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Quantum bumpless pipe dreams
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Abstract. Schubert polynomials are polynomial representatives of Schubert classes
in the cohomology of the complete flag variety and have a combinatorial formula-
tion in terms of bumpless pipe dreams. Quantum double Schubert polynomials are
polynomial representatives of Schubert classes in the torus-equivariant quantum coho-
mology of the complete flag variety, but no analogous combinatorial formulation had
been discovered. We introduce a generalization of the bumpless pipe dreams called
quantum bumpless pipe dreams, giving a novel combinatorial formula for quantum
double Schubert polynomials as a sum of binomial weights of quantum bumpless pipe
dreams. We give a bijective proof for this formula by showing that the sum of binomial
weights satisfies a defining transition equation.
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1 Introduction

Schubert polynomials were introduced by Lascoux and Schützenberger [11] and they
represent cohomology classes called Schubert classes of the complete flag variety. The
original definition is algebraic and relies on divided difference operators; however, mul-
tiple combinatorial formulas for the monomial expansion of Schubert polynomials have
been found [1, 2, 4, 9, 13]. Two such examples are Schubert polynomials as weight-
generating functions of pipe dreams (originally called RC-graphs [2, 4]), or bumpless
pipe dreams [9]. For example, for BPD(w), the set of (reduced) bumpless pipe dreams of
a permutation w, one has

Sw(x, y) = ∑
P∈BPD(w)

bwt(P) ,

where bwt(P) is a product of binomials (xi − yj) associated to P ∈ BPD(w) [9]. These
pipe dream and bumpless pipe dream formulations generalize to some generalizations
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of Schubert polynomials, such as double Schubert polynomials and double Grothendieck
polynomials [8, 15].

Motivated by ideas that stem from string theory, mathematicians defined quantum
cohomology rings [14, 16]. See, e.g., [6] for more on the history of quantum coho-
mology. In the quantum cohomology of the complete flag variety, the Schubert classes
correspond to quantum Schubert polynomials, another generalization of Schubert poly-
nomials [3]. Quantum double Schubert polynomials, which generalize both quantum
Schubert polynomials and double Schubert polynomials, were defined in [5, 7]. Like
Schubert polynomials, there is a quantum double Schubert polynomial for each permu-
tation w of {1, 2, . . . , n}, denoted S

q
w(x, y), lying in Z[x1, . . . , xn, y1, . . . , yn, q1, . . . , qn−1].

There is no known combinatorial formulation for the monomial expansion of quantum
Schubert polynomials or quantum double Schubert polynomials. One major difficulty
is the presence of unpredictable signs in the monomial expansion of S

q
w(x, y). In this

paper, we define combinatorial objects called quantum bumpless pipe dreams (QBPDs).
They are a generalization of bumpless pipe dreams, and their weight-generating function
gives the quantum double Schubert polynomials, i.e.,

S
q
w(x, y) = ∑

P∈QBPD(w)
bwt(P) ,

where QBPD(w) is the set of QBPDs of w and bwt(P) is a product of (xi − yj)’s and
qi’s. This is stated precisely in Theorem 3.4. Unfortunately, this formula has internal
cancellation, but the combinatorics seems quite natural.

We give the necessary background in Section 2. In Section 3, we define quantum
bumpless pipe dreams, establish fundamental combinatorial properties, and state the
main theorem. In Section 3.1, we provide a way to generate all QBPDs for a given
permutation using droop moves as in [9], as well as new moves called lift moves. In Sec-
tion 3.2, we establish that the quantity ∑

P∈QBPD(w)
bwt(P) satisfies the stability condition,

i.e., it does not change under the natural inclusion map i: Sn → Sn+1, which is needed for
our proof of Theorem 3.4. We give an overview of the proof of Theorem 3.4 in Section 3.3.
In Section 4, we provide some examples of (partial) cancellations of the binomial weight
of QBPDs and provide some analysis of cancellations. This is an extended abstract for
[12], and the full proof of Theorem 3.4 and other results stated here can be found there.

2 Background

We use the notation [n] := {1, 2, . . . , n}. Let Sn be the symmetric group on [n], i.e.
the set of bijections from [n] to [n]. To write a bijection σ: [n] → [n], we will use one-
line notation, i.e., writing σ(1)σ(2) . . . σ(n). Multiplication of permutations are function
composition (in that order), that is, στ = σ ◦ τ as functions from [n] to [n]. We write
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tab for the transposition that swaps a and b, and write si for the adjacent transposition
ti,i+1. The length of w ∈ Sn, denoted ℓ(w), is defined as the minimum number of adjacent
transpositions si required to express w as their product. Any way to write w as a product
of exactly ℓ(w) adjacent transpositions is called a reduced word for w. Let w0 := n n− 1 . . . 1
be the longest permutation in Sn.

