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The Integer Decomposition Property in
Smooth Polytopes
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Abstract. Tadao Oda conjectured that every smooth polytope, in any dimension, has
the Integer Decomposition Property. In this paper, we show this result for subclasses of
polytopes: smooth combinatorial cubes of any dimension and 3-dimensional pseudo-
prisms.
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1 Introduction

For lattice polytopes P and Q, we say that (P, Q) has the Integer Decomposition Property, or
that it is IDP, if every lattice point in the Minkowski sum P + Q = {p + q : p ∈ P, q ∈ Q}
can be written as the sum of a lattice point in P and a lattice point in Q. For a single
polytope P, we say that P is IDP when (P, kP) is IDP for all positive integers k. IDP
polytopes are directly related to Ehrhart theory, and are of great interest in commutative
algebra and the study of toric varieties, as well as being of use in integer programming.
In general, it is an open question to characterize when a polytope is IDP.

While being IDP is a global property of a polytope, we are interested in its relation-
ship to the more local notion of smoothness. First, a d-dimensional polytope is simple
if each vertex is contained in exactly d edges (and so also exactly d facets). We define
the primitive edge directions of a vertex to be the smallest lattice directions along all its
adjacent edges, and then say that a d-dimensional polytope is smooth if it is simple and
if the primitive edge directions at each vertex form a basis for the integer lattice Zd.

In 1997, Tadao Oda made the following conjecture, documented in [13], which re-
mains unproven.

Conjecture 1.1 (Oda’s Conjecture). All smooth polytopes are IDP.

This problem is motivated by its relationship to the study of toric varieties, as there
is a correspondence between smooth polytopes and ample divisors of smooth toric va-
rieties. Suppose that XΣ is a smooth projective toric variety, and that L is an ample line
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bundle on it. Oda’s Conjecture is equivalent to the statement that the embedding of XΣ
given by L is projectively normal, or in other words, that the multiplication map

H0(XΣ,L)⊗ ... ⊗ H0(XΣ,L) → H0(XΣ,L⊗k),

is surjective ([12]).
The interest in the consequences of smoothness is not limited to the IDP, but includes

stronger properties such as the existence of a unimodular covering or triangulation. In-
deed, there is a hierarchy of properties, cataloged in [9], of which the IDP is the weakest.
And despite attracting considerable interest, including as the subject of an Oberwolfach
mini-workshop in 2007, Oda’s conjecture remains open, even in three dimensions. As
such, even partial or computational results relating to any such properties are of interest,
as in [6, 5, 11, 2, 7].

In particular, recent progress was made towards proving the conjecture in [1], where
Beck et al. showed that 3-dimensional, centrally symmetric, smooth polytopes are IDP.
In this paper, we contribute other sufficient conditions for smooth polytopes to be IDP.

We define a d-dimensional combinatorial cube to be a polytope whose face poset is in
bijection with the face poset of the unit cube, [0, 1]d. Then, we prove the following.

Theorem 4.8. Smooth combinatorial cubes of any dimension are IDP.

In the process of proving this, we also define a pseudo-prism, a more general class of
polytopes with specific characteristics reminiscent of a prism, and show the following.

Theorem 4.6. Every smooth, 3-dimensional pseudo-prism is IDP.

2 Preliminaries

2.1 Properties of smooth and IDP polytopes

In this paper, we will explore the structure imposed on polytopes when they are smooth;
in particular, we will be concerned with whether two faces of a polytope are parallel.
In general, every k-face F of a polytope lies in a unique k-dimensional affine subspace,
which we denote with aff(F). We use lin(F) to denote the linear subspace parallel to
aff(F), and then two faces F and G of a polytope are parallel when lin(F) = lin(G).

This additional structure that we find in certain classes of smooth polytopes will
allow us to consider the integer decomposition property. We will employ the following
well-known facts.

Proposition 2.1. Basic IDP properties:

(a) Let P be a d-dimensional polytope. Then, (P, kP) is IDP for all integers k ≥ d − 1.
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(b) All polygons are IDP.

Proof. A proof of (a) can be found in [4, Theorem 2.2.12], and was originally proved in
[3]. The result of (b) follows from (a), or alternatively is shown in [10].

We also have the following useful characterization of being IDP, which we use re-
peatedly.

Proposition 2.2 (IDP Equivalence). Let P and Q be polytopes. For a lattice point a ∈ Zd,
define

Ra = P ∩ (a + (−Q)).

Then, (P, Q) is IDP if and only if for all a, Ra contains a lattice point whenever it is non-empty.

