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Abstract. We define and study the dual mixed volume rational function of a sequence
of polytopes, a dual version of the mixed volume polynomial. This concept has di-
rect relations to the adjoint polynomials and the canonical forms of polytopes. We
show that dual mixed volume is additive under mixed subdivisions, and is related
by a change of variables to the dual volume of the Cayley polytope. We study dual
mixed volume of zonotopes, generalized permutohedra, and associahedra. The latter
reproduces the planar ϕ3-scalar amplitude at tree level.
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1 Introduction

Let Vol(·) be the normalized volume function in Rd where the coordinate simplex has
volume 1. For a sequence of convex bodies S = (S1, S2, . . . , Sr) in Rd and x1, . . . , xr > 0,

VolS(x) := Vol(x1S1 + · · ·+ xrSr) =
r

∑
i1,i2,...,id=1

V(Si1 , Si2 , . . . , Sid)xi1 · · · xid , (1.1)

where V(Si1 , Si2 , . . . , Sid) are the mixed volumes of Si1 , . . . , Sid , and we call VolS(x) the
mixed volume polynomial. Mixed volumes are nonnegative and satisfy various inequalities,
among them the Alexandrov–Fenchel inequality:

V(S1, S2, S3, . . . , Sd)
2 ≥ V(S1, S1, S3, . . . , Sd) · V(S2, S2, S3, . . . , Sd), (1.2)

a deep result in the geometry of convex bodies, with exciting applications in combina-
torics (see [15, 16]).

In this work, we study the dual mixed volume function, defined by

mS(x) = mS(x1, . . . , xr) := Vol((x1S1 + · · ·+ xrSr)
∨)
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where S∨ denotes the polar of a convex set S. For general convex bodies, mS(x) is a
complicated analytic object, but for a sequence of polytopes P = (P1, . . . , Pr), the dual
volume function mP(x) is a rational function. We focus on polytopes in this work, leaving
the general dual mixed volume function for future investigation.

Besides the natural parallel with the mixed volume polynomial, the dual mixed vol-
ume function is motivated by recent developments in positive geometry [3, 12], occurring
at the interface of combinatorial algebraic geometry and the physics of scattering ampli-
tudes. The dual mixed volume function specializes to the canonical form of a polytope
and produces in a special case the scalar ϕ3-amplitude (see Section 8), the field theory
limit of the open string amplitude.

This extended abstract is organized as follows. In Section 2, we define the dual volume
Vol∨(P) and the dual volume function Vol∨z (P) of a polyhedron P in a rigorous way, in-
cluding those polyhedra that do not contain the origin in its interior, whose polar duals
are unbounded. In Section 3, we show that Vol∨(P) and Vol∨z (P) are valuative, gener-
alizing results of Filliman [7] and Kuperberg [11]. We also illustrate that the numerator
of Vol∨z (P), suitably normalized, coincides with the adjoint polynomial of (the cone of)
the dual polytope, originally defined by [17], and that the canonical form, in the sense of
positive geometry, is given by Ω(P) = Vol∨z (P)dz1 · · · dzd. In Section 4, we define our
main object of study, the dual mixed volume function mP(x, z) for a sequence of polytopes
P = (P1, . . . , Pr) in Rd. We provide formulae for the dual mixed volumes via integrals,
mixed subdivisions and Cayley polytopes (Section 5). The most important use cases
of our study are generalized permutohedra [14]. We first setup necessary tools to discuss
polytopes that live in an affine hyperplane (Section 6). Our results lead to curious iden-
tities on generalized permutohedra that are omitted here1. Specific cases of generalized
permutohedra include zonotopes (Section 7) and associahedra (Section 8). In particular,
we relate the dual mixed volume of an associahedron to the planar ϕ3-amplitude.

2 Definitions

The main goal of this section is to define the dual volume Vol∨(P) of a polyhedron P ⊆ Rd,
but we will start with some basic preliminaries.

A polyhedral cone C ⊆ Rd is a non-empty intersection of finitely many closed half
spaces, each passing through the origin 0. A polyhedral cone C is pointed if it does not
contain any line. A face of C is an intersection of C with a supporting hyperplane. A
(polyhedral) fan F is a finite set of polyhedral cones such that if C ∈ F and F ⊆ C is a
face, then F ∈ F , and that if C1, C2 ∈ F , then C1 ∩ C2 is a face of both C1 and C2. A fan
F in Rd is called complete if the union of cones in it is the whole space Rd.

