v is any word Q = (sq1 , . . . , sqm) in Sn with
v = sq1 · · · sqm . The Bruhat order ≤ on Sn is the partial order on Sn in which u ≤ v if and
only if, for any word Q of u, there is a subword of Q that is a word for u. The longest
permutation w0 in Sn sends i to n + 1 − i for all i.
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Definition 2.1 ([8, 14]). The Bruhat interval polytope Pu,v is the convex hull of the points
(w(1), w(2), . . . , w(n)) over all u ≤ w ≤ v.

Definition 2.2 ([2]). The twisted Bruhat interval polytope P̃u,v is the convex hull of the
points (n + 1 − w−1(1), n + 1 − w−1(2), . . . , n + 1 − w−1(n)) over all u ≤ w ≤ v.

Remark 2.3. Observe that P̃u,v = Pw0v−1,w0u−1 . A (twisted) Bruhat interval polytope Pu,v (P̃u,v)
is toric if dim Pu,v = ℓ(v)− ℓ(u) (dim P̃u,v = ℓ(v)− ℓ(u)). When Pu,v is toric, so are Pu−1,v−1

and P̃u,v, and vice versa [9].

Fix a word Q = (sq1 , . . . , sqm) in Sn. We can view a subword J of Q as a sequence
(sj1 , . . . , sjm) obtained from Q by replacing some entries by 1. Denote by Q \ J the se-
quence of length |Q| whose k-th entry equals 1 if jk ̸= 1 and equals sqk otherwise.
Denote by J(k) the product of the leftmost k entries in J, and J(0) = 1.

Definition 2.4 ([6]). The subword complex ∆(Q, w), with respect to a word Q and w ∈ Sn,
is the simplicial complex on vertex set Q whose facets (faces) are the subwords J of Q such that
the product (Q \ J)(|Q|) is a reduced expression (contains a reduced expression) for w.

Definition 2.5 ([6]). The Demazure product Dem(Q) of a word Q in Sn is defined inductively:

• Dem(empty word) = 1.

• Dem((Q, si)) =

{
Dem(Q) · si, if ℓ(Dem(Q) · si) > ℓ(Dem(Q)),
Dem(Q), otherwise.

Define [n] := {1, . . . , n}. Consider the standard basis vectors pi of Rn, with 1
appearing in entry i and 0 appearing in all other entries. Define the vectors ωi =
p1 + · · · + pi for i ∈ [n] and αi = pi − pi+1 for i ∈ [n − 1]. Given a subword com-
plex ∆(Q, w0) and a face J of ∆(Q, w0), the weight function and bulky weight function,
w(J, ·) : {subwords of Q} → Rn and w(J, ·) : {subwords of Q} → Rn, are defined by

w(J, k) := (Q \ J)(k)(ωqk) and w(J, k) := (Q \ J)(k)

(
n

∑
i=1

ωi

)
.

The brick vector is B(J) := ∑|Q|
i=1 w(J, k) and the brick polytope of Q is

B(Q) := conv{B(J) | J ∈ ∆(Q, w0) and (Q \ J)(|Q|) = w0}.

The bulky brick vector is B(J) = ∑|Q|
k=0 w(J, k), and the bulky brick polytope of Q is

B(Q) := conv{B(J) | J ∈ ∆(Q, w0) and (Q \ J)(|Q|) = w0}.

Remark 2.6. The brick polytope was originally defined in [10]. The definitions of w(J, k), B(J),
and B(Q) come from [11] with a modification made by [4]. We introduce the bulky versions
w(J, k), B(J), and B(Q) to match our treatment of the brick variety.

