Combinatorial Interpretations for Lucas Analogues

Bruce Sagan
Michigan State University www.math.msu.edu/~sagan

joint with Curtis Bennett, Juan Carrillo, and John Machacek

KrattenthalerFest, Strobl

September 12, 2018

lattice paths, Reflections, \& DIMENSION-CHANGING BIJECTIONS

Richard K. Guy
C. Krattenthaler
Bruce E. Sagan
Department of Mathematics and Statistics
The University of Calgary
Calgary, Alberta, Canada T2N 1N4
Institut für Mathematik der Universität Wien,
Strudlhofgasse 4 A-1090 Wien, Austria
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027 USA

Abstract

We enumerate various families of planar lattice patha connisting of unit steps in directions $\mathrm{N}, \mathrm{S}, \mathrm{E}$, or W , which do not cross the x-axis or both x - and y-axes. The proofs are purely combinatorial throughout, using either reflections or bijections between these NSEW-paths and linear NS-paths. We also consider other dimension-changing bijections.

1. Introduction. Consider lattice paths in the plane consisting of unit steps, each in a direction N, S, E, or W. Such NSEW-paths were first investigated by DeTemple \& Robertson [DR] and Csáki, Mohanty \& Saran [CMS]. The basic result of these papers is the following.

The Lucas sequence

Binomial coefficient analogue

Catalan number analogue

Coxeter groups

Comments and open problems

Outline

The Lucas sequence

Binomial coefficient analogue

Catalan number analogue

Coxeter groups

Comments and open problems

Let s and t be variables.

Let s and t be variables. The corresponding Lucas sequence is defined inductively by $\{0\}=0,\{1\}=1$, and

$$
\{n\}=s\{n-1\}+t\{n-2\}
$$

for $n \geq 2$.

Let s and t be variables. The corresponding Lucas sequence is defined inductively by $\{0\}=0,\{1\}=1$, and

$$
\{n\}=s\{n-1\}+t\{n-2\}
$$

for $n \geq 2$. For example,

$$
\{2\}=s, \quad\{3\}=s^{2}+t, \quad\{4\}=s^{3}+2 s t .
$$

Let s and t be variables. The corresponding Lucas sequence is defined inductively by $\{0\}=0,\{1\}=1$, and

$$
\{n\}=s\{n-1\}+t\{n-2\}
$$

for $n \geq 2$. For example,

$$
\{2\}=s, \quad\{3\}=s^{2}+t, \quad\{4\}=s^{3}+2 s t .
$$

We have the following specializations.

Let s and t be variables. The corresponding Lucas sequence is defined inductively by $\{0\}=0,\{1\}=1$, and

$$
\{n\}=s\{n-1\}+t\{n-2\}
$$

for $n \geq 2$. For example,

$$
\{2\}=s, \quad\{3\}=s^{2}+t, \quad\{4\}=s^{3}+2 s t .
$$

We have the following specializations.
(1) $s=t=1$ implies $\{n\}=F_{n}$, the Fibonacci numbers.

Let s and t be variables. The corresponding Lucas sequence is defined inductively by $\{0\}=0,\{1\}=1$, and

$$
\{n\}=s\{n-1\}+t\{n-2\}
$$

for $n \geq 2$. For example,

$$
\{2\}=s, \quad\{3\}=s^{2}+t, \quad\{4\}=s^{3}+2 s t .
$$

We have the following specializations.
(1) $s=t=1$ implies $\{n\}=F_{n}$, the Fibonacci numbers.
(2) $s=2, t=-1$ implies $\{n\}=n$.

Let s and t be variables. The corresponding Lucas sequence is defined inductively by $\{0\}=0,\{1\}=1$, and

$$
\{n\}=s\{n-1\}+t\{n-2\}
$$

for $n \geq 2$. For example,

$$
\{2\}=s, \quad\{3\}=s^{2}+t, \quad\{4\}=s^{3}+2 s t .
$$

We have the following specializations.
(1) $s=t=1$ implies $\{n\}=F_{n}$, the Fibonacci numbers.
(2) $s=2, t=-1$ implies $\{n\}=n$.
(3) $s=1+q, t=-q$ implies $\{n\}=1+q+\cdots+q^{n-1}=[n]_{q}$.

Let s and t be variables. The corresponding Lucas sequence is defined inductively by $\{0\}=0,\{1\}=1$, and

$$
\{n\}=s\{n-1\}+t\{n-2\}
$$

for $n \geq 2$. For example,

$$
\{2\}=s, \quad\{3\}=s^{2}+t, \quad\{4\}=s^{3}+2 s t .
$$

We have the following specializations.
(1) $s=t=1$ implies $\{n\}=F_{n}$, the Fibonacci numbers.
(2) $s=2, t=-1$ implies $\{n\}=n$.
(3) $s=1+q, t=-q$ implies $\{n\}=1+q+\cdots+q^{n-1}=[n]_{q}$.

So when proving theorems about the Lucas sequence, one gets results about the Fibonacci numbers, the nonnegative integers, and q-analogues for free.