A polyhedron P ⊆ Rd is a non-empty intersection of finitely many closed half spaces

1A full version of the work summarized in this extended abstract appears in [8].
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(not necessarily passing through the origin). A polyhedron P is a polytope if it is a
bounded subset of Rd.

For any non-empty closed convex set S ⊆ Rd, the support function of S describes the
(signed) distances from its supporting hyperplanes to the origin. It is given by

hS : Rd → R ∪ {∞}
v 7→ −min

y∈S
⟨v, y⟩. (2.1)

For a polyhedron P, the normal fan N (P) consists of the cones

CF := {v ∈ Rd | hP(v) = −⟨v, y⟩ ̸= ∞ for every y ∈ F}

for each face F of P. In particular, hP is a linear function on each CF. When P is a
polytope, its normal fan N (P) is a complete fan.

Definition 2.1. Let F be a polyhedral fan generated by g rays v1, . . . , vg, and let T be
any triangulation of F into full-dimensional simplicial cones without adding generating
rays, i.e., cones whose generators are linearly independent. Define the following rational
function

fF ,v,T (u1, . . . , ug) := ∑
C=spanR≥0

(vj1
,...,vjd

)∈T

|det(vj1 , . . . , vjd)|
uj1 · · · ujd

.

If F is a polyhedral fan in Rd pure of dimension r < d, then we define fF ,v,T := 0.

When u1, u2, . . . , ug are all positive, |det(vj1 , . . . , vjd)|/(uj1 · · · ujd) equals the normal-
ized volume of the simplex formed by 0, vj1/uj1 , . . ., vjd /ujd . While the formula for
fF ,v,T may initially look daunting, it is simply the volume of some regions when the
ui-s are positive positive. We show that fF ,v,T does not depend on the triangulation T .
Therefore we write fF ,v(u1, . . . , ug) := fF ,v,T (u1, . . . , ug) for any triangulation T of F .

We say that P is non-codegenerate if the origin 0 is not contained in the affine span of
any of the facets of P and show that.

Lemma 2.2. A polyhedron P is non-codegenerate if and only if for any ray R≥0 · v of N (P), we
have hP(v) ̸= 0.

The following is the key definition of this section.

Definition 2.3. Let P ⊆ Rd be a full-dimensional non-codegenerate polyhedron. For each
ray in N (P), pick a vector that spans it, and collect them as v = (v1, . . . , vg). Define the
dual volume

Vol∨(P) := fN (P)(hP) = fN (P),v(hP(v1), . . . , hP(vg)).

When P is not full dimensional, set Vol∨(P) = 0. Also define the dual volume function

Vol∨z (P) := Vol∨(P − z)

viewed as a rational function in the coordinates z1, . . . , zd of z.
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Lemma 2.4. The dual volume Vol∨(P) and dual volume function Vol∨z (P) do not depend on the
choice of v = (v1, . . . , vg).

The name “dual volume” comes from its connection to the polar dual. Recall

Definition 2.5. For a polyhedron P ⊆ Rd, its polar dual is

P∨ := {v ∈ Rd | hP(v) ≤ 1} = {v ∈ Rd | ⟨v, y⟩ ≥ −1 for all y ∈ P}.

Proposition 2.6 ([6, Chapter 4 (1.2)]). If P is a polytope with 0 in its interior, then P∨ is also
a polytope with 0 in its interior. In this case (P∨)∨ = P.

Lemma 2.7. If P ⊆ Rd is a full dimensional polytope and 0 is in its interior, then we have
Vol∨(P) = Vol(P∨).

Definition 2.3 is motivated by Lemma 2.7, and intuitively, one views Vol∨ as a volume
function. To be precise, the notion of the dual volume Vol∨ is much more powerful, in
the sense that Vol∨(P) is always defined whenever 0 is not contained in the affine span
of any facets of P, and the rational function Vol∨z (P) is always well-defined.