We write Z[x] for Z[x1, . . . , xn], Z[x, y] for Z[x][y1, . . . , yn], Z[x, q] for
Z[x][q1, . . . , qn−1] and Z[x, y, q] for Z[x, y][q1, . . . , qn−1].

2.1 Rothe Diagrams

Throughout this paper, we use matrix coordinate notation: (i, j) means the box on
row i column j. For a permutation σ : [n] → [n], the Rothe diagram of σ is defined as
follows. The set of boxes {(i, σ(i)) : i ∈ [n]} are first marked with a dot in the grid.
Then, starting from each dot and ending on edges of the grid, vertical lines are drawn
downward and horizontal lines are drawn rightward. The resulting figure is the Rothe
diagram for σ.

Note that the Rothe diagram for a permutation σ can be turned into a bumpless pipe
dream by “smoothing” the corners into tiles, as in Figure 1. (For the definition of
bumpless pipe dream, see [9], or Definition 3.1 below.)

1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

Figure 1: Rothe diagram for 4213

2.2 Double Schubert polynomials

Consider the action of Sn on Z[x, y] by permuting the y variables; in particular, si
swaps yi and yi+1:

si f (x, y1, . . . , yi, yi+1, . . . , yn) = f (x, y1, . . . , yi+1, yi, . . . , yn).

We define divided difference operators ∂
y
i as follows

∂
y
i ( f ) :=

f − si f
yi − yi+1

.



4 T. Le, S. Ouyang, L. Tao, J. Restivo, A. Zhang

The divided difference operators ∂
y
w for w ∈ Sn are defined as follows. Let sa1 · · · sak be

any reduced word for w. Then,
∂

y
w = ∂

y
a1 · · · ∂

y
ak .

The double Schubert polynomials are then defined as follows:

Sw(x, y) =

 ∏
i+j≤n

(xi − yj), if w = w0,

(−1)ℓ(w0)−ℓ(w)∂
y
ww0Sw0(x, y), otherwise.

(2.1)

Specializing the y variables to 0 recovers the Schubert polynomials.

2.3 Quantum double Schubert polynomials

As in [3], we define Ek
i (x1, . . . , xk) to be the coefficient of λi in the characteristic poly-

nomial det(1 + λGk) where

Gk =


x1 q1 0 . . . 0
−1 x2 q2 . . . 0
0 −1 x3 . . . 0
...

...
... . . . ...

0 0 0 . . . xk

 .

These Ek
i are quantum analogues of the elementary symmetric polynomials ek

i ’s which
are defined by

ek
i := ∑

1≤a1<···<ai≤k
xa1 · · · xai .

Indeed, specializing all the q variables to 0 turns Ek
i into ek

i . Fomin, Gelfand and Post-
nikov [3] originally defined quantum Schubert polynomials by passing the Schubert
polynomials through a quantization map that sends ek

i to Ek
i . There is, however, a way to

define the quantum double Schubert polynomials via divided difference operators [5].
For the longest permutation w0, we have

S
q
w0(x, y) :=

n−1

∏
k=1

Ek
k(x1 − yn−k, . . . , xk − yn−k), (2.2)

and, for any permutation w, we have

S
q
w(x, y) = (−1)ℓ(w0)−ℓ(w)∂

y
ww0S

q
w0(x, y). (2.3)

Specializing the q variables to 0 recovers the double Schubert polynomials while special-
izing the y variables to 0 recovers the quantum Schubert polynomials. Setting both y
and q variables to 0 recovers the Schubert polynomials.
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Theorem 2.1 (Monk’s rule for quantum double Schubert polynomials [10]). For any k and
any permutation w,

S
q
sk(x, y)Sq

w(x, y) = ∑
a≤k<b,

ℓ(wtab)=ℓ(w)+1

S
q
wtab

(x, y) + ∑
c≤k<d,

ℓ(wtcd)=ℓ(w)−ℓ(tcd)

qcdS
q
wtcd

(x, y)

+
k

∑
i=1

(yw(i) − yi)S
q
w(x, y),

where qcd := qcqc+1 . . . qd−1.

3 Quantum bumpless pipe dreams

We will now define quantum bumpless pipe dreams, the central objects of this paper.

Definition 3.1. A quantum bumpless pipe dream (QBPD) is a tiling of an n × n grid filled
with tiles

so that

• the tiling forms n pipes;

• each pipe starts horizontally at the right edge of the grid and ends vertically at the
bottom edge of the grid;

• the pipes only move upward, downward, or leftward (but not rightward) when
moving from the right edge to the bottom edge;

• no two pipes cross more than once.