In this paper, we rely heavily on the use of unimodular transformations, which are
linear maps Rd → Rd which send the lattice Zd to itself. Equivalently, a linear trans-
formation is unimodular if and only if the determinant of the matrix representing it is
±1. Importantly, for every lattice basis, there exists a unimodular transformation which
sends it to the standard basis, and follows that unimodular transformations preserve the
IDP.

It will be relevant to consider when two polytopes are Minkowski equivalent, and we
will use the following characterization of this property.

Proposition 2.3. Polytopes P and Q are Minkowski equivalent if and only if there is a bijection
between their face posets such that all corresponding facets are parallel to each other.

Since linear transformations preserve the parallelism of affine subspaces, it follows
that they also preserve Minkowski equivalence. We will particularly apply this fact to
unimodular transformations.

There are many geometric implications of being Minkowski equivalent; in particular,
we have the following.

Lemma 2.4. Suppose polytopes P and −Q in Rd are Minkowski equivalent. If P and Q are
disjoint, then there is a hyperplane which separates them that is parallel to a facet of P.

2.2 Combinatorial cubes

Consider C, an arbitrary smooth d-dimensional combinatorial cube. Importantly, each
face of a combinatorial cube is itself a combinatorial cube of smaller dimension.

In order to discuss the faces of C, we will employ the bijection between the face posets
of C and the d-dimensional unit cube, [0, 1]d. We can label the faces of the unit cube as
the F J

I , where I and J are every pair of disjoint subsets of [d]. Then we define

F J
I :=

{
(x1, x2, ..., xd) ∈ [0, 1]d : xk =

{
0 if k ∈ I
1 if k ∈ J

}
,



4 Juliana Curtis

so that F J
I is a (d − (|I|+ |J|))-dimensional face of the unit cube. Via the bijection, we

reuse this face labeling for the faces of C, so that the F J
I uniquely identify every face of C.

With this notation, we can also easily recover the following relationships between the
faces of a cube.

Proposition 2.5. Basic properties of faces of cubes.

(a) The face F J1
I1

contains the face F J2
I2

if and only if I1 ⊆ I2 and J1 ⊆ J2.

(b) The intersection of two faces F J1
I1

and F J2
I2

is the face F J1∪J2
I1∪I2

.

However, when it is appropriate, we prefer a more concise notation for F J
I : we denote

elements of J with a bar, rather than using the superscript. Instead of writing F{x,z}
{y} , we

may write Fx̄yz̄.

Figure 1: The 3-dimensional unit cube, viewed from the ‘inside’ and ‘outside.’

For example, as in Figure 1, when C is 3-dimensional the six (2-dimensional) facets
of C are F1, F1̄, F2, F2̄, F3, F3̄. As in Proposition 2.5, F1 contains the 1-dimensional
faces F12, F13, F12̄, F13̄, and the intersection of the 2-dimensional faces F1 and F2̄ is the
1-dimensional face F12̄.

In cubes of all dimensions there is a notion of opposite facets, and our notation
indicates this: We say that two facets Fx and Fx̄ of C are opposite each other. Since faces
of combinatorial cubes are themselves cubes, we have that Fxy and Fxȳ are opposite each
other within Fx. In a full-dimensional cube, two facets can be parallel only if they are
opposite.
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As C is smooth, the primitive edge directions at each vertex of C span the integer lat-
tice, and there always exists a unimodular transformation which sends these directions
to the standard basis vectors. Thus, since unimodular transformations and translations
preserve the IDP and subspace parallelism, we may assume that one corner of C lies at
the origin and has primitive edge directions along the coordinate axes, e1, e2, ..., ed. We
note, however, that not all of the faces of C will inherit this placement.

3 Parallelism in combinatorial cubes

In general, a combinatorial cube may be irregular in shape, as in Figure 2.

Figure 2: A 3-dimensional combinatorial cube with no parallel faces.

However, we will show that smoothness imposes restrictions on the relative positions
of the facets of a cube, in the following theorem.

Theorem 3.1. Let C be a d-dimensional smooth combinatorial cube in Rd with d ≥ 2. Then, C
has two parallel facets.

To build intuition, let us observe the consequences of assuming smoothness of a cube
in two dimensions: Suppose that C is a smooth quadrilateral.

As above, we can take one corner of C to be at the origin, with primitive edge di-
rections {(1, 0), (0, 1)}. Then, since C is smooth, the primitive edge directions at each of
the four vertices must span the integer lattice Z2, so they must be of the form given in
Figure 3, for some integers m and n.