Example 2.8. Consider a polytope P ⊂ R2 as the convex hull of (1, 1), (2, 1), (3,−1),
(1,−1), with its normal fan N (P) shown in Figure 1. We can pick v1 = (0, 1), v2 = (1, 0),
v3 = (0,−1) and v4 = (−2,−1). Summing cyclically with v5 = v1,

fN (P),v(u1, u2, u3, u4) =
4

∑
i=1

|det(vi, vi+1)|
uiui+1

=
1

u1u2
+

1
u2u3

+
2

u3u4
+

2
u4u1

.

We have hP(v1) = 1, hP(v2) = −1, hP(v3) = 1 and hP(v4) = 5. Assigning ui = hP(vi) in
fN (P),v for all i, we get Vol∨(P) = (−1)+ (−1)+ 2

5 +
2
5 = −6

5 . Assigning ui = hP−z(vi) =
hP(vi) + ⟨z, vi⟩ for all i, we have

Vol∨z (P)

=
1

(1+z2)(−1+z1)
+

1
(−1+z1)(1−z2)

+
2

(1−z2)(5−2z1−z2)
+

2
(5−2z1−z2)(1+z2)

.

Example 2.9. Consider the unbounded polyhedron P ⊂ R2 defined by the inequalities
3x1 + x2 + 3 ≥ 0, x1 + x2 + 1 ≥ 0, −2x1 + x2 + 4 ≥ 0. Its normal fan, N (P), is not a
complete fan, shown in Figure 2. We can pick v1 = (−2, 1), v2 = (1, 1) and v3 = (3, 1).
Compute that hP(v1) = 4, hP(v2) = 1, hP(v3) = 3 and

fN (P),v(u1, u2, u3) =
3

u1u2
+

2
u2u3

.

Substituting ui = hP(vi) for all i gives Vol∨(P) and substituting ui = hP(vi) + ⟨z, vi⟩
gives Vol∨z (P). We therefore obtain Vol∨(P) = 17/12 and

Vol∨z (P) =
3

(4 − 2z1 + z2)(1 + z1 + z2)
+

2
(1 + z1 + z2)(3 + 3z1 + z2)

.



Dual mixed volume 5

• •

••

(1, 1) (2, 1)

(3,−1)(1,−1)

•

v1

v2

v3

v4

Figure 1: A polytope P and its normal fan N (P)

(−1, 0)
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Figure 2: An unbounded polyhedron P and its normal fan N (P)

3 Properties of dual volume

3.1 An integral formula

Theorem 3.1. Let P ⊂ Rd be a polyhedron and z ∈ Rd be any point such that P − z is
non-codegenerate. Then

Vol∨z (P) =
∫

Rd
exp(−hP(v)− ⟨v, z⟩)dv. (3.1)

For a cone C ⊆ Rd, define the dual cone C∗ by

C∗ := {v ∈ Rd | ⟨v, y⟩ ≥ 0 for all y ∈ C}. (3.2)

Note that we use ∗ for polarity/duality on cones and ∨ for polarity on polytopes.

Corollary 3.2. Let P ⊂ Rd be a non-codegenerate polyhedron. Then

Vol∨(P) =
∫

Rd
e−hP(v)dv. (3.3)

3.2 Valuative property

Let [P] be the indicator function of a polyhedron P. Let P denote the space spanned by
indicator functions of polyhedra. We show that Vol∨(P) and Vol∨z (P) are valuative.
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Theorem 3.3. Suppose ∑r
i=1 αi[Pi] = 0 in P , for polyhedra P1, . . . , Pr ∈ Rd and α1, . . . , αr ∈ R.

Then
r

∑
i=1

αi Vol∨z (Pi) = 0. (3.4)

If each Pi is non-codegenerate, then

r

∑
i=1

αi Vol∨(Pi) = 0. (3.5)

We deduce Theorem 3.3 from the classical result of Lawrence stating that the algebra
of indicator functions of cones has a polarity involution. The result is also known to
Alexander Barvinok [5]. It generalizes duality results of Filliman [7] and Kuperberg [11].

3.3 Relation to adjoint polynomials

The adjoint polynomial of a polytope was first introduced by Warren in [17]. We use the
version given in Aluffi [1]; see also [10].

Definition 3.4 ([1, Definition/Theorem 4.1]). Let C be a polyhedral cone in Rd+1 gener-
ated by the extreme rays V(C), and let T be a triangulation of C. The adjoint polynomial
of C is given by

adjC(z) = ∑
F∈T

|det(F)| ∏
v∈V(C)\V(F)

⟨v, z⟩ (3.6)

where the sum is over all simplicial cones F = spanR≥0
(v1, . . . , vd+1) in T, and det(F) =

det(v1, . . . , vd+1).