The Lucas analogue of $\prod_{i} n_{i} / \prod_{j} k_{j}$ is $\prod_{i}\left\{n_{i}\right\} / \prod_{j}\left\{k_{j}\right\}$.

The Lucas analogue of $\prod_{i} n_{i} / \prod_{j} k_{j}$ is $\prod_{i}\left\{n_{i}\right\} / \prod_{j}\left\{k_{j}\right\}$. When is the Lucas analogue a polynomial in s, t ?

The Lucas analogue of $\Pi_{i} n_{i} / \Pi_{j} k_{j}$ is $\prod_{i}\left\{n_{i}\right\} / \Pi_{j}\left\{k_{j}\right\}$. When is the Lucas analogue a polynomial in s, t ?
Given a row of n squares, let $\mathcal{T}(n)$ be the set of all tilings of the row with dominoes and monominoes.

$$
\mathcal{T}(3): \begin{array}{|l|l|l|}
\hline \bullet & \bullet & \bullet \\
\hline
\end{array}
$$

The Lucas analogue of $\prod_{i} n_{i} / \prod_{j} k_{j}$ is $\prod_{i}\left\{n_{i}\right\} / \prod_{j}\left\{k_{j}\right\}$. When is the Lucas analogue a polynomial in s, t ?
Given a row of n squares, let $\mathcal{T}(n)$ be the set of all tilings of the row with dominoes and monominoes.

The weight of a tiling T is

$$
\text { wt } T=s^{\text {number of monominoes in } T} t^{\text {number of dominoes in } T} .
$$

The Lucas analogue of $\prod_{i} n_{i} / \prod_{j} k_{j}$ is $\prod_{i}\left\{n_{i}\right\} / \prod_{j}\left\{k_{j}\right\}$. When is the Lucas analogue a polynomial in s, t ?
Given a row of n squares, let $\mathcal{T}(n)$ be the set of all tilings of the row with dominoes and monominoes.

The weight of a tiling T is

$$
\text { wt } T=s^{\text {number of monominoes in } T} t^{\text {number of dominoes in } T} .
$$

Similarly, given any set of tilings \mathcal{T} we define its weight to be

$$
\mathrm{wt} \mathcal{T}=\sum_{T \in \mathcal{T}} \mathrm{wt} T .
$$

The Lucas analogue of $\prod_{i} n_{i} / \prod_{j} k_{j}$ is $\prod_{i}\left\{n_{i}\right\} / \prod_{j}\left\{k_{j}\right\}$. When is the Lucas analogue a polynomial in s, t ?
Given a row of n squares, let $\mathcal{T}(n)$ be the set of all tilings of the row with dominoes and monominoes.

The weight of a tiling T is

$$
\text { wt } T=s^{\text {number of monominoes in } T} t^{\text {number of dominoes in } T} .
$$

Similarly, given any set of tilings \mathcal{T} we define its weight to be

$$
\mathrm{wt} \mathcal{T}=\sum_{T \in \mathcal{T}} \mathrm{wt} T .
$$

To illustrate $\operatorname{wt}(\mathcal{T}(3))=s^{3}+2 s t$

The Lucas analogue of $\prod_{i} n_{i} / \prod_{j} k_{j}$ is $\prod_{i}\left\{n_{i}\right\} / \prod_{j}\left\{k_{j}\right\}$. When is the Lucas analogue a polynomial in s, t ?
Given a row of n squares, let $\mathcal{T}(n)$ be the set of all tilings of the row with dominoes and monominoes.

The weight of a tiling T is

$$
\text { wt } T=s^{\text {number of monominoes in } T} t^{\text {number of dominoes in } T} .
$$

Similarly, given any set of tilings \mathcal{T} we define its weight to be

$$
\mathrm{wt} \mathcal{T}=\sum_{T \in \mathcal{T}} \mathrm{wt} T .
$$

To illustrate $\operatorname{wt}(\mathcal{T}(3))=s^{3}+2 s t=\{4\}$.

The Lucas analogue of $\prod_{i} n_{i} / \prod_{j} k_{j}$ is $\prod_{i}\left\{n_{i}\right\} / \prod_{j}\left\{k_{j}\right\}$. When is the Lucas analogue a polynomial in s, t ?
Given a row of n squares, let $\mathcal{T}(n)$ be the set of all tilings of the row with dominoes and monominoes.

The weight of a tiling T is

$$
\text { wt } T=s^{\text {number of monominoes in } T} t^{\text {number of dominoes in } T} .
$$

Similarly, given any set of tilings \mathcal{T} we define its weight to be

$$
\mathrm{wt} \mathcal{T}=\sum_{T \in \mathcal{T}} \mathrm{wt} T .
$$

To illustrate $\operatorname{wt}(\mathcal{T}(3))=s^{3}+2 s t=\{4\}$.
Theorem
For all $n \geq 1$ we have $\{n\}=\operatorname{wt}(\mathcal{T}(n-1))$.

The Lucas analogue of $\prod_{i} n_{i} / \prod_{j} k_{j}$ is $\prod_{i}\left\{n_{i}\right\} / \prod_{j}\left\{k_{j}\right\}$. When is the Lucas analogue a polynomial in s, t ?
Given a row of n squares, let $\mathcal{T}(n)$ be the set of all tilings of the row with dominoes and monominoes.