Definition 2.7 ([11]). Let J be a face of ∆(Q, w0). The root function is r(J, ·) :
{subwords of Q} → Rn, with r(J, k) := (Q \ J)(k)(αqk). We say Q is root independent if for
some facet (or all facets) J of ∆(Q, w0), the multiset {{r(J, k) : qk ∈ J}} is linearly independent.
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3 A variety of varieties

We recall several geometric objects, including the brick variety of [4].
Fix a basis e = (e1, . . . , en) for Cn. Let G = GLn(C) be the set of n × n invertible

matrices over C. Consider the set of upper (resp. lower) triangular matrices B+ (resp.
B−) in G, and the set of diagonal matrices T in G. For i1 < · · · < ik, set F{i1,...,ik} :=
Span(ei1 , . . . , eik). Let Gr(k, n) be the Grassmannian of k-planes in Cn, and observe that
there is a natural action of G on Gr(k, n). Coordinate subspaces of the form F{i1,...,ik}
are exactly the T-fixed points Gr(k, n)T of Gr(k, n). The complete flag variety Fln is the
variety of complete flags of subspaces in Cn:

Fln = {F• = (F1 ⊆ F2 ⊆ · · · ⊆ Fn−1 ⊆ Fn = Cn) | dim(Fi) = i}.

The standard flag in Cn is Fst
• =

(
F{1} ⊆ F{1,2} ⊆ · · · ⊆ F{1,...,n−1} ⊆ Cn

)
, and the oppo-

site flag in Cn is Fop
• =

(
F{n} ⊆ F{n,n−1} ⊆ · · · ⊆ F{n,n−1,n−2,...,2} ⊆ Cn

)
. The group G

acts on Fln by the action

g · F• := ((g · F1) ⊆ (g · F2) ⊆ · · · ⊆ (g · Fn−1) ⊆ Cn), g ∈ G, F• ∈ Fln.

For w ∈ Sn we define the Schubert variety Xw = B−wB+/B+ and opposite Schubert
variety Xw = B+wB+/B+ which have the properties that Xw ⊆ Xv iff w ≥ v, and
Xw ⊆ Xv iff w ≤ v. The Richardson variety Xv

u := Xu ∩ Xv ̸= ∅ if and only if u ≤ v. For
σ ∈ Sn, define σ · F{1,...,n} := F{σ(1),...,σ(k)} and σ · Fst

• := ((σ · F{1}) ⊆ (σ · F{1,2}) ⊆ · · · ⊆
(σ · F{1,...,n−1}) ⊆ Cn). The T-fixed points (Fln)T of Fln are {σ · Fst

• | σ ∈ Sn}.
The group G × G acts on Fln × Fln by ( f , g) · (F•, G•) := ( f · F•, g · G•) for all f , g ∈ G,

F•, G• ∈ Fln. Define G∆ := {(g, g) | g ∈ G} ⊆ G × G. For σ ∈ Sn, the set of pairs of flags
in relative position σ is the G∆-orbit of (Fst

• , σ(Fst
• )) in Fln × Fln, and we will denote this

set by D◦
σ. The closure Dσ of D◦

σ in Fln × Fln is Dσ = ⊔σ′≤σD◦
σ′ (see, e.g., [3, Lemma 2.1].)

Let Q = (si1 , . . . , sik) be a word in Sn. The brick variety BrickQ of [4] is the projective
variety consisting of sequences of flags such that the first flag is Fst

• and the last flag is
Fop
• and consecutive pairs of flags lie in Dsij

:

BrickQ = {(F0
• , F1

• , . . . , Fk
•) | F0

• = Fst
• , Fk

• = Fop
• , and (Fj

•, Fj+1
• ) ∈ Dsij+1

, j = 0, . . . , k − 1}

= (Dsi1
× Flk−1

n ) ∩ (Fln × Dsi2
× Flk−2

n ) ∩ · · · ∩ (Flk−1
n × Dsik

) ∩ (Fst
• × Flk−1

n × Fop
• ).

By [4, Theorem 20], the variety BrickQ is smooth and irreducible, of dimension |Q| −
ℓ(w0). Consider the set J = {J ∈ ∆(Q, w0) : (Q \ J)(|Q|) = w0}. For J ∈ J , define the
T-fixed point pJ of BrickQ as

pJ :=
(

Fst
• , ((Q \ J)(1)) · Fst

• , . . . , ((Q \ J)(m−1)) · Fst
• , Fop

•
)

.