This definition is independent of the choice of the triangulation T.
Combine the summands in the definition of Vol∨z (P) into a single fraction to get:

Vol∨z (P) =
Az(P)
Bz(P)

, (3.7)

where

Az(P) := ∑
C∈T

|det(C)| ∏
v∈V(N (P))\V(C)

hP−z(v),

Bz(P) := ∏
v∈V(N (P))

hP−z(v)
(3.8)

and T is any triangulation of N (P), C is a simplicial cone in T generated by its extreme
rays V(C) = {v1, . . . , vd}, and det(C) = det(v1, . . . , vd).

We show that the numerator of the dual volume function Volz(P) coincides with the
adjoint polynomial of (the cone of) the dual polytope C(P)∗.
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Theorem 3.5. For any vector z ∈ Rd, let z̄ = (1, z) ∈ Rd+1. Then

Vol∨z (P) =
adjC(P)∗(z̄)

Bz(P)
, or equivalently, adjC(P)∗(z̄) = Az(P).

3.4 Canonical forms

We connect the dual volume of a polyhedron to positive geometry. Positive geometries are
semialgebraic sets endowed with a distinguished meromorphic form called the canonical
form. Projective polytopes P̄ ⊆ Pd(R) are examples of positive geometries (see [3, 12]).

Theorem 3.6. Let P ⊆ Rd be a full-dimensional polyhedron that does not contain lines. Then
the canonical form Ω(P̄) of the projective polytope P̄ is given by

Ω(P̄) = Vol∨z (P)dz1dz2 · · · dzd.

4 Dual mixed volumes

We move on to consider a sequence P = (P1, . . . , Pr) of polyhedra in Rd. Each hPi is
piecewise-linear, and their common domains of linearity give a fan F in Rd, which
coincides with the normal fan N (P) of the Minkowski sum P = P1 + · · ·+ Pr. The fan is
complete exactly when P (and thus each Pi) is a polytope. In the following assume that
the Minkowski sum P is full-dimensional in Rd, so the maximal cones of F are pointed.

Definition 4.1. Let P = (P1, . . . , Pr) be a regular sequence of polyhedra with normal fan
N (P) and let x = (x1, . . . , xr). The dual mixed volume rational function mP(x) is

mP(x) := Vol∨(hxP) = fN (P),v(hxP(v1), . . . , hxP(vg))

where v1, . . . , vg are the generating rays of N (P), with notation as in Definition 2.3. For
any sequence P that is full-dimensional, also define

mP(x, z) := m(P1,P2,...,Pr,−e1,...,−er)(x1, . . . , xr, z1, . . . , zd) = Vol∨(hxP−z).

If P is not full-dimensional, we set mP(x) := 0 and mP(x, z) := 0. By Definition 2.1
we can write mP as a rational function in x1, x2, . . . , xr, with degree −d. The denomi-
nator is a product of linear factors, each corresponding to a ray vi of N (P). Note that
mP(x) generalizes both Vol∨ and Vol∨z . For a full-dimensional polytope P, we have the
specializations

mP(1) = Vol∨(P), m(P,−e1,−e2,...,−ed)
(1, z1, z2, . . . , zd) = Vol∨z (P).
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Theorem 4.2. Let P = (P1, . . . , Pr) be a sequence of polyhedra in Rd, x = (x1, . . . , xr) in Rr,
and z ∈ Rd be any point such that xP − z is non-codegenerate. Then

mP(x, z) =
∫

Rd
exp(−hxP−z(v))dv.

If xP is non-codegenerate, we can let z → 0 and take limits on both sides to get:

mP(x) =
∫

Rd
exp(−hxP(v))dv.

We study the behavior of the dual mixed volume function mP(x) under mixed subdi-
visions: those subdivision of P1 + · · ·+ Pr that are compatible with the Minkowski sum.
Our main result (Theorem 4.3) states that dual mixed volume is additive under mixed
subdivisions, which generalizes Theorem 3.3 to the mixed setting.