The weight of a tiling T is

$$
\mathrm{wt} T=s^{\text {number of monominoes in } T} t^{\text {number of dominoes in } T} .
$$

Similarly, given any set of tilings \mathcal{T} we define its weight to be

$$
\mathrm{wt} \mathcal{T}=\sum_{T \in \mathcal{T}} \mathrm{wt} T
$$

To illustrate $\operatorname{wt}(\mathcal{T}(3))=s^{3}+2 s t=\{4\}$.
Theorem
For all $n \geq 1$ we have $\{n\}=\operatorname{wt}(\mathcal{T}(n-1))$.
Previous work on the Lucas analogue of the binomial coefficients was done by Gessel-Viennot, Benjamin-Plott, Savage-Sagan.

Outline

The Lucas sequence

Binomial coefficient analogue

Catalan number analogue

Coxeter groups

Comments and open problems

Given $0 \leq k \leq n$ the corresponding Lucasnomial is

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{\{n\}!}{\{k\}!\{n-k\}!}
$$

where $\{n\}!=\{1\}\{2\} \ldots\{n\}$.

Given $0 \leq k \leq n$ the corresponding Lucasnomial is

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{\{n\}!}{\{k\}!\{n-k\}!}
$$

where $\{n\}!=\{1\}\{2\} \ldots\{n\}$. This is a polynomial in s, t.

Given $0 \leq k \leq n$ the corresponding Lucasnomial is

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{\{n\}!}{\{k\}!\{n-k\}!}
$$

where $\{n\}!=\{1\}\{2\} \ldots\{n\}$. This is a polynomial in s, t. Consider the Young diagram of $\delta_{n}=(n-1, n-2, \ldots, 1)$ using French notation in \mathbb{R}^{2} with the origin at the southwest corner.

Given $0 \leq k \leq n$ the corresponding Lucasnomial is

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{\{n\}!}{\{k\}!\{n-k\}!}
$$

where $\{n\}!=\{1\}\{2\} \ldots\{n\}$. This is a polynomial in s, t. Consider the Young diagram of $\delta_{n}=(n-1, n-2, \ldots, 1)$ using French notation in \mathbb{R}^{2} with the origin at the southwest corner.

Given $0 \leq k \leq n$ the corresponding Lucasnomial is

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{\{n\}!}{\{k\}!\{n-k\}!}
$$

where $\{n\}!=\{1\}\{2\} \ldots\{n\}$. This is a polynomial in s, t. Consider the Young diagram of $\delta_{n}=(n-1, n-2, \ldots, 1)$ using French notation in \mathbb{R}^{2} with the origin at the southwest corner.

The set of tilings of δ_{n} is $\mathcal{T}\left(\delta_{n}\right)$ consisting of all tilings of the rows of δ_{n}.

Given $0 \leq k \leq n$ the corresponding Lucasnomial is

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{\{n\}!}{\{k\}!\{n-k\}!}
$$

where $\{n\}!=\{1\}\{2\} \ldots\{n\}$. This is a polynomial in s, t. Consider the Young diagram of $\delta_{n}=(n-1, n-2, \ldots, 1)$ using French notation in \mathbb{R}^{2} with the origin at the southwest corner.

The set of tilings of δ_{n} is $\mathcal{T}\left(\delta_{n}\right)$ consisting of all tilings of the rows of δ_{n}.

Given $0 \leq k \leq n$ the corresponding Lucasnomial is

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{\{n\}!}{\{k\}!\{n-k\}!}
$$

where $\{n\}!=\{1\}\{2\} \ldots\{n\}$. This is a polynomial in s, t.
Consider the Young diagram of $\delta_{n}=(n-1, n-2, \ldots, 1)$ using French notation in \mathbb{R}^{2} with the origin at the southwest corner.

The set of tilings of δ_{n} is $\mathcal{T}\left(\delta_{n}\right)$ consisting of all tilings of the rows of δ_{n}. Using the combinatorial interpretation of $\{n\}$ we see

$$
\mathrm{wt} \mathcal{T}\left(\delta_{n}\right)=\{n\}!
$$

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}!$ divides wt B for all blocks B of the partition.

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}$! divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows.

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}$! divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by:

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}$! divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W.

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}!$ divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}!$ divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}!$ divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}!$ divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}!$ divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}!$ divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}$! divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}$! divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}$! divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}$! divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}$! divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

An N step just after a W is an $N L$ step;

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}$! divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

An N step just after a W is an $N L$ step;

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}$! divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

An N step just after a W is an $N L$ step; otherwise it is an NI step.

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}$! divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

An N step just after a W is an $N L$ step; otherwise it is an NI step.

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}!$ divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

An N step just after a W is an NL step; otherwise it is an NI step. B is all tilings with path p and agreeing with T to the right of each $N L$ step and to the left of each $N I$ step.

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}!$ divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

An N step just after a W is an $N L$ step; otherwise it is an NI step. B is all tilings with path p and agreeing with T to the right of each NL step and to the left of each NI step.