By [4, page 7], the map J → (BrickQ)T that sends J to pJ is bijective.
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Example 3.1 ([4, Example 12]). Consider the word Q = (s1, s2, s1, s2, s1) in S3. The brick
variety BrickQ can be visualized with a Magyar diagram:

C3

⟨e1, e2⟩ V2 ⟨e2, e3⟩

⟨e1⟩ V1 V3 ⟨e3⟩

(0)

The points (Fst
• , F1

• , . . . , F4
• , Fop

• ) of BrickQ between Fst
• and Fop

• are of the form F1
• = (V1 ⊆

⟨e1, e2⟩ ⊆ C3), F2
• = (V1 ⊆ V2 ⊆ C3), F3

• = (V3 ⊆ V2 ⊆ C3), and F4
• = (V3 ⊆ ⟨e2, e3⟩ ⊆ C3).

The point pJ corresponding to J = (−,−, s1, s2,−) has V1 = ⟨e2⟩, V2 = ⟨e2, e3⟩, and V3 = ⟨e2⟩.

4 Moment polytopes

4.1 Background

We discuss the moment polytope of the brick variety, following the exposition in [4].

Definition 4.1. Let T′ = (C×)k. An algebraic action of T′ on the projective space Pm is always
of the form (t1, . . . , tk) · (x1 : · · · : xm) = (x1 ∏k

i=1 tw1,i
i : · · · : xm ∏k

i=1 twm,i
i ) with wj,i ∈ Z. In

such a case we say the T′-weight of the fixed point (0 : · · · : 0 : xj : 0 : · · · : 0) is the vector
(wj,1, . . . , wj,k) ∈ Zk ⊆ Rk. Suppose X is a variety with an algebraic action of T′.

• If T′ acts on X with finitely many T′-fixed points and there is a T′-equivariant embedding
f : X ↪→ Pm for some m, then the moment polytope of X with respect to f is the convex
hull of the T′-weights over the points f (γ), where γ is a T′-fixed point of X.

• The effective torus is T′/StT′(x), where StT′(x) is the T′-stabilizer of a general1 x ∈ X.

• X is a toric variety with respect to the action of T′ if X contains a dense T′-orbit. Equiv-
alently, by orbit-stabilizer, X is toric if and only if dim(X) = dim(T′/StT′(x)).

The T-weight of the image of the fixed point σ · F{1,...,n} of Gr(k, n) under the “Plücker
embedding” ψk : Gr(k, n) ↪→ P(n

k)−1 is σ(ωk). The torus T acts diagonally on the variety
∏n

k=1 Gr(k, n), and there is a projective embedding ψ of ∏n
k=1 Gr(k, n) into a projective

space, given by the product of Plücker embeddings ψk : Gr(k, n) ↪→ P(n
k)−1, followed

by the “Segre embedding”. The T-weight of the fixed point (σ1 · F{1}, . . . , σn · F{1,...,n})
under ψ, where σk ∈ Sn for k = 1, . . . , n, is ∑n

k=1 σk(ωk). There is a T-equivariant em-
bedding ϕn : Fln ↪→ ∏n

k=1 Gr(k, n), where F• = (F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ Cn) is sent to
(F1, F2, . . . , Fn). The T-weight of the fixed point σ · Fst

• under ϕn is σ(ω1 + · · ·+ ωn).
1general in the sense that there is an open subset U ⊆ X such that StT′(x) is constant for all x ∈ U.
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Remark 4.2. Henceforth, we assume that a T-invariant subvariety of Gr(k, n) is embedded
in P(n

k)−1 via ψk, and a T-invariant subvariety of Fln is embedded in ∏n
k=1 Gr(k, n) via ϕn.

We will use µZ to denote the map sending a T-invariant subvariety X (or T-fixed point) of
Z to its moment polytope (or T-weight), where Z will always be a single Grassmannian, a
product of Grassmannians, a single flag variety, or a product of flag varieties. We always have
µZ(X) = convx∈XT µZ(x), where XT denotes the set of T-fixed points of X.