Theorem 4.3. Let S = {Q(1), Q(2), . . . , Q(n)} be a mixed subdivision of P = (P1, . . . , Pr), and
let x = (x1, x2, . . . , xr). Then the dual mixed volume of P can be written as a sums of the dual
mixed volumes of the cells in S :

mP(x, z) = ∑
Q∈S

mQ(x, z). (4.1)

5 Formulae from the Cayley polytope

Definition 5.1. For a sequence of polytopes P = (P1, P2, . . . , Pr) in Rd, let µi(z) := (z, ei)
for i ∈ [r], where ei is the i-th standard basis vector in Rr. The Cayley embedding of P is
the map C sending P to following polytope in Rd+r.

C(P) := C(P1, P2, . . . , Pr) := conv{µ1(P1) ∪ µ2(P2) ∪ · · · ∪ µr(Pr)}.

We call C(P1, P2, . . . , Pr) the Cayley polytope of (P1, P2, . . . , Pr).

The following proposition is known as the Cayley trick.

Proposition 5.2 ([9, Theorem 3.1]). There is a bijection between the mixed subdivisions of
P1 + P2 + · · ·+ Pr and the subdivisions of the Cayley embedding C(P1, P2, . . . , Pr). Furthermore,
it restricts to a bijection between the fine mixed subdivisions of P1 + P2 + · · · + Pr and the
triangulations of C(P1, P2, . . . , Pr).

The Cayley trick allows us to write the dual mixed volume function as a single dual
volume function calculated in an affine hyperplane, where volumes are normalized by
the normal vector u = (0, . . . , 0, 1, . . . , 1).

Theorem 5.3. Let P = (P1, . . . , Pr) be full-dimensional. For t = ⟨1, x⟩,

mP(x, z) = ∏n
i=1 xi

∑n
i=1 xi

· Vol∨(z,x)(tC(P))

where the right hand side is calculated in the affine hyperplane {(z, x) | ⟨1, x⟩ = t} ⊂ Rd+r.
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6 Polytopes in an affine hyperplane

Many polytopes of interest in combinatorics, such as matroid polytopes, alcoved poly-
topes, and generalized permutohedra, are naturally defined to live in an affine hyper-
plane. We develop the following formalism to study this case.

Definition 6.1. let P be a polytope whose affine span is the hyperplane H ⊆ Rd. Fix
a triangulation T of the boundary of cone(P)∗, and let {vi}

g
i=1 be generators for the

extremal rays in T . Let F ∈ T denote a top-dimensional ((d− 1)-dimensional) simplicial
cone F in T . The hyperplane dual volume function of the “affine polytope” P is

EVol∨z (P) := ∑
F=span(vi1

,...,vid−1
)∈T

|det(vi1 , vi2 , . . . , vid−1 , 1)|
⟨vi1 , z⟩⟨vi2 , z⟩ · · · ⟨vid−1 , z⟩ . (6.1)

If P does not have full dimension in H, i.e. dim(P) < d − 1, we define EVol∨z (P) := 0.

Similar to the case of the dual volume (Definition 2.3), EVol∨z (P) does not depend on
the triangulation T , and the following valuative property holds (similar to Theorem 3.3).

Theorem 6.2. Suppose ∑r
i=1 αi[Pi] = 0 for polytopes P1, . . . , Pr ∈ H and α1, . . . , αr ∈ R, then

r

∑
i=1

αiEVol∨z (Pi) = 0.

Definition 6.3. The hyperplane dual mixed volume function of P = (P1, . . . , Pr) is

m̃P(x, z) := ∑
F=span(vi1

,...,vid−1
)∈T

|det(vi1 , vi2 , . . . , vid−1 , 1)|
hxP−z(vi1)hxP−z(vi2) · · · hxP−z(vid−1)

, (6.2)

a rational function in x = (x1, . . . , xr) and z = (z1, . . . , zd), with hxP(v) defined as before.

From Theorem 4.3 we obtain the following proposition.

Proposition 6.4. Let P = (P1, . . . , Pr) be a sequence of polytopes in H1 such that P = P1 +
· · ·+ Pr is full-dimensional in Hr. Let S = {Q(1), . . . , Q(N)} be a fine mixed subdivision of P.
Then

m̃P(x, z)|⟨x,1⟩=⟨z,1⟩ = ∑
Q∈S

m̃Q(x, z)|⟨x,1⟩=⟨z,1⟩.