Then, since {(−1,−n), (−m,−1)} must span Z2, it must be that

det
(
−1 −m
−n −1

)
= ±1.



6 Juliana Curtis

Figure 3: 2-dimensional cube, with primitive edge directions at each vertex.

It follows easily that one of n, m must be 0, resulting in either vertical or horizontal
edges which are parallel.

The higher dimensional result follows inductively, with an examination by cases
shown in three dimensions in Figure 4.

4 IDP in prisms, pseudo-prisms, and cubes

In the process of showing that combinatorial cubes of every dimension are IDP, we
produce several intermediate results about a more general class of polytopes.

A d-dimensional prism is a polytope which is affinely equivalent to a polytope Q ×
[0, 1] for some (d− 1)-dimensional polytope Q. This yields top and bottom facets, Q×{1}
and Q×{0}, respectively, which are parallel to each other. Thus, there are edges between
the corresponding vertices of the top and bottom, and so all other facets of a prism,
the side facets, are themselves (d − 1)-dimensional prisms, whose tops and bottoms are
(d − 2)-faces of the top and bottom of the original prism.

We define a pseudo-prism to be a polytope whose face lattice is isomorphic to that
of a prism and whose corresponding top and bottom facets are parallel. Observe that
this means that the top and bottom faces of a pseudo-prism have the same face poset,
so in particular have the same number of vertices. Further note that by Theorem 3.1,
every d-dimensional smooth combinatorial cube is a pseudo-prism, where Q is a (d− 1)-
dimensional smooth combinatorial cube.

It is convenient to visualize pseudo-prisms whose top and bottom facets are parallel
to the coordinate plane {(x1, ..., xd) : xd = 0}. Again, since unimodular transformations
and translations preserve the IDP, Minkowski equivalence, and subspace parallelism, we
may assume that pseudo-prisms have tops and bottoms parallel to this coordinate plane,
and further that smooth pseudo-prisms have one vertex at the origin, with primitive
edge directions e1, e2, ..., ed.
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(A) The faces F13̄, F13, and F1̄3 are all paral-
lel to each other.

(B) The pairs of faces (F12, F12̄), (F13, F1̄3),
and (F23, F23̄) are parallel.

(C) The pairs of faces (F1̄2, F1̄2̄), (F13̄, F1̄3̄),
and (F2̄3, F2̄3̄) are also parallel, and

lin(F1̄2) = span(e3).

(D) The pairs of faces (F1̄2, F1̄2̄), (F13̄, F1̄3̄),
and (F2̄3, F2̄3̄) are also parallel, and

lin(F1̄2) ̸= span(e3).

Figure 4: A 3-dimensional combinatorial cube, with various parallel faces.

It is clear that the top and bottom facets of d-dimensional prisms are translations of
the same (d − 1)-dimensional polytope. While this is not true in general for pseudo-
prisms, there is a strong relationship between their top and bottom facets, which we
give in the following lemma.

Lemma 4.1. The top and bottom of a pseudo-prism are Minkowski equivalent.

Supposing that a pseudo-prism P has bottom which lies in {(x1, ..., xd) : xd = b} and
top which lies in {(x1, ..., xd) : xd = b + h} for integers b and h, we define slices Sl of P as
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the nonempty intersections

Sl = P ∩ {(x1, ..., xd) : xd = b + l}

for heights l ∈ [h]. It is not hard to show that each slice of a smooth pseudo-prism has
only integer vertices, and the following lemma is a natural consequence.

Lemma 4.2. If P is a smooth pseudo-prism of dimension d, then every slice of P is an integer
polytope of dimension d − 1 and is Minkowski equivalent to its bottom (and so also its top).

Oda’s Conjecture has been proved in only two dimensions. However, another two
dimensional result that doesn’t require smoothness was proved by Hasse et al. in 2007.

Theorem 4.3 ([8]). Let P and P′ be Minkowski equivalent lattice polygons. Then, (P, P′) is
IDP.

An analogous result for dimensions higher than two is known to be untrue in many
cases, for instance, any pair (P, kP) where P is not IDP, such as the Reeve tetrahedron.
However, the structure of a pseudo-prism lends itself to the following theorem.

Theorem 4.4. Let P and P′ be Minkowski equivalent, smooth pseudo-prisms which are d-
dimensional. Let {Sl} and {S′

m} be the slices of P and P′ respectively, and suppose that for
every l and m, the pair (Sl, S′

m) is IDP. Then, (P, P′) is IDP.