Remark 4.3. Observe that σ(ω1 + · · ·+ ωn) = σ(n, n − 1, . . . , 2, 1) = (n + 1 − σ−1(1), n +
1 − σ−1(2), . . . , n + 1 − σ−1(n)). The T-fixed points in the Richardson variety Xv

u are precisely
the coordinate flags w · Fst

• , with u ≤ w ≤ v. Thus, the moment polytope of Xv
u is the twisted

Bruhat interval polytope P̃u,v. The dimension of a T-invariant subvariety matches the dimension
of its moment polytope precisely when the variety is toric, so P̃u,v is toric exactly when Xv

u is.

Let Q = (sq1 , . . . , sq|Q|) be a word in Sn with Dem(Q) = w0. Then BrickQ is a T-

invariant subvariety of Fl|Q|+1
n and thus has a moment polytope µ

Fl|Q|+1
n

(BrickQ) given by
the convex hull of the resulting T-weights of its T-fixed points.

Alternatively, we may view BrickQ more directly as a subvariety of a product of
Grassmannians. We define πi : Fl|Q|+1

n → Fln as the projection onto the i-th Fln factor

(with indexing of i starting at 0) and νi : Fln
ϕn
↪−→ ∏n

j=1 Gr(j, n) → Gr(i, n) as the com-

position of ϕn with the projection onto Gr(i, n). We define ρi : BrickQ → Gr(qi, n) by
ρi = νqi ◦ πi and obtain the T-equivariant embeddings

ρ : BrickQ ↪→
|Q|

∏
i=1

Gr(qi, n), (F0
• , . . . , F|Q|

• ) 7→ (ρ1(F1
• ), . . . , ρn(F|Q|

• )),

π : BrickQ →
|Q|

∏
i=0

n

∏
j=1

Gr(j, n), (F0
• , . . . , F|Q|

• ) 7→ (ϕn(π0(F1
• )), . . . , ϕn(π|Q|(F|Q|

• ))).

Let J be a subword of Q, and recall the fixed point pJ of BrickQ corresponding to J.

The T-weight of pJ under the embedding ρ is the brick vector B(J) = ∑|Q|
i=1(Q \ J)(i)(ωqi),

and the T-weight of the fixed point pJ under the embedding π is the bulky brick vector

B(J) = ∑|Q|
i=0(Q \ J)(i)(ω1 + · · · + ωn). Thus, the moment polytope of BrickQ under ρ

is the brick polytope B(Q), and the moment polytope of BrickQ under the embedding
obtained by applying ϕn to each Fln factor is the bulky brick polytope B(Q). As the
brick polytope and bulky brick polytope are moment polytopes of BrickQ with respect
to two different projective embeddings, it follows from the theory of toric varieties (see,
e.g., [5]) that B(Q) and B(Q) have the same normal fan2.

Theorem 4.4 ([4, Theorem 15]). BrickQ is a toric variety if and only if Q is root independent
and ℓ(w0)<|Q|≤ℓ(w0) + dim(T). Further, BrickQ is the toric variety of B(Q) (and of B(Q)).

2For exposition on “normal fans”, see, for example, [11, Section 5.2].
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4.2 Minkowski decomposition

The main results of this subsection are Theorem 4.6, which gives a Minkowski decom-
position of B(Q), and Theorem 4.7, which characterizes toric Richardson varieties3.

Lemma 4.5. Let πi : Flk
n → Fln be the projection of Flk

n onto its i-th factor (with indexing of i
starting at 0). Let R, S be words in Sn. Set i := |R|, u := w0Dem(S)−1, and v := Dem(R).

1. We have πi(BrickR+S) = Xv
u, where + denotes concatenation of words.

2. If BrickR+S is toric, then Xv
u is toric.

Proof. (1) follows from slight modifications of the proof of [4, Theorem 26]. For (2),
assume BrickR+S is toric. Then it contains a dense T-orbit O. As πi is T-equivariant,
surjective onto Xv

u, and continuous, it follows that πi(O) is a dense T-orbit in Xv
u.