7 Zonotopes

We study zonotopes, polytopes that are Minkowski sums of intervals and show that their
dual mixed volumes uniquely determined by dual mixed volumes of the deletion and
contraction.
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Let P ⊆ Rd be a full-dimensional polytope and p ∈ Rd be a vector. Let H be
the hyperplane normal to p and let H>0 (resp. H≥0) and H<0 (resp. H≤0) denote the
corresponding closed (resp. open) halfspaces. Let

P(x) := P + x[−p, p]

The aim is to give a recursive description of the rational function

V(x, z) := Vol∨z (P(x)) = Vol∨z (P + x[−p, p]).

Let V(z) = V(0, z) = Vol∨z (P). Let P/p := projpP denote the orthogonal projection of P
into H, in the direction of p.

Let B(z) be the denominator of V(z) as defined in (3.8). The cones of the normal fan
N ′ of P + [−p, p] are obtained from N (P) by intersecting with the cones H≥0, H, and
H≤0. Let D(z) be the product of linear factors hP−z(vi)’s where vi’s are rays of N ′ that
are not rays of N .

Theorem 7.1. There exists a unique pair of rational functions W+ = W+(z) and W− = W−(z)
satisfying the following properties:

(1). W+(z) + W−(z) = V(z);

(2). W±(z) = A±(z)/
(

B(z)D(z)
)

for some polynomial A±(z);

(3). writing z = z0 + tp with z0 ∈ H, then limt→∞ tW±(z0, t) = ±Vol∨z0
(P/p)/||p||2.

Consequently, we have V(x, z) = W+(z + xp) + W−(z − xp).

Recursively applying Theorem 7.1, one can compute the dual mixed volume of a
zonotope, via contraction-deletion.

By the Bohne–Dress Theorem, mixed subdivisions of zonotopes, or zonotopal tilings,
are in bijection with one-element liftings of the corresponding oriented matroid. Thus
we obtain a formula for the dual mixed volume mP(x) for each such lifting.

8 Associahedra

We give an explicit formula (Proposition 8.2) for the dual mixed volume of an associahe-
dron and relate it to the planar ϕ3-amplitude.

Definition 8.1. For n ∈ Z>0, let P = (∆[i,j])1≤i≤j≤n. The associahedron is

xP := ∑
1≤i≤j≤n

xij∆[i,j],

which is a special case of the generalized permutohedron.
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Note that here we use xij, where 1 ≤ i ≤ j ≤ n to index a variable. Definition 8.1 is
commonly referred to as the Loday realization [13] of the associahedra. Our presentation
of the material largely follows [14].

We need some additional notations in order to describe the normal fan N (P) of the
associahedron xP. Let B be a plane binary tree and let e ∈ B be an edge. Deleting e from
this tree results in two connected components [n] = LB,e ⊔ UB,e where UB,e contains the
root of B.

Proposition 8.2. When ⟨x, 1⟩ = 0, we have

m̃P(x)|⟨x,1⟩=0 = (−1)n−1 ∑
B∈PB(n)

∏
e∈B

1
∑i,j∈LB,e

xij
.

8.1 Relation to planar ϕ3-amplitude at tree level

We relate Proposition 8.2 to a rational function Aϕ3
n (sij) appearing in physics, called the

ϕ3-amplitude; see [4, 2]. This rational function was a main motivation for our study of
dual mixed volumes.

Scattering amplitudes are functions that compute the outcome of scattering experi-
ments in particle physics. Traditionally, they are computed as the sum over Feynman
diagrams which depend on the choice of particles and their interactions. In “planar
ϕ3-theory”, the Feynman diagrams are planar cubic trees. For n-particle scattering, the
amplitude2 Aϕ3

n (sij) is a sum over all planar cubic trees with n nodes.
Comparing it with Proposition 8.2, we obtain the following.

Proposition 8.3. Up to a sign, the dual mixed volume m̃P(x)|⟨x,1⟩=0 of the associahedron is
equal to the planar ϕ3-amplitude Aϕ3

n under the substitution xij 7→ si,j+1.

Acknowledgements

We thank Alexander Barvinok for a number of enlightening conversations, especially in
relation to Theorem 3.3. T. Lam was supported by the Simons Foundation and by the
National Science Foundation under grants DMS-1953852 and DMS-2348799.