The last tile is a 2 × 1 domino tile, which occupies two vertically adjacent empty
squares in the grid. A (non-quantum) bumpless pipe dream (BPD) (as defined in [9]), is a
QBPD in which the last three tiles above ( , , and the domino tile) do not appear, so
in a BPD pipes only move downward and leftward.

Example 3.2. Figure 2 shows a non-example of a QBPD. The pipe starting on row 3 moves
rightward in the tiles (2, 2) and (2, 3), which violates Definition 3.1. See Figure 3 for examples of
valid QBPD.

Definition 3.3. The binomial weight for a QBPD P, denoted bwt(P), is the product of
weights contributed by the following tiles:
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Figure 2: A non-example of a QBPD

• An empty tile on row i and column j contributes xi − yj;

• A domino tile whose upper cell is on row i contributes qi;

• A cross tile on row i where the vertical strand moves upwards contributes qi;

• A southwest elbow on row i contributes −qi;

• A vertical tile on row i where the strand moves upward contributes −qi.

In other words, let P(i, j) denote the cell on row i and column j, and let

E(P) := {(i, j) : P(i, j) is a single empty cell},

Q(P) := {(i, j) : P(i, j) is the upper cell of a domino or a tile
in which the vertical strand moves upward},

NQ(P) := {(i, j) : P(i, j) is a tile or a tile
in which the strand moves upward}.

Then,

bwt(P) := ∏
(i,j)∈E(P)

(xi − yj) ∏
(i,j)∈Q(P)

qi ∏
(i,j)∈NQ(P)

(−qi)

= (−1)|NQ(P)| ∏
(i,j)∈E(P)

(xi − yj) ∏
(i,j)∈Q(P)∪NQ(P)

qi .

A QBPD P is said to be associated with a permutation w if the pipe starting on the
right on row i ends up on column w(i).

Let QBPD(w) denote the set of QBPDs associated to w. Our main result is the follow-
ing:

Theorem 3.4. The quantum double Schubert polynomial indexed by w ∈ Sn is the sum of
binomial weights of all QBPDs associated to w:

S
q
w(x, y) = ∑

P∈QBPD(w)
bwt(P) .
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1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

Figure 3: QBPDs for 4213

Example 3.5. From Figure 3, we have

S
q
4213(x, y) = (x1 − y1)(x1 − y2)(x1 − y3)(x2 − y1) + q1(x1 − y2)(x1 − y3)

+ (x1 − y1)(x2 − y1)(−q1) + q1(−q1) + (−q1)q2 .

As a corollary, we have the following formula.

Corollary 3.6. The quantum Schubert polynomial indexed by w ∈ Sn is the sum of monomial
weights of all QBPDs associated to w:

S
q
w(x) = ∑

P∈QBPD(w)
wt(P)

where
wt(P) := ∏

(i,j)∈E(P)
xi ∏

(i,j)∈Q(P)
qi ∏

(i,j)∈NQ(P)
(−qi) .

3.1 Droop moves and lift moves

Droop moves on bumpless pipe dreams are defined in [9]. They are moves of the
form illustrated in Figure 4. Droop moves can be extended to the QBPD setting. We
allow a droop move only if the result is a valid and reduced QBPD.

Figure 4: A droop move (light color indicates possibilities)

In [9], Lam, Lee, and Shimozono proved that any bumpless pipe dream of a given
permutation can be obtained from the Rothe diagram by a sequence of droops. To
generate all QBPDs, we introduce other moves called lift moves.
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The lift moves are moves in which a horizontal segment of a strand is “lifted up”
into a detour that goes up, moves left, and then moves back down. Figure 5 shows an
example of a lift move. There might be other unpictured pipes in the picture as long as
the result is a valid and reduced QBPD.

Figure 5: A lift move (light color indicates possibilities)

A QBPD is said to be unpaired if it has no domino tile. To generate all QBPDs, we can
generate all unpaired QBPDs and find all ways to pair empty boxes into dominos. Note
that droops moves and lift moves preserve the permutation associated to the QBPD.

Lemma 3.7. All unpaired QBPDs can be generated from the Rothe diagram using a sequence of
droop and lift moves.

3.2 Stability

Given a QBPD of w ∈ Sn, we can think of w as being in Sn+1. In terms of QBPDs, we
can extend an n × n QBPD P to a (n + 1) × (n + 1) QBPD as in Figure 6.

P P

Figure 6: Extending a n × n QBPD to a (n + 1) × (n + 1) QBPD

The reverse is also possible:

Lemma 3.8. Given w ∈ Sn+1 such that w(n + 1) = n + 1, for any (n + 1) × (n + 1) QBPD of w,
we can restrict it to an n × n QBPD of w restricted to Sn.