Theorem 4.6. For J = {J ∈ ∆(Q, w0) : (Q \ J)(|Q|) = w0} and λℓ = min({k : k > ℓ, qk =
qℓ} ∪ {|Q|})− ℓ, we have

B(Q) = (|Q|+ 1)ωn +
n−1

∑
j=1

min({k : qk = j})ωj +
|Q|

∑
ℓ=1

λℓ conv
J∈J

w(J, ℓ) (4.1)

= P̃1,1 +
|Q|

∑
k=1

P̃w0Dem(sqk+1 ,...,sq|Q| )
−1,Dem(sq1 ,...,sqk )

. (4.2)

Proof sketch. Manipulating the formula for B(J), one finds

B(J) =
|Q|

∑
k=1

w(J, k) = (|Q|+ 1)ωn +

(
n−1

∑
j=1

min({k : qk = j})ωj

)
+

|Q|

∑
ℓ=1

λℓw(J, ℓ).

When L is the set of facets of ∆(Q, w0), [10] showed that B(Q) = convJ∈L ∑|Q|
k=1 w(J, k) =

∑|Q|
k=1 convJ∈L w(J, k). Further arguments can show that Equation (4.1) follows from their

result once we write B(Q) as above. One can show that convJ∈J w(J, k) is the polytope
µGr(qk,n)ρk(BrickQ)4. Manipulating this expression (and using Lemma 4.5), we eventually

arrive at B(Q) = ∑|Q|
k=0 ∑n

j=1 µGr(j,n)(νj(πk(BrickQ))). Applying [14, Proposition 2.7], we
have µFln(C)(Xv

u) = ∑n
i=1 µGr(i,n)(νi(Xv

u)), and obtain

B(Q) =
|Q|

∑
k=0

µFln πk(BrickQ) =
|Q|

∑
k=0

P̃w0Dem(sqk+1 ,...,sq|Q| )
−1,Dem(sq1 ,...,sqk )

.

3In future work, we hope to explore how Theorem 4.7 relates to the root theoretic characterization of
toric Richardson varieties given in [1, Theorem 4.7].

4The polytope µGr(qk ,n)ρk(BrickQ) happens to be a positroid polytope, as defined in, e.g., [2].



8

Theorem 4.7. Let u ≤ v ∈ Sn. Let R be any reduced word for v, let S be any reduced word for
u−1w0, and let J be any facet of the subword complex ∆(S+ R, w0). The following are equivalent:

1. BrickR+S is a toric variety.

2. Xv
u is a toric variety.

3. ℓ(v)− ℓ(u) ≤ dim(T) and the multiset {{r(J, k) : qk ∈ J}} is linearly independent.

Proof. (1) ⇐⇒ (3) by Theorem 4.4, and (1) =⇒ (2) by Lemma 4.5. We will prove
(2) =⇒ (1). The hypotheses on R and S ensure BrickR+S is a resolution of singularities
of Xv

u by [4], so dim(BrickR+S) = dim(Xv
u). If Xv

u is a toric variety, then dim(P̃u,v) =
dim(Xv

u). Since B(R + S) has P̃u,v as a Minkowski summand (by Theorem 4.6), we have
dim(B(R + S)) ≥ dim(Xv

u) = dim(BrickR+S) ≥ dim(B(R + S)). The dimension of the
moment polytope of a variety is the same as the dimension of the effective torus. This
means the effective torus acting on BrickR+S has the same dimension as BrickR+S and
thus BrickR+S is a toric variety whenever Xv

u is.

5 A degeneration of the brick variety

5.1 The degeneration

We define a degeneration of the brick variety and describe its central fibre (Theorem 5.5).
Say G × G has coordinates ((ai,j)i,j=1,...,n, (bi,j)i,j=1,...,n). Let t ∈ C. Let Gt be the

subvariety of G × G cut out by the equations

ai,j = tj−ibi,j, i < j; bj,i = tj−iaj,i, i < j; ai,i = bi,i, i = 1, . . . , n.