References

[1] P. Aluffi. “Lorentzian polynomials, Segre classes, and adjoint polynomials of convex poly-
hedral cones”. Adv. Math. 437 (2024), Paper No. 109440, 37 pp. doi.

2The full amplitude has a perturbative expansion; we only consider the first term which is a sum over
trees. The later terms involve graphs with cycles.

https://dx.doi.org/10.1016/j.aim.2023.109440


12 Y. Gao, T. Lam, and L. Xue

[2] N. Arkani-Hamed, Y. Bai, S. He, and G. Yan. “Scattering forms and the positive geometry
of kinematics, color and the worldsheet”. J. High Energy Phys. 2018.5 (2018), Art. No. 96.
doi.

[3] N. Arkani-Hamed, Y. Bai, and T. Lam. “Positive geometries and canonical forms”. J. High
Energy Phys. 2017.11 (2017), Art. No. 39, front matter+121 pp. doi.

[4] N. Arkani-Hamed, S. He, and T. Lam. “Stringy canonical forms”. J. High Energy Phys.
2021.2 (2021), Paper No. 69, 59 pp. doi.

[5] A. Barvinok. The dual volume valuation on polyhedra.

[6] A. Barvinok. A course in convexity. Vol. 54. Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2002, x+366 pp. doi.

[7] P. Filliman. “The volume of duals and sections of polytopes”. Mathematika 39.1 (1992),
pp. 67–80. doi.

[8] Y. Gao, T. Lam, and L. Xue. “Dual Mixed Volume”. 2024. arXiv:2410.21688.

[9] B. Huber, J. Rambau, and F. Santos. “The Cayley trick, lifting subdivisions and the Bohne-
Dress theorem on zonotopal tilings”. J. Eur. Math. Soc. (JEMS) 2.2 (2000), pp. 179–198.
doi.

[10] K. Kohn and K. Ranestad. “Projective geometry of Wachspress coordinates”. Found. Com-
put. Math. 20.5 (2020), pp. 1135–1173. doi.

[11] G. Kuperberg. “A generalization of Filliman duality”. Proc. Amer. Math. Soc. 131.12 (2003),
pp. 3893–3899. doi.

[12] T. Lam. “An invitation to positive geometries”. Open Problems in Algebraic Combinatorics.
Vol. 110. Proceedings of Symposia in Pure Mathematics. Amer. Math. Soc., Providence, RI,
2024, pp. 159–180.

[13] J.-L. Loday. “Realization of the Stasheff polytope”. Arch. Math. (Basel) 83.3 (2004), pp. 267–
278. doi.

[14] A. Postnikov. “Permutohedra, associahedra, and beyond”. Int. Math. Res. Not. IMRN 2009.6
(2009), pp. 1026–1106. doi.

[15] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory. 2nd ed. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, 2013.

[16] R. P. Stanley. “Two combinatorial applications of the Aleksandrov-Fenchel inequalities”. J.
Combin. Theory Ser. A 31.1 (1981), pp. 56–65. doi.

[17] J. Warren. “Barycentric coordinates for convex polytopes”. Adv. Comput. Math. 6.2 (1996),
pp. 97–108. doi.

https://dx.doi.org/10.1007/JHEP05(2018)096
https://dx.doi.org/10.1007/jhep11(2017)039
https://dx.doi.org/10.1007/jhep02(2021)069
https://dx.doi.org/10.1090/gsm/054
https://dx.doi.org/10.1112/S0025579300006860
https://arxiv.org/abs/2410.21688
https://dx.doi.org/10.1007/s100970050003
https://dx.doi.org/10.1007/s10208-019-09441-z
https://dx.doi.org/10.1090/S0002-9939-03-06957-0
https://dx.doi.org/10.1007/s00013-004-1026-y
https://dx.doi.org/10.1093/imrn/rnn153
https://dx.doi.org/10.1016/0097-3165(81)90053-4
https://dx.doi.org/10.1007/BF02127699

	Introduction
	Definitions
	Properties of dual volume
	An integral formula
	Valuative property
	Relation to adjoint polynomials
	Canonical forms

	Dual mixed volumes
	Formulae from the Cayley polytope
	Polytopes in an affine hyperplane
	Zonotopes
	Associahedra
	Relation to planar phi3-amplitude at tree level


