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The number of irreducibles in the plethysm sλ[sm]
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Abstract. We give a formula for the number of irreducibles (with multiplicity) in the
decomposition of the plethysm sλ[sm] of Schur functions in terms of the number of
lattice points in certain rational polytopes. In the case where λ = n consists of a
single part, we will give a combinatorial interpretation of this number as the cardi-
nality of a set of matrices modulo permutation equivalence. This is also the setting
of Foulkes’ conjecture, and our results allow us to state a weaker version that only
involves comparing the cardinalities of such sets, rather than the multiplicities of irre-
ducible representations.
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1 Introduction

Let Λ denote the ring of symmetric functions over Q. Plethysm is a binary operation
( f , g) 7→ f [g] on Λ, introduced by Littlewood [15] in 1936. In modern language, it is
most easily expressed in terms of the power sum symmetric functions pm as the unique
operation [16] satisfying

1. for n, m ≥ 1, pn[pm] = pnm;

2. for m ≥ 1, g 7→ pm[g] is a Q-algebra homomorphism Λ → Λ;

3. for g ∈ Λ, f 7→ f [g] is a Q-algebra homomorphism Λ → Λ.

The decomposition of the plethysm of Schur functions

sλ[sµ] = ∑
ν⊢nm

aν
λ,µsν (1.1)

for partitions λ ⊢ n, µ ⊢ m is of particular importance. Schur functions correspond
to irreducible representations of symmetric groups, and from this point of view it can
be shown that the plethysm coefficients aν

λ,µ are non-negative integers [11, Section 5.4].
Various formulas and algorithms have been developed to compute these coefficients [5,
13, 25], though from a computational complexity perspective this is known to be a hard
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problem in general [8]. Recent works study plethysm via the representation theory of
partition algebras [3], party algebras [19], and geometric complexity theory [7, 8].

We focus on the case µ = m and study instead the sum

∑
ν⊢nm

aν
λ,m, (1.2)

which is the number of irreducibles in the decomposition (1.1), counted with multiplicity.

1.1 Notation

Before stating our results, we recall some notions from the representation theory of finite
groups and symmetric groups to fix notation.

Unless otherwise stated, n and m shall denote positive integers. We use #S and |S| to
denote the cardinality of a finite set S. For a finite group G, we let

⟨χ, ϕ⟩G =
1
|G| ∑

g∈G
χ(g)ϕ(g)

denote the inner product of class functions χ and ϕ of G. We omit the subscript G if the
group is clear from context. For a subgroup H ≤ G, we write IndG

H χ for the induction
of a character χ from H to G and ResG

H χ for the restriction of a character χ of G to H.
For a quotient G ↠ K, denote by InfG

K χ the inflation of a character χ from K to G.
Let G ≀Sn denote the wreath product of G with the symmetric group Sn. By definition,

it is the semidirect product Gn ⋊Sn, with Sn acting on Gn by permuting the coordinates.
Following [11, Section 4.1], we write an element of G ≀ Sn in the form ( f ; σ), where
f ∈ Gn and σ ∈ Sn. For σ ∈ Sn, we shall sometimes write σ for (1; σ), where 1 ∈ Gn is
the identity element. We now specialize to G = Sm. For 1 ≤ i ≤ n, define

Pi = {(i − 1)m + 1, . . . , im}. (1.3)

We have inclusions Sn
m ≤ Sm ≀Sn ≤ Snm, where Sn

m and Sm ≀Sn are identified with the
stabilizers of (P1, . . . ,Pn) and {P1, . . . ,Pn} respectively under the natural Snm-actions.

Given a partition λ, we let ℓ(λ) denote its length. We write mn for the partition of
nm consisting of n occurrences of m. We generally use λ ⊢ n to index the irreducible
representations of Sn and ρ ⊢ n for cycle types of elements of Sn. Thus we write χλ(ρ)
for the value of the irreducible character χλ of Sn at an element of cycle type ρ, see
[11, Section 2.3]. In particular, recall that χn = 1 and χ1n

= sgn are the trivial and sign
characters of Sn respectively. The plethysm coefficients in our case are then given [11,
Section 5.4] by

aν
λ,m = ⟨χν, IndSnm

Sm≀Sn
InfSm≀Sn

Sn
χλ⟩.
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1.2 Statement of results

We now state our main results. Let M(n, m) denote the set of n × n matrices with non-
negative integer entries whose row and column sums are all equal to m. We shall identify
Sn with the group of n × n permutation matrices.