Observe that G1 = G∆ and G0 = B− ×T B+ (i.e., G0 is the set of elements in the product
B− × B+ whose diagonals are equal). Consider the embedding ρ : C× → T, sending t to
the diagonal matrix whose diagonal is (1, t−1, . . . , t−n+1).

For t ∈ C×, we have Gt = {(g, ρ(t)g(ρ(t))−1) | g ∈ G} ⊆ G × G. For σ ∈ Sn and
t ∈ C×, the variety Dσ(t) := (1, ρ(t)) · Dσ is invariant under the action of Gt on Fln × Fln:

(g, ρ(t)g(ρ(t))−1) · (F•, ρ(t)(G•)) = ((g · F•), ρ(t)(g · G•)) ∈ Dσ(t), g ∈ G, F•, G• ∈ Fln.

Consider the following two varieties, G := ∪t∈C(Gt × {t}) ⊆ (G2) × A1 and D◦
σ :=

∪t∈C×(Dσ(t) × {t}) ⊆ (Fl2n)× A1. Let Dσ be the closure of D◦
σ inside (Fl2n)× A1, and let

Dσ(0) be the fibre of Dσ → A1 over 0. The action of Gt on Dσ(t) for each t ∈ C× induces an
action of G0 on Dσ(0) (cf. [7, Proposition 4.1]) 5. In particular, Dσ(0) is a union of orbits of

5The orbit degeneration technique of degenerating a group alongside a variety so that the degeneration
of the variety is a union of orbit closures of the degeneration of the group comes from [7], which employed
the same family of groups Gt ⊆ G × G.
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G0 = B− ×T B+. To uncover which union of orbits, observe that (Dσ(1))
T ⊆ (Dσ(t))

T for
all t ∈ C, and consider the B−×T B+ orbits of these T-fixed points. This yields the correct
answer, given in Theorem 5.1; however, proving this requires geometric techniques.

Theorem 5.1. The central fibre Dσ(0) is reduced and equal to
⋃

w∈Sn s.t. ℓ(wσ)=ℓ(w)+ℓ(σ)
Xw × Xwσ.

Example 5.2. In S3, we have Ds1(0) = (X1 × Xs1) ∪ (Xs2 × Xs2s1) ∪ (Xs1s2 × Xs1s2s1).

Let Q = (sq1 , . . . , sqk) be a word in Sn.

Definition 5.3. A sequence (u0, u1, . . . , u|Q|) in Sn is a brickly sequence with respect to Q if
u0 = 1, u|Q| = w0, and ui < uisqi+1 and ui+1 ≤ uisqi+1 for all i = 0, . . . , |Q| − 1. We will
denote by L(Q) the set of brickly sequences for Q.

Example 5.4. In S3, set Q = (s1, s2, s1, s2, s1). Then u = (1, 1, s2, s1, s1s2, s1s2s1) is a brickly
sequence with respect to Q.

The degeneration of Dsqi
induces a degeneration of BrickQ into a union of reduced

products of Richardson varieties (Theorem 5.5). For t ∈ C, we define BrickQ(t) as

(Dsq1
(t)× Flk−1

n ) ∩ (Fln × Dsq2
(t)× Flk−2

n ) ∩ · · · ∩ (Flk−1
n × Dsik

(t)) ∩ (Fst
• × Flk−1

n × Fop
• ).

Theorem 5.5. Suppose BrickQ is a toric variety. For u = (u0, u1, . . . , u|Q|) ∈ L(Q), set

Cu := Xu0
u0 × X

u0sq1
u1 × X

u1sq2
u2 × · · · × X

u|Q|−1sq|Q|
u|Q| .

Then BrickQ(0) =
⋃

u∈L(Q) Cu, and Cu ∩ Cu′ is a common face of Cu and Cu′ for u, u′ ∈ L(Q).

The first part of Theorem 5.5 follows from the definition of BrickQ(t) and Theo-
rem 5.1, while some of the latter parts require more geometric techniques to prove.

5.2 Bricks tricks for mixed subdivisions

The main result of this subsection is Theorem 5.8, which says that the degeneration of
the brick variety of Theorem 5.5 induces a mixed subdivision of the brick polytope.