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}!$ divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

An N step just after a W is an $N L$ step; otherwise it is an NI step. B is all tilings with path p and agreeing with T to the right of each NL step and to the left of each NI step. This gives a partial tiling, P.

Theorem For $0 \leq k \leq n$ we have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{n}\right)$ such that $\{k\}!\{n-k\}!$ divides wt B for all blocks B of the partition. Given $T \in \mathcal{T}\left(\delta_{n}\right)$ we will find the B containing T as follows. Construct a lattice path in T going from $(k, 0)$ to $(0, n)$ and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_{n}; otherwise move W. If $n=6$ and $k=3$, and

An N step just after a W is an $N L$ step; otherwise it is an NI step. B is all tilings with path p and agreeing with T to the right of each NL step and to the left of each NI step. This gives a partial tiling, P. The variable parts of P contribute $\{k\}!\{n-k\}!$.

$$
\text { Proposition }\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\{k+1\}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+t\{n-k-1\}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\} .
$$

$$
\text { Proposition }\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\{k+1\}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+t\{n-k-1\}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\} .
$$

Proof. From the previous proof we have

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{P} \mathrm{wt} P
$$

where the sum is over the fixed tiles in all partial tilings P of δ_{n} whose path begins at $(k, 0)$.

$$
\text { Proposition }\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\{k+1\}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+t\{n-k-1\}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\} \text {. }
$$

Proof. From the previous proof we have

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{P} \mathrm{wt} P
$$

where the sum is over the fixed tiles in all partial tilings P of δ_{n} whose path begins at $(k, 0)$. If the path p of P begins with an N step then the tiling to its left contributes $\{k+1\}$

Proposition $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\{k+1\}\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}+t\{n-k-1\}\left\{\begin{array}{l}n-1 \\ k-1\end{array}\right\}$.
Proof. From the previous proof we have

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{P} \mathrm{wt} P
$$

where the sum is over the fixed tiles in all partial tilings P of δ_{n} whose path begins at $(k, 0)$. If the path p of P begins with an N step then the tiling to its left contributes $\{k+1\}$

$$
\text { Proposition }\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\{k+1\}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+t\{n-k-1\}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\} .
$$

Proof. From the previous proof we have

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{P} \mathrm{wt} P
$$

where the sum is over the fixed tiles in all partial tilings P of δ_{n} whose path begins at $(k, 0)$. If the path p of P begins with an N step then the tiling to its left contributes $\{k+1\}$ and the rest of p contributes $\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}$.

$$
\text { Proposition }\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\{k+1\}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+t\{n-k-1\}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\} .
$$

Proof. From the previous proof we have

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{P} \mathrm{wt} P
$$

where the sum is over the fixed tiles in all partial tilings P of δ_{n} whose path begins at $(k, 0)$. If the path p of P begins with an N step then the tiling to its left contributes $\{k+1\}$ and the rest of p contributes $\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}$. If p begins with $W N$ then the tiling to its right contributes $t\{n-k-1\}$

$$
\text { Proposition }\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\{k+1\}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+t\{n-k-1\}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\} .
$$

Proof. From the previous proof we have

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{P} \mathrm{wt} P
$$

where the sum is over the fixed tiles in all partial tilings P of δ_{n} whose path begins at $(k, 0)$. If the path p of P begins with an N step then the tiling to its left contributes $\{k+1\}$ and the rest of p contributes $\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}$. If p begins with $W N$ then the tiling to its right contributes $t\{n-k-1\}$

$$
\text { Proposition }\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\{k+1\}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+t\{n-k-1\}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\} .
$$

Proof. From the previous proof we have

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{P} \mathrm{wt} P
$$

where the sum is over the fixed tiles in all partial tilings P of δ_{n} whose path begins at $(k, 0)$. If the path p of P begins with an N step then the tiling to its left contributes $\{k+1\}$ and the rest of p contributes $\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}$. If p begins with $W N$ then the tiling to its right contributes $t\{n-k-1\}$ and the rest of p contributes $\left\{\begin{array}{c}n-1 \\ k-1\end{array}\right\}$.

Outline

The Lucas sequence

Binomial coefficient analogue

Catalan number analogue

Coxeter groups

Comments and open problems

For $n \geq 0$ define the corresponding Lucas-Catalan to be

$$
C_{\{n\}}=\frac{1}{\{n+1\}}\left\{\begin{array}{c}
2 n \\
n
\end{array}\right\} .
$$

For $n \geq 0$ define the corresponding Lucas-Catalan to be

$$
C_{\{n\}}=\frac{1}{\{n+1\}}\left\{\begin{array}{c}
2 n \\
n
\end{array}\right\} .
$$

Theorem For $n \geq 0$ we have $C_{\{n\}}$ is a polynomial in s, t.

For $n \geq 0$ define the corresponding Lucas-Catalan to be

$$
C_{\{n\}}=\frac{1}{\{n+1\}}\left\{\begin{array}{c}
2 n \\
n
\end{array}\right\} .
$$

Theorem For $n \geq 0$ we have $C_{\{n\}}$ is a polynomial in s, t. Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{2 n}\right)$ such that $\{n\}!\{n+1\}$! divides wt B for all blocks B.