Definition 1.1. Define the function Nm : Sn → Z by

Nm(σ) = #{A ∈ M(n, m) | σAT = A}

for σ ∈ Sn, where AT denotes the transpose of A.

It is easy to see that Nm is a class function of Sn. Without the transpose, it would be
the permutation character of M(n, m). The main result is as follows:

Theorem 1.2. For integers n, m ≥ 1, Nm is a character of Sn. Moreover for λ ⊢ n,

⟨χλ, Nm⟩ = ∑
ν⊢nm

aν
λ,m.

We shall prove this result in the next section. As we shall explain further in Section 4,
for fixed σ ∈ Sn, Nm(σ) is an Ehrhart quasipolynomial in m. Thus for fixed λ ⊢ n,
the sum (1.2) is quasipolynomial in m. Related to this, according to [14], the function
s 7→ asν

n,sm is a quasipolynomial by a deep result, but is not an Ehrhart quasipolynomial.
In the case n = 3, these quasipolynomials were computed in [1] using the decomposition
of sλ[sm] for λ ⊢ 3. With the aid of a computer, Theorem 1.2 enables us to compute the
quasipolynomials (1.2) for all λ ⊢ n with n ≤ 6.

Example 1.3. For n = 6 and λ = 6, we have computed using SageMath [24] that

∑
ν⊢6m

aν
6,m =

243653
1434705592320000

m15 +
243653

31882346496000
m14 +

91173671
573882236928000

m13

+
5954623

2942985830400
m12 +

3895930519
220723937280000

m11 +
149644967

1337720832000
m10

+
1072677673

2006581248000
m9 +

14723521
7431782400

m8 +
350041981

59719680000
m7 + O(m6),

where we have omitted the trailing terms whose coefficients have period greater than 1.

Asymptotics of (1.2) as m → ∞ were studied in [10]. We recover and slightly extend
one of their results in Theorem 4.4 by studying the dimensions of the polytopes involved.

We call two matrices A, B ∈ M(n, m) permutation equivalent and write A ∼ B if A
can be transformed into B by row and column permutations. Let T(n, m) = {A ∈
M(n, m) | A ∼ AT} denote the subset of matrices that are permutation equivalent to
their transpose. A major open problem in algebraic combinatorics is to find a combina-
torial interpretation of plethysm coefficients aν

λ,µ [20, Problem 9]. We have the following
combinatorial interpretation of the sum (1.2) in the case λ = n:
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Theorem 1.4. When λ = n, the sum (1.2) is equal to the cardinality of T(n, m)/∼:

∑
ν⊢nm

aν
n,m = ⟨1, Nm⟩Sn = #T(n, m)/∼.

Example 1.5. We compute that s3[s3] = s9 + s72 + s63 + s522 + s441. Correspondingly,
there are five elements of T(3, 3)/∼, represented by3 0 0

0 3 0
0 0 3

 ,

3 0 0
0 2 1
0 1 2

 ,

2 1 0
1 1 1
0 1 2

 ,

2 1 0
1 0 2
0 2 1

 ,

1 1 1
1 1 1
1 1 1

 .

In the above setting, Foulkes [9] conjectured in 1950 that if n ≤ m, then aν
n,m ≤ aν

m,n.
Brion [4] proved this for n ≪ m in 1993. Among recent works on Foulkes’ conjecture,
[7] verifies it for an infinite family, and a stable version was proven in [3] via partition
algebras. Together with the previous theorem, Foulkes’ conjecture implies

Conjecture 1.6. If n ≤ m, then #T(n, m)/∼ ≤ #T(m, n)/∼.

2 Proof of Theorem 1.2

In this section we prove Theorem 1.2. Define the function θ : Snm → C by

θ(σ) = #{τ ∈ Snm | τ2 = σ}.