3.3 Overview of the proof of Theorem 3.4

We prove Theorem 3.4 by showing the quantity ∑
P∈QBPD(w)

bwt(P) satisfies a defining

transition equation of the quantum double Schubert polynomials obtained by taking
appropriate special cases of Theorem 2.1. For example, the transition equation for 3241
is as follows:S3241 = (x3 − y1)S3214 + q2S3124 + q1q2S1234 .
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In general, the transition equation has four families of terms on the right hand side.
For details see [12, Proposition 3.14]. We show the quantity satisfies the transition equa-
tion by splitting the QBPDs of the permutations on the left hand side into four sets, and
constructing four bijections between those four sets with the four families on the right
hand side. However, portions of the last the family on the right hand side will remain,
but they cancel out using another family of bijections. These bijections are constructed
for permutations π with π(n) ̸= n which we can assume without loss of generality by
Lemma 3.8.

1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

1 2 3 4
4
3
2
1

Figure 7: Bijections for the transition equations of 3241.

For example, the bijections for 3241 are illustrated in Figure 7. The top row (top left
and top right correspondence) is one bijection that sends two QBPDs of 3241 to the two
QBPDs of 3214 which corresponds to the (x3 − y1)S3214 term on the right hand side. The
bottom left correspondence is one bijection that sends the one remaining QBPD of 3241
to one QBPD of 3124, so the remaining part of the left hand side corresponds to part of
the q2S3124 term on the right hand side. Finally, the bottom right correspondence sends
the one remaining QBPD of 3124 to the one QBPD of 1234, which means the remaining
parts of the q2S3124 term on the right hand side cancel outs with the q1q2S1234 term.

In general, these bijections are more complicated, as some cases do not show up
in the example above. The full details of these bijections can be found in [12, Section
3.3]. By showing how these bijections change the binomial weight, we establish that
the quantum bumpless pipe dreams formula satisfies the transition equation and thus
establish Theorem 3.4.
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4 Cancellation Analysis

There is no cancellation in the bumpless pipe dream formula for the double Schubert
polynomials. Quantum bumpless pipe dreams provide a combinatorial formula for the
monomial expansion of the quantum double Schubert polynomial, but this formula is
not cancellation-free. In this section, we give some analysis of how much and what kind
of cancellation occurs.

Table 1 lists all the permutations in S4 for which the QBPD formula gives cancellation
when computing the quantum double Schubert polynomials.

Permutation Monomials QBPD Monomials Cancellations Number of QBPDs
[4, 1, 3, 2] 50 54 2 9
[3, 1, 4, 2] 18 20 1 4
[1, 4, 3, 2] 46 48 1 9
[2, 1, 4, 3] 12 14 1 5

Table 1: Nonzero cancellations for QBPDs in S4, when considering the generated quan-
tum double Schubert polynomial.

Example 4.1. Permutation 615432 has 97032 monomials in its quantum double Schubert poly-
nomial, while the total number of monomials generated from QBPDs is 140052. 21510 pairs of
monomials cancel out, and the number of QBPDs is 1038. This is the permutation with the most
cancellation in S6.

Total Average per Permutation Permutation of Max Max
S3 0 − − −
S4 5 0.208 [4, 1, 3, 2] 2
S5 1350 11.25 [5, 1, 4, 3, 2] 153
S6 570549 792.43 [6, 1, 5, 4, 3, 2] 21510

Table 2: Cancellations in Sn for n = 3, 4, 5, 6

As shown in Table 2, the number of cancellations per permutation grows larger with
greater n. In particular, we can observe that there are several ways that cancellations
occur. Two QBPDs could completely cancel each other out in both the single and double
quantum Schubert polynomial case, as in Figure 8, or they could partially cancel. In the
case of partial cancellation, Figure 9 illustrates the cancellation of binomial terms and no
cancellation in monomial terms, while Figure 10 illustrates the cancellation of monomial
terms but not binomial terms.
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Figure 8: Two QBPDs for 2143 whose binomial weights cancel each other out com-
pletely. The left contributes −q1, and the right contributes q1.

Figure 9: Two QBPDs for 1432 whose monomial weights do not cancel out, but bino-
mial weights partially cancel out. The left QBPD contributes x1q1 − y2q1, and the right
QBPD contributes −x3q1 + y2q1.

Figure 10: Two QBPDs for 12543 whose monomial weights cancel each other out, but
binomial weights do not cancel completely. The left QBPD contributes x3q1 − y4q1, and
the right contributes −x3q1 + y2q1.
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