For $n \geq 0$ define the corresponding Lucas-Catalan to be

$$
C_{\{n\}}=\frac{1}{\{n+1\}}\left\{\begin{array}{c}
2 n \\
n
\end{array}\right\} .
$$

Theorem For $n \geq 0$ we have $C_{\{n\}}$ is a polynomial in s, t. Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{2 n}\right)$ such that $\{n\}!\{n+1\}$! divides wt B for all blocks B. Given $T \in \mathcal{T}\left(\delta_{2 n}\right)$ we find the other tilings in B exactly as for $\left\{\begin{array}{c}2 n \\ n-1\end{array}\right\}$ except that in the bottom row one lets both sides of the N step vary, always keeping the blocking domino if it is an NL step.

For $n \geq 0$ define the corresponding Lucas-Catalan to be

$$
C_{\{n\}}=\frac{1}{\{n+1\}}\left\{\begin{array}{c}
2 n \\
n
\end{array}\right\} .
$$

Theorem For $n \geq 0$ we have $C_{\{n\}}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{2 n}\right)$ such that $\{n\}!\{n+1\}$! divides wt B for all blocks B. Given $T \in \mathcal{T}\left(\delta_{2 n}\right)$ we find the other tilings in B exactly as for $\left\{\begin{array}{c}2 n \\ n-1\end{array}\right\}$ except that in the bottom row one lets both sides of the N step vary, always keeping the blocking domino if it is an NL step. Here are partial tilings corresponding to blocks for $C_{\{3\}}$, on the left for an NI step in the bottom row and on the right for an NL step.

For $n \geq 0$ define the corresponding Lucas-Catalan to be

$$
C_{\{n\}}=\frac{1}{\{n+1\}}\left\{\begin{array}{c}
2 n \\
n
\end{array}\right\} .
$$

Theorem For $n \geq 0$ we have $C_{\{n\}}$ is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of $\mathcal{T}\left(\delta_{2 n}\right)$ such that $\{n\}!\{n+1\}$! divides wt B for all blocks B. Given $T \in \mathcal{T}\left(\delta_{2 n}\right)$ we find the other tilings in B exactly as for $\left\{\begin{array}{c}2 n \\ n-1\end{array}\right\}$ except that in the bottom row one lets both sides of the N step vary, always keeping the blocking domino if it is an NL step.
Here are partial tilings corresponding to blocks for $C_{\{3\}}$, on the left for an NI step in the bottom row and on the right for an NL step.

Outline

The Lucas sequence

Binomial coefficient analogue

Catalan number analogue

Coxeter groups

Comments and open problems

The finite Coxeter groups W are those generated by reflections.

The finite Coxeter groups W are those generated by reflections.

W	d_{1}, \ldots, d_{n}	h
A_{n}	$2,3,4, \ldots, n+1$	$n+1$
B_{n}	$2,4,6, \ldots, 2 n$	$2 n$
D_{n}	$2,4,6, \ldots, 2(n-1), n$	$2(n-1) \quad($ for $n \geq 3)$
E_{6}	$2,5,6,8,9,12$	12
E_{7}	$2,6,8,10,12,14,18$	18
E_{8}	$2,8,12,14,18,20,24,30$	30
F_{4}	$2,6,8,12$	12
H_{3}	$2,6,10$	10
H_{4}	$2,12,20,30$	30
$I_{2}(m)$	$2, m$	$m($ for $m \geq 2)$

The finite Coxeter groups W are those generated by reflections. Each irreducible W has degree set $D=\left\{d_{1}, \ldots, d_{n}\right\}$.

W	d_{1}, \ldots, d_{n}	h
A_{n}	$2,3,4, \ldots, n+1$	$n+1$
B_{n}	$2,4,6, \ldots, 2 n$	$2 n$
D_{n}	$2,4,6, \ldots, 2(n-1), n$	$2(n-1) \quad($ for $n \geq 3)$
E_{6}	$2,5,6,8,9,12$	12
E_{7}	$2,6,8,10,12,14,18$	18
E_{8}	$2,8,12,14,18,20,24,30$	30
F_{4}	$2,6,8,12$	12
H_{3}	$2,6,10$	10
H_{4}	$2,12,20,30$	30
$I_{2}(m)$	$2, m$	$m($ for $m \geq 2)$

The finite Coxeter groups W are those generated by reflections.
Each irreducible W has degree set $D=\left\{d_{1}, \ldots, d_{n}\right\}$. The Coxeter number of W is $h=\max D$.