It is well-known that the irreducible representations of Snm can be realized over R, see
e.g. [11, Theorem 2.1.12]. Hence [12, Corollary 23.17] implies

θ = ∑
ν⊢nm

χν,

and is in particular a character. We compute by Frobenius reciprocity

∑
ν⊢nm

aν
λ,m = ⟨θ, IndSnm

Sm≀Sn
InfSm≀Sn

Sn
χλ⟩ = ⟨ResSnm

Sm≀Sn
θ, InfSm≀Sn

Sn
χλ⟩

=
1

m!nn! ∑
( f ;σ)∈Sm≀Sn

θ( f ; σ)χλ(σ) =
1
n! ∑

σ∈Sn

 1
m!n ∑

f∈Sn
m

θ( f ; σ)

 χλ(σ).

The expression in parentheses simplifies as

1
m!n ∑

f∈Sn
m

θ( f ; σ) =
1

m!n ∑
f∈Sn

m

#{τ ∈ Snm | τ2 = ( f ; σ)} =
1

m!n #{τ ∈ Snm | τ2σ−1 ∈ Sn
m}.



The number of irreducibles in the plethysm sλ[sm] 5

Thus it suffices to show that for σ ∈ Sn,

1
m!n #{τ ∈ Snm | τ2σ−1 ∈ Sn

m} = Nm(σ).

Now fix σ ∈ Sn and recall the definition of Pi in (1.3). The proof is completed by

Lemma 2.1. The map F : {τ ∈ Snm | τ2σ−1 ∈ Sn
m} → {A ∈ M(n, m) | σAT = A} given by

F(τ)ij = #(Pi ∩ τPj)

is m!n-to-1 and surjective.

Proof. We first show that F has the stated codomain. Let τ ∈ Snm be such that τ2σ−1 ∈
Sn

m, or equivalently τ2Pi = Pσ(i) for each 1 ≤ i ≤ n. Let A = F(τ) and for 1 ≤ i, j ≤ n,
set Qij = Pi ∩ τPj. Then

(i) for each 1 ≤ i ≤ n, {Qij | 1 ≤ j ≤ n} is a partition of Pi with #Qij = Aij; and

(ii) for each 1 ≤ i, j ≤ n, τ restricts to a bijection Qij → Qσ(j)i.

Indeed (i) is clear, and (ii) follows from τQij = τPi ∩ τ2Pj = τPi ∩ Pσ(j) = Qσ(j)i. It
follows from (i) that A has row sums equal to m. The condition σAT = A is equivalent
to Aij = Aσ(j)i for 1 ≤ i, j ≤ n, which holds by (ii).

Conversely let A ∈ M(n, m) be such that σAT = A. We want to count τ ∈ Snm such
that τ2σ−1 ∈ Sn

m and F(τ) = A. Reversing the above, giving such τ is equivalent to
giving Qij for 1 ≤ i, j ≤ n satisfying (i), and bijections Qij → Qσ(j)i as in (ii). There are(

m
Ai1, . . . , Ain

)
partitions of Pi satisfying (i), and Aij! bijections in (ii) since Aij = Aσ(j)i. Thus there are

n

∏
i=1

(
m

Ai1, . . . , Ain

)
∏

1≤i,j≤n
Aij! = m!n

such τ as required.

3 (G ≀ C2)-sets and representations

Let G be a finite group and let C2 denote the cyclic group of order 2, whose generator we
shall suggestively denote by T. Elements of G ≀ C2 have the form (g, h; 1) or (g, h;T) for
g, h ∈ G. In this section we collect some results on (G ≀ C2)-actions and representations.
We will obtain Theorem 1.4 as a consequence of more general results.
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3.1 Irreducible characters of G ≀ C2

We describe the irreducible characters of G ≀ C2 in terms of the irreducible characters of
G. For characters χ1 and χ2 of G, let χ1 ⊠ χ2 denote their external tensor product. It is a
character of G × G with

(χ1 ⊠ χ2)(g, h) = χ1(g)χ2(h).