Lemma 5.6. Suppose 1 = u0, u1, . . . , u|Q| = w0 · s1 is a brickly sequence in Sn. Then for x =

w0Dem(sqi+1 , sqi+2 , . . . , sq|Q|)
−1 and y = Dem(sq1 , sq2 , . . . sqi), the Bruhat interval [ui, ui−1sqi ]

is contained in [x, y]; equivalently, X
ui−1sqi
ui ⊆ Xy

x.

Proof sketch. The proof proceeds by induction using subword combinatorics.



10

Definition 5.7. A full dimensional Minkowski cell of a Minkowski sum of polytopes P =

∑n
i=1 Pi is a polytope C = ∑n

i=1 Ci such that dim(C) = dim(P) and Ci is a face of Pi for all i. A
mixed subdivision of P is a set of full dimensional Minkowski cells {Cj = ∑n

i=1 Cj,i : j ∈ J} for
some index set J such that P =

⋃
j∈J Cj, and Cj ∩ Ck is a common face of Cj and Ck for any j, k.

Theorem 5.8. If BrickQ is toric, then, in the notation of Lemma 5.6, the moment polytopes of
the components of BrickQ(0) ↪→ Fln(C)|Q| give a mixed subdivision of B(Q) = ∑|Q|

i=0 P̃x,y.

Proof sketch. Let u•, v• ∈ L(Q) be arbitrary brickly sequences. Using the fact that Cu =

X1
1 ×X

u0sq1
u1 × · · ·×X

u|Q|−1q|Q|
u|Q| is a toric variety, we can show dim(µ

Fl|Q|+1
n

(Cu))= dim P̃1,1 +

∑|Q|
i=1 dim P̃ui,ui−1sqi

. The dimension of a Minkowski sum is only equal to the sum of the
dimensions of its summands when the summands are affinely independent. Hence, the
summands of µ

Fl|Q|+1
n

(Cu) are affinely independent; this implies the linear map from the

product P̃1,1 × P̃u1,u0sq1
× · · · × P̃u|Q|,uQ−1s|Q|−1 to µ

Fl|Q|+1
n

(Cu) is an isomorphism.

By Lemma 5.6, we have that [ui, ui−1sqi ] is a subinterval of [x, y]. By [9], subin-
tervals of a toric Bruhat interval correspond to faces of the (twisted) Bruhat interval
polytope. Hence, each P̃ui,ui−1sqi

is a face of µ
Fl|Q|+1

n
(πi(BrickQ)), and µ

Fl|Q|+1
n

(Cu) is a

full-dimensional Minkowski cell. These cells union to give all of B(Q) by Theorem 5.5.
It was proved in [1, Theorem 1.1] that toric Bruhat intervals are lattices. The in-

tersection of two intervals contained in a lattice is always an interval (or empty), so
[ui, ui−1sqi ] ∩ [vi, vi−1sqi ] = [ai, bi] for some ai, bi ∈ Sn. Clearly Xbi

ai ⊆ X
uisqi
ui+1 ∩ X

visqi
vi+1 as

it is a sub-Richardson variety. Any Richardson variety contained in X
uisqi
ui+1 ∩ X

visqi
vi+1 will

have fixed points indexed by permutations contained in [ai, bi] and hence it will be con-
tained in Xbi

ai . Since intersections of Richardson varieties are reduced unions of Richard-
son varieties [12, Theorem 2.74], we conclude that Xbi

ai is the desired intersection. So
µFln(Xbi

ai ) = P̃ai,bi will then be a common face of P̃ui,ui−1sqi
and P̃vi,vi−1sqi

. A product of
faces, each drawn from a different polytope, is a face of the product of those larger poly-
topes. Ergo, using the fact that the Minkowski sums ∑ P̃ui,ui−1sqi

and ∑ P̃vi,vi−1sqi
are both

linearly isomorphic to the products of the same polytopes, µ
Fl|Q|+1

n
(Cu ∩ Cv) = ∑ P̃ai,bi

will be a face of both µ
Fl|Q|+1

n
(Cu) and µ

Fl|Q|+1
n

(Cv).