W	d_{1}, \ldots, d_{n}	h
A_{n}	$2,3,4, \ldots, n+1$	$n+1$
B_{n}	$2,4,6, \ldots, 2 n$	$2 n$
D_{n}	$2,4,6, \ldots, 2(n-1), n$	$2(n-1) \quad($ for $n \geq 3)$
E_{6}	$2,5,6,8,9,12$	12
E_{7}	$2,6,8,10,12,14,18$	18
E_{8}	$2,8,12,14,18,20,24,30$	30
F_{4}	$2,6,8,12$	12
H_{3}	$2,6,10$	10
H_{4}	$2,12,20,30$	30
$I_{2}(m)$	$2, m$	$m($ for $m \geq 2)$

The finite Coxeter groups W are those generated by reflections.
Each irreducible W has degree set $D=\left\{d_{1}, \ldots, d_{n}\right\}$. The Coxeter number of W is $h=\max D$. The Coxeter-Catalan number of W is

$$
\text { Cat } W=\prod_{i=1}^{n} \frac{h+d_{i}}{d_{i}}
$$

W	d_{1}, \ldots, d_{n}	h
A_{n}	$2,3,4, \ldots, n+1$	$n+1$
B_{n}	$2,4,6, \ldots, 2 n$	$2 n$
D_{n}	$2,4,6, \ldots, 2(n-1), n$	$2(n-1) \quad($ for $n \geq 3)$
E_{6}	$2,5,6,8,9,12$	12
E_{7}	$2,6,8,10,12,14,18$	18
E_{8}	$2,8,12,14,18,20,24,30$	30
F_{4}	$2,6,8,12$	12
H_{3}	$2,6,10$	10
H_{4}	$2,12,20,30$	30
$I_{2}(m)$	$2, m$	$m($ for $m \geq 2)$

The finite Coxeter groups W are those generated by reflections.
Each irreducible W has degree set $D=\left\{d_{1}, \ldots, d_{n}\right\}$. The Coxeter number of W is $h=\max D$. The Coxeter-Catalan number of W is

$$
\begin{gathered}
\text { Cat } W=\prod_{i=1}^{n} \frac{h+d_{i}}{d_{i}} \\
\therefore \text { Cat } A_{n}=\frac{(n+3)(n+4) \ldots(2 n+2)}{(2)(3) \ldots(n+1)}=C_{n+1}
\end{gathered}
$$

W	d_{1}, \ldots, d_{n}	h
A_{n}	$2,3,4, \ldots, n+1$	$n+1$
B_{n}	$2,4,6, \ldots, 2 n$	$2 n$
D_{n}	$2,4,6, \ldots, 2(n-1), n$	$2(n-1) \quad($ for $n \geq 3)$
E_{6}	$2,5,6,8,9,12$	12
E_{7}	$2,6,8,10,12,14,18$	18
E_{8}	$2,8,12,14,18,20,24,30$	30
F_{4}	$2,6,8,12$	12
H_{3}	$2,6,10$	10
H_{4}	$2,12,20,30$	30
$I_{2}(m)$	$2, m$	$m($ for $m \geq 2)$

Define the Lucas-Coxeter analogue

$$
\operatorname{Cat}\{W\}=\prod_{i=1}^{n} \frac{\left\{h+d_{i}\right\}}{\left\{d_{i}\right\}}
$$

Define the Lucas-Coxeter analogue

$$
\operatorname{Cat}\{W\}=\prod_{i=1}^{n} \frac{\left\{h+d_{i}\right\}}{\left\{d_{i}\right\}}
$$

Theorem
For all finite, irreducible W we have Cat $\{W\}$ is a polynomial in s, t.

Define the Lucas-Coxeter analogue

$$
\operatorname{Cat}\{W\}=\prod_{i=1}^{n} \frac{\left\{h+d_{i}\right\}}{\left\{d_{i}\right\}}
$$

Theorem
For all finite, irreducible W we have Cat $\{W\}$ is a polynomial in s, t.
For $W=B_{n}$ we have

$$
\operatorname{Cat}\{W\}=\frac{\{2 n+2\}\{2 n+4\} \ldots\{4 n\}}{\{2\}\{4\} \ldots\{2 n\}}
$$

Define the Lucas-Coxeter analogue

$$
\operatorname{Cat}\{W\}=\prod_{i=1}^{n} \frac{\left\{h+d_{i}\right\}}{\left\{d_{i}\right\}}
$$

Theorem
For all finite, irreducible W we have Cat $\{W\}$ is a polynomial in s, t.
For $W=B_{n}$ we have

$$
\operatorname{Cat}\{W\}=\frac{\{2 n+2\}\{2 n+4\} \ldots\{4 n\}}{\{2\}\{4\} \ldots\{2 n\}}
$$

For $0 \leq k \leq n$ and $d \geq 1$ define the d-divisible Lucasnomial

$$
\left\{\begin{array}{l}
n: d \\
k: d
\end{array}\right\}=\frac{\{n: d\}!}{\{k: d\}!\{n-k: d\}!}
$$

where $\{n: d\}!=\{d\}\{2 d\} \ldots\{n d\}$.