Suppose V is a representation of G. Then V ⊗ V is a representation of G ≀ C2 with action

(g, h; 1)(v ⊗ w) = gv ⊗ hw; (1, 1;T)(v ⊗ w) = w ⊗ v.

If χ is the character of V, then the character χ̃ of V ⊗ V is given by

χ̃(g, h; 1) = χ(g)χ(h); χ̃(g, h;T) = χ(gh).

Thus given a character χ of G, we can define the character χ̃ of G ≀ C2 by the above. By
[11, Theorem 4.4.3], there are three types of irreducible characters of G ≀ C2, these are:

1. χ̃, where χ is an irreducible character of G;

2. χ̃ · InfG≀C2
C2

sgn, where χ is an irreducible character of G;

3. IndG≀C2
G×G(χ1 ⊠ χ2), where χ1, χ2 are distinct irreducible characters of G.

By a case analysis, we obtain

Proposition 3.1. Let ψ be a character of G ≀ C2. Then ψT(g) = ψ(g, 1;T) is a virtual character
of G. Moreover if χ is an irreducible character of G, then

⟨χ, ψT⟩ = ⟨χ̃, ψ⟩ − ⟨χ̃ · InfG≀C2
C2

sgn, ψ⟩.

3.2 Orbit-counting with a twist

Let X be a finite (G ≀ C2)-set. For x ∈ X and g, h ∈ G, we write gx = (g, 1; 1)x, xh =
(1, h−1; 1)x, and xT = (1, 1;T)x. In this way, X is equipped with left and right G-actions
and an involution compatible with each other, i.e.

1. g(xh) = (gx)h, which we simply denote by gxh; and

2. (gxh)T = h−1xTg−1.

Conversely given X with left and right G-actions and an involution x 7→ xT satisfying
the above, we have a (G ≀ C2)-action on X.

Let (G × G)\X denote the set of (G × G)-orbits of X. For x, y ∈ X, write x ∼ y if they
lie in the same (G × G)-orbit, i.e. if (G × G) · x = (G × G) · y. The set (G × G)\X inherits
a C2-action, given by

((G × G) · x)T = (G × G) · xT.
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We let ((G × G)\X)C2 denote the subset of fixed points under the C2-action. This is a set
we are interested in counting. Our main example is the following:

Example 3.2. Let G = Sn and X = M(n, m). We have a natural (Sn ≀ C2)-action on X,
where Sn acts by permuting rows on the left and permuting columns on the right, while
T acts by taking transposes. Two matrices A, B ∈ M(n, m) are permutation equivalent
precisely when they lie in the same (Sn × Sn)-orbit. We have ((Sn × Sn)\X)C2 =
T(n, m)/∼.

For an arbitrary finite (G ≀ C2)-set X as before, define

N(g) = #{x ∈ X | gxT = x}.

For s ∈ X, let StabG×G(s) denote the stabilizer of s under the (G × G)-action and define

Ns(g) = #{x ∈ (G × G) · s | gxT = x}.

It is easy to see that N and Ns are class functions of G, and Ns only depends on the
(G × G)-orbit of s. We can say more:

Proposition 3.3. For s ∈ X, Ns is a virtual character of G. Moreover if χ is an irreducible
character of G, then

⟨χ, Ns⟩ = 1∣∣StabG×G(s)
∣∣ ∑

g,h∈G
gsTh−1=s

χ(gh).

Applying this to the trivial character of G, we obtain

Corollary 3.4. For s ∈ X, we have

⟨1, Ns⟩ =

1 if s ∼ sT

0 otherwise.

This gives the following generalization of the Cauchy–Frobenius lemma:

Theorem 3.5. N is a virtual character of G. Furthermore, we have

#((G × G)\X)C2 = ⟨1, N⟩ = 1
|G| ∑

g∈G
N(g).