5.3 Subdividing the associahedron into cubes

The main result of this subsection is Theorem 5.11, which describes a subdivision of the
associahedron into pieces that are combinatorially equivalent to cubes.

Theorem 5.9 ([9]). The twisted Bruhat interval polytope P̃u,v is combinatorially equivalent to
a cube if and only if Xv

u is smooth and toric. If v = cu or v = uc for c = s1s2 · · · sj or
c = (s1s2 · · · sj)

−1, with j ≤ n − 1, and ℓ(v)− ℓ(u) = j, then Xv
u is smooth and toric.
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Remark 5.10. By [9], for Xb
a ⊆ Xd

c with Xd
c toric, P̃a,b will be a face of P̃c,d. So when Xd

c is also
smooth, P̃a,b will be a face of a cube and therefore be a cube. This shows that any sub-Richardson
of a smooth toric Richardson is smooth and toric.

Let c be a Coxeter element in Sn, i.e., a word in Sn containing all simple reflections
exactly once. Denote by c∞ the concatenation of c to itself ad infinitum. Define w0(c) to
be the lex-first subword of c∞ that is a reduced word for w0.

Theorem 5.11. Fix c = (s1, s2, . . . , sn−1) and c′ = (sn−1, sn−2, . . . , s1). Let Q be the concate-
nation w0(c) + c′. Then BrickQ is toric and BrickQ ≃ Brickc+w0(c). Moreover, we have

• πi(BrickQ) is a smooth toric Richardson variety for each i, and each component Cu of
BrickQ(0) is a product of smooth toric Richardsons.

• B(Q) is a translation of Loday’s realization of the associahedron, B(Q) has the same
normal fan as Loday’s realization, the summands of the Minkowski decomposition of B(Q)
(Equation (4.2)) are combinatorial cubes, and the moment polytopes of the components
of BrickQ(0) give a mixed subdivision of B(Q) into pieces which are combinatorially
equivalent to cubes.

Proof sketch. For Q = c + w0(c), BrickQ is the toric variety of Loday’s realization of the
associahedron [4, Corollary 16]. The first step here is to prove that Q = w0(c) + c′ can
be obtained from c + w0(c) by commuting moves (e.g. s1s3 = s3s1). Commuting moves
shuffle the order of the Grassmannian factors of the product ∏|Q|

i=1 Grqi,n ∋ ρ(BrickQ) but
do not change the incidence structure recorded by the Magyar diagram (unlike arbitrary
permutations of the letters of Q) and thus leave ρ(BrickQ) unchanged aside from this
permutation of its factors. Hence, BrickQ ∼= Brickc+w0(c), and B(w0(c) + c′) = B(c +
w0(c)) is the same as Loday’s realization of the associahedron up to translation [4].

To show that πi(BrickQ) is smooth and toric, there are three cases. For i < n, we can
show πi(BrickQ) ⊆ Xs1s2...sn−1

1 . When i ≥ |Q| − n, we show πi(BrickQ) ⊆ Xw0
w0(s1s2...sn−1)

.

Both Xs1s2...sn−1
1 and Xw0

w0(s1s2...sn−1)
are smooth and toric by Theorem 5.9, so πi(BrickQ)

is smooth and toric. For n ≤ i ≤ |Q| − n − 1, we can show πi(BrickQ) = Xv
u with

u = w0(sqi+1 . . . sq|Q|)
−1 and v = sq1sq2 . . . sqi . Thus vu−1 = sq1sq2 . . . sqi sqi+1 . . . sq|Q|w0 and

from that we can obtain vu−1 = s1 . . . sn−1 and thus v = s1 . . . sn−1u. Thus applying
Theorem 5.9, we conclude that for all i, πi(BrickQ) is smooth and toric.

Since πi(BrickQ) is smooth and toric, and πi(Cu) is a sub-Richardson of πi(BrickQ)
for each i, we get that πi(Cu) is a smooth toric Richardson. The remaining combinatorial
statements within the theorem can be proven from what we have presented already.
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