Define the Lucas-Coxeter analogue

$$
\operatorname{Cat}\{W\}=\prod_{i=1}^{n} \frac{\left\{h+d_{i}\right\}}{\left\{d_{i}\right\}}
$$

Theorem
For all finite, irreducible W we have Cat $\{W\}$ is a polynomial in s, t.
For $W=B_{n}$ we have

$$
\operatorname{Cat}\{W\}=\frac{\{2 n+2\}\{2 n+4\} \ldots\{4 n\}}{\{2\}\{4\} \ldots\{2 n\}}
$$

For $0 \leq k \leq n$ and $d \geq 1$ define the d-divisible Lucasnomial

$$
\left\{\begin{array}{l}
n: d \\
k: d
\end{array}\right\}=\frac{\{n: d\}!}{\{k: d\}!\{n-k: d\}!}
$$

where $\{n: d\}!=\{d\}\{2 d\} \ldots\{n d\}$.
Theorem
For all n, k, d we have $\left\{\begin{array}{l}n: d \\ k: d\end{array}\right\}$ is a polynomial in s, t.

Outline

The Lucas sequence
Binomial coefficient analogue
Catalan number analogue
Coxeter groups

Comments and open problems

1. Coefficients.
2. Coefficients. Our proofs actually show our Lucas analogues are polynomials in s, t with nonnegative integer coefficients.
3. Coefficients. Our proofs actually show our Lucas analogues are polynomials in s, t with nonnegative integer coefficients.
4. Fuss-Catalan numbers.
5. Coefficients. Our proofs actually show our Lucas analogues are polynomials in s, t with nonnegative integer coefficients.
6. Fuss-Catalan numbers. The Fuss-Catalan numbers are, for $n \geq 0$ and $k \geq 1$,

$$
C_{n, k}=\frac{1}{k n+1}\binom{(k+1) n}{n} .
$$

1. Coefficients. Our proofs actually show our Lucas analogues are polynomials in s, t with nonnegative integer coefficients.
2. Fuss-Catalan numbers. The Fuss-Catalan numbers are, for $n \geq 0$ and $k \geq 1$,

$$
C_{n, k}=\frac{1}{k n+1}\binom{(k+1) n}{n} .
$$

Clearly $C_{n, 1}=C_{n}$.

1. Coefficients. Our proofs actually show our Lucas analogues are polynomials in s, t with nonnegative integer coefficients.
2. Fuss-Catalan numbers. The Fuss-Catalan numbers are, for $n \geq 0$ and $k \geq 1$,

$$
C_{n, k}=\frac{1}{k n+1}\binom{(k+1) n}{n} .
$$

Clearly $C_{n, 1}=C_{n}$. Consider the Lucas analogue

$$
C_{\{n, k\}}=\frac{1}{\{k n+1\}}\left\{\begin{array}{c}
(k+1) n \\
n
\end{array}\right\} .
$$

1. Coefficients. Our proofs actually show our Lucas analogues are polynomials in s, t with nonnegative integer coefficients.
2. Fuss-Catalan numbers. The Fuss-Catalan numbers are, for $n \geq 0$ and $k \geq 1$,

$$
C_{n, k}=\frac{1}{k n+1}\binom{(k+1) n}{n} .
$$

Clearly $C_{n, 1}=C_{n}$. Consider the Lucas analogue

$$
C_{\{n, k\}}=\frac{1}{\{k n+1\}}\left\{\begin{array}{c}
(k+1) n \\
n
\end{array}\right\} .
$$

Theorem
For all n, k we have $C_{\{n, k\}}$ is a polynomial in s, t.

1. Coefficients. Our proofs actually show our Lucas analogues are polynomials in s, t with nonnegative integer coefficients.
2. Fuss-Catalan numbers. The Fuss-Catalan numbers are, for $n \geq 0$ and $k \geq 1$,

$$
C_{n, k}=\frac{1}{k n+1}\binom{(k+1) n}{n}
$$

Clearly $C_{n, 1}=C_{n}$. Consider the Lucas analogue

$$
C_{\{n, k\}}=\frac{1}{\{k n+1\}}\left\{\begin{array}{c}
(k+1) n \\
n
\end{array}\right\} .
$$

Theorem

For all n, k we have $C_{\{n, k\}}$ is a polynomial in s, t.
What can be said about Fuss-Catalan Lucas analogues for other Coxeter goups?
3. Rational Catalan numbers.
3. Rational Catalan numbers. Let $a, b \geq 1$ be relatively prime integers.
3. Rational Catalan numbers. Let $a, b \geq 1$ be relatively prime integers. The corresponding rational Catalan number is

$$
\operatorname{Cat}(a, b)=\frac{1}{a+b}\binom{a+b}{a}
$$

3. Rational Catalan numbers. Let $a, b \geq 1$ be relatively prime integers. The corresponding rational Catalan number is

$$
\operatorname{Cat}(a, b)=\frac{1}{a+b}\binom{a+b}{a}
$$

If $a=n$ and $b=n+1$ then

$$
\operatorname{Cat}(a, b)=\frac{1}{2 n+1}\binom{2 n+1}{n}
$$

3. Rational Catalan numbers. Let $a, b \geq 1$ be relatively prime integers. The corresponding rational Catalan number is