Proof of Theorem 1.4. The first equality of Theorem 1.4 is a special case of Theorem 1.2
with λ = n. The second equality follows immediately from Theorem 3.5 with G and X
as in Example 3.2.
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Remark 3.6. The equality #T(n, m)/∼ = ∑ν⊢nm aν
n,m was the original motivation for this

paper. OEIS sequence A333737 gives the number of non-negative integer symmetric
matrices with equal row sums, up to permutation equivalence. This is related to, but not
exactly the sequence we have, as n × n matrices that are permutation equivalent to their
transpose need not be permutation equivalent to a symmetric matrix when n ≥ 6. See
[6, Example 1] for a counterexample.

Remark 3.7. A related quantity to (1.2) is the number of irreducibles in the decomposi-
tion of (sm)n. This is equal to Nm(1Sn), i.e. the number of n × n non-negative integer
symmetric matrices with row sums equal to m. This follows from Theorem 1.2 and [22,
Corollary 7.12.5]. Alternatively, a bijective proof can be given by using Young’s rule (take
µ = mn in [22, Corollary 7.12.4]) and the RSK algorithm [22, Theorems 7.11.5, 7.13.1].

4 Properties of Nm

Now we shall describe some properties of the characters Nm. For σ ∈ Sn, we write
Nσ(m) for Nm(σ) when we want to emphasize that it is a function of m. If σ is of cycle
type ρ ⊢ n, we also set Nm(ρ) = Nρ(m) = Nm(σ). Thus, Theorem 1.2 asserts that

∑
ν⊢nm

aν
λ,m = ∑

ρ⊢n
z−1

ρ χλ(ρ)Nm(ρ),

where zρ = ∏i≥1 imi mi!, with mi being the number of parts of ρ equal to i.

4.1 Lattice points in polytopes

We study the Nσ as defined above from the point of view of Ehrhart theory, see [2] or
[21, Chapter 4] for an introduction to this subject.

Recall that a rational convex polytope P is the convex hull of finitely many points
with rational coordinates in some Euclidean space Rn. Given such a polytope P , let
LP (t) = #(tP ∩ Zn) and let Vol(P) denote its relative volume. A quasipolynomial of
degree n is a function f : Z → C of the form f (t) = cn(t)tn + . . . + c1(t)t + c0(t) where
ci : Z → C are periodic functions with cn ̸= 0. By Ehrhart’s theorem [2, Theorem 3.23],
LP is a quasipolynomial, known as the Ehrhart quasipolynomial of P , of degree equal to
the dimension of P .

We now apply this theory in our context. For a set S, let Mn(S) denote the set of
n × n matrices with entries in S. For σ ∈ Sn, define the rational convex polytope

P(σ) = {A ∈ Mn(R≥0) | A has row sums equal to 1 and σAT = A} ⊆ Mn(R).

Then for σ ∈ Sn, Nσ(m) = LP(σ)(m), so Nσ is a quasipolynomial of degree equal to the
dimension of P(σ). We have

https://oeis.org/A333737
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Proposition 4.1. For ρ ⊢ n, the degree of Nρ is

deg Nρ = ∑
1≤i<j≤ℓ(ρ)

gcd(ρi, ρj) + ∑
1≤i≤ℓ(ρ)

⌊
ρi − 1

2

⌋
.

Corollary 4.2. For ρ ⊢ n, we have (−1)deg Nρ = (−1)
n(n−1)

2 εn−1
ρ , where ερ = (−1)n−ℓ(ρ).

Corollary 4.3. For ρ ⊢ n, we have deg Nρ ≤ n(n−1)
2 with equality if and only if ρ = 1n.

We deduce from this and a similar analysis of the second-highest degree term the
following asymptotics for (1.2), c.f. [10, Theorem 3.7 (i)]:

Theorem 4.4. For λ ⊢ n, as m → ∞, we have

(i) ∑
ν⊢nm

aν
λ,m ∼ χλ(1)

n!
Vol(P(1Sn))m

n(n−1)
2 ; and

(ii) ∑
ν⊢nm

aν
λ,m = χλ(1) ∑

ν⊢nm
aν

n,m + O
(

m
(n−1)(n−2)

2

)
.

The fact that Nσ is a quasipolynomial allows us to extend its definition to all integers,
and hence define a class function Nm for all m ∈ Z.