Proof. Assume without loss of generality that the bottom B and top T of P lie in the
respective hyperplanes {(x1, ..., xd) : xd = 0} and {(x1, ..., xd) : xd = t} for some integer
t, while the bottom B′ and top T′ of P′ lie in the hyperplanes {(x1, ..., xd) : xd = b′} and
{(x1, ..., xd) : xd = t′} for integers b′ > t′, respectively.

To show that (P, P′) is IDP, we will use Proposition 2.2. Suppose that Ra = P ∩ (a +
(−P′)) is non-empty for some point a = (a1, ..., ad) ∈ Zd.

We see that a + (−P′) has top a + (−B) which is contained in {(x1, ..., xd) : xd =
ad − b′} and bottom a + (−T) which is contained in {(x1, ..., xd) : xd = ad − t′}. All of
a + (−P′) lies between these two hyperplanes, and all of P lies between {(x1, ..., xd) :
xd = 0} and {(x1, ..., xd) : xd = t}.

In order for Ra to be non-empty, the top or bottom of at least one of P or a + (−P′)
lies in a hyperplane which is vertically between the top and bottom hyperplanes of the
other. So, suppose without loss of generality that B lies between the top and bottom
hyperplanes of a + (−P′). This means that there is a slice S′

m of P′ such that the slice
G := a + (−S′

m) of a + (−P′) lies in the hyperplane {(x1, ..., xd) : xd = 0}.
Suppose towards contradiction that B itself does not intersect G. As B and G are

both (d − 1)-dimensional polytopes, consider them only in the subspace {(x1, ..., xd) :
xd = 0}. Since they are Minkowski equivalent, Lemma 2.4 gives that there is a (d − 2)-
dimensional hyperplane H̃ ⊆ {(x1, ..., xd) : xd = 0} which separates B and G. Further,
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this Proposition gives us that H̃ is parallel to a (d − 2)-face B̃ of B and so is also parallel
to the corresponding face G̃ of G.

Since P is a pseudo-prism and B̃ is a face of B, we know that P has a facet F such that
B̃ = B ∩ F, a (d − 2)-face of P. As P′ is Minkowski equivalent to P, it has corresponding
facet F′ which is parallel to F, and G̃ = G ∩ (a + (−F′)).

In particular, we have that F and a + (−F′) are parallel and non-equal since B̃ and
G̃ are disjoint. Thus, there is a hyperplane H which is parallel to both F and a + (−F′)
which contains H̃. However, this H must separate C and a + (−P′), contradicting our
supposition that Ra is non-empty. Therefore, it must be that B intersects G, as in Figure 5.

Figure 5: Slices B of P and G of a + (−P′).

By assumption, (B, S′
m) is IDP. By Proposition 2.2, since B ∩ G = B ∩ (a + (−S′

m))
is nonempty, it must contain a lattice point. Thus, Ra contains a lattice point, so we
conclude that (P, P′) is IDP.

By employing Theorem 4.3, we satisfy the required hypotheses of Theorem 4.4 when
we restrict to 3-dimensional smooth pseudo-prisms, and we can conclude the following.

Theorem 4.5. Let P and P′ be Minkowski equivalent, smooth, 3-dimensional pseudo-prisms.
Then, (P, P′) is IDP.

Theorem 4.6. Every smooth, 3-dimensional pseudo-prism is IDP.

Combinatorial cubes are highly structured polytopes, and as such are conducive to
induction. This allows us to satisfy the hypotheses of Theorem 4.4 in any dimension,
yielding the following results.
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Theorem 4.7. Suppose that C and C′ are Minkowski equivalent smooth cubes of dimension
d ≥ 2. Then, (C, C′) is IDP.

Theorem 4.8. Smooth combinatorial cubes of any dimension are IDP.

5 Future work

Smooth polytopes have only been shown to be IDP under strong additional assump-
tions; in its full generality, Oda’s Conjecture remains open. Following these results, it is
natural to try to relax the structure of pseudo-prisms and examine polytopes with some
weaker characteristic involving parallelism, or to more deeply explore the geometric
consequences of smoothness. Alternatively, it is interesting to explore which assump-
tion in [1], 3-dimensional or centrally symmetric, could be shown to be superfluous.
Others have classified all smooth, 3-dimensional polytopes which have small numbers
of internal lattice points: In [11], Lundman expanded on the work in [2], leaving open
ample opportunity for exploration. There are stronger properties than the IDP, e.g. the
existence of a unimodular triangulation, which might be associated to these or other
classes of polytopes.
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