$$
\operatorname{Cat}(a, b)=\frac{1}{a+b}\binom{a+b}{a}
$$

If $a=n$ and $b=n+1$ then

$$
\operatorname{Cat}(a, b)=\frac{1}{2 n+1}\binom{2 n+1}{n}=C_{n} .
$$

3. Rational Catalan numbers. Let $a, b \geq 1$ be relatively prime integers. The corresponding rational Catalan number is

$$
\operatorname{Cat}(a, b)=\frac{1}{a+b}\binom{a+b}{a}
$$

If $a=n$ and $b=n+1$ then

$$
\operatorname{Cat}(a, b)=\frac{1}{2 n+1}\binom{2 n+1}{n}=C_{n} .
$$

Theorem (Grossman (1950))
The number of lattice paths using steps N and E from $(0,0)$ to (a, b) and staying weakly above the line $y=(b / a) x$ is Cat (a, b).
3. Rational Catalan numbers. Let $a, b \geq 1$ be relatively prime integers. The corresponding rational Catalan number is

$$
\operatorname{Cat}(a, b)=\frac{1}{a+b}\binom{a+b}{a}
$$

If $a=n$ and $b=n+1$ then

$$
\operatorname{Cat}(a, b)=\frac{1}{2 n+1}\binom{2 n+1}{n}=C_{n} .
$$

Theorem (Grossman (1950))
The number of lattice paths using steps N and E from $(0,0)$ to (a, b) and staying weakly above the line $y=(b / a) x$ is Cat (a, b).
Nantel Bergeron et al. have proved the Lucas analogue is a polynomial algebraically, but there is no combinatorial proof.
3. Rational Catalan numbers. Let $a, b \geq 1$ be relatively prime integers. The corresponding rational Catalan number is

$$
\operatorname{Cat}(a, b)=\frac{1}{a+b}\binom{a+b}{a}
$$

If $a=n$ and $b=n+1$ then

$$
\operatorname{Cat}(a, b)=\frac{1}{2 n+1}\binom{2 n+1}{n}=C_{n} .
$$

Theorem (Grossman (1950))
The number of lattice paths using steps N and E from $(0,0)$ to (a, b) and staying weakly above the line $y=(b / a) x$ is Cat (a, b). Nantel Bergeron et al. have proved the Lucas analogue is a polynomial algebraically, but there is no combinatorial proof.
4. Narayana numbers.
3. Rational Catalan numbers. Let $a, b \geq 1$ be relatively prime integers. The corresponding rational Catalan number is

$$
\operatorname{Cat}(a, b)=\frac{1}{a+b}\binom{a+b}{a}
$$

If $a=n$ and $b=n+1$ then

$$
\operatorname{Cat}(a, b)=\frac{1}{2 n+1}\binom{2 n+1}{n}=C_{n} .
$$

Theorem (Grossman (1950))
The number of lattice paths using steps N and E from $(0,0)$ to (a, b) and staying weakly above the line $y=(b / a) x$ is Cat (a, b).
Nantel Bergeron et al. have proved the Lucas analogue is a polynomial algebraically, but there is no combinatorial proof.
4. Narayana numbers. The Narayana numbers are

$$
N_{n, k}=\frac{1}{n}\binom{n}{k}\binom{n}{k-1} .
$$

3. Rational Catalan numbers. Let $a, b \geq 1$ be relatively prime integers. The corresponding rational Catalan number is

$$
\operatorname{Cat}(a, b)=\frac{1}{a+b}\binom{a+b}{a}
$$

If $a=n$ and $b=n+1$ then

$$
\operatorname{Cat}(a, b)=\frac{1}{2 n+1}\binom{2 n+1}{n}=C_{n} .
$$

Theorem (Grossman (1950))
The number of lattice paths using steps N and E from $(0,0)$ to (a, b) and staying weakly above the line $y=(b / a) x$ is Cat (a, b). Nantel Bergeron et al. have proved the Lucas analogue is a polynomial algebraically, but there is no combinatorial proof.
4. Narayana numbers. The Narayana numbers are

$$
N_{n, k}=\frac{1}{n}\binom{n}{k}\binom{n}{k-1} .
$$

We have $C_{n}=\sum_{k=1}^{n} N_{n, k}$.
3. Rational Catalan numbers. Let $a, b \geq 1$ be relatively prime integers. The corresponding rational Catalan number is

$$
\operatorname{Cat}(a, b)=\frac{1}{a+b}\binom{a+b}{a}
$$

If $a=n$ and $b=n+1$ then

$$
\operatorname{Cat}(a, b)=\frac{1}{2 n+1}\binom{2 n+1}{n}=C_{n} .
$$

Theorem (Grossman (1950))
The number of lattice paths using steps N and E from $(0,0)$ to (a, b) and staying weakly above the line $y=(b / a) x$ is Cat (a, b).
Nantel Bergeron et al. have proved the Lucas analogue is a polynomial algebraically, but there is no combinatorial proof.
4. Narayana numbers. The Narayana numbers are

$$
N_{n, k}=\frac{1}{n}\binom{n}{k}\binom{n}{k-1} .
$$

We have $C_{n}=\sum_{k=1}^{n} N_{n, k}$. The Lucas analogue of $N_{n, k}$ is a polynomial in s, t for $n \leq 100$.