Proposition 4.5. For n ≥ 1 and m ∈ Z, we have

Nm = (−1)
n(n−1)

2 sgnn−1 ·N−m−n

as virtual characters of Sn. Furthermore, Nm = 0 for −n + 1 ≤ m ≤ −1.

Proof Sketch. This follows by Ehrhart–Macdonald reciprocity [2, Theorem 4.1] and Corol-
lary 4.2.

4.2 A decomposition of Nm

Let n, m ≥ 1 be integers. As in Section 3, there is a natural way to decompose the
character Nm of Sn as a sum

Nm = ∑
C∈T(n,m)/∼

NC ,

where for C ∈ T(n, m)/∼, we set NC(σ) = #{A ∈ C | σAT = A}. If S ∈ C, then
in the notation of Section 3, NC = NS and it is a virtual character of Sn by virtue of
Proposition 3.1. Theorem 1.2 implies that for λ ⊢ n,

∑
ν⊢nm

aν
λ,m = ∑

C∈T(n,m)/∼
⟨χλ, NC⟩.

This allows us to measure the contribution of each C ∈ T(n, m)/∼ to the sum (1.2).
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Proposition 4.6. For C ∈ T(n, m)/∼, we have ⟨1, NC⟩ = 1.

Remark 4.7. If C1 ∈ T(n, m1)/∼ and C2 ∈ T(n, m2)/∼ are such that there are A1 ∈
C1, A2 ∈ C2, and a bijection f : N → N such that f (A1) = A2, then NC1 = NC2 .

Remark 4.8. Unfortunately NC is not a character in general, for example for the matrix
in [6, Example 1]. By Proposition 3.3, we see that −χλ(1) ≤ ⟨χλ, NC⟩ ≤ χλ(1). By
Theorem 1.4 and Theorem 4.4,

lim
m→∞

1∣∣T(n, m)/∼
∣∣ ∑
C∈T(n,m)/∼

⟨χλ, NC⟩ = χλ(1).

Thus when m is large, for most C ∈ T(n, m)/∼, NC will be the character of the regular
representation of Sn.

5 The case m = 2

We conclude by using our results to study the case m = 2 .
Let n1, n2 ≥ 1. For C1 = [A1] ∈ T(n1, 2)/∼ and C2 = [A2] ∈ T(n2, 2)/∼, we define

their sum C1 + C2 ∈ T(n1 + n2, 2)/∼ to be the equivalence class of the block diagonal
matrix A1 ⊕ A2. We call C ∈ T(n, 2)/∼ irreducible if it cannot be written as a nontrivial
sum C1 + C2. They are represented by matrices of the form

(
2
)

,

(
1 1
1 1

)
,

1 1
1 1

1 1

 ,


1 1
1 1

1 1
1 1

 ,


1 1
1 1

1 1
1 1

1 1

 , . . .

Furthermore, each C ∈ T(n, 2)/∼ can be expressed as a sum of irreducibles, unique
up to ordering. We thus have a bijection between T(n, 2)/∼ and the set of partitions
of n, sending an equivalence class C to the partition λC ⊢ n recording the sizes of the
irreducible summands.

Example 5.1. If C ∈ T(5, 2)/∼ is the equivalence class of
1 1
1 1

1 1
2

2

 ,

then λC = (3, 1, 1).
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Proposition 5.2. For C ∈ T(n, 2)/∼, we have

⟨sgn, NC⟩Sn =

1 if all parts of λC are odd
0 otherwise.

Corollary 5.3. We have

(i) ⟨1, N2⟩Sn = ∑
ν⊢2n

aν
n,2 = #{partitions of n}; and

(ii) ⟨sgn, N2⟩Sn = ∑
ν⊢2n

aν
1n,2 = #{partitions of n into odd parts}.

While the decompositions of sn[s2] and s1n [s2] are well-known [17, page 138], the
above corollary was derived independently of these. As in Remark 4.8, for general m,
it is possible but rare that ⟨sgn, NC⟩ = −1. We hope that a better understanding of this
will lead to a combinatorial interpretation of (1.2) for λ = 1n.
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