Ramanujan's Lost Notebook in Five Volumes Thoughts and Comments

SLC (KrattenthalerFest) 2018 September 2018

This talk is dedicated to my good friend Christian Krattenthaler

I. BACKGROUND

イロン イロン イヨン イヨン Ramanujan's Lost Notebookin Five VolumesThoughts and

æ

Ramanujan's Lost Notebookin Five VolumesThoughts and

"His memory, and his powers of calculation, were very unusual, but they could not be reasonably be called "abnormal". If he had to multiply two very large numbers, he multiplied them in the ordinary way; he would do it with unusual rapidity and accuracy, but not more rapidly than any mathematician who is naturally quick and has the habit of computation. There is a table of partitions at the end of our paper.... This was, for the most part, calculated independently by Ramanujan and Major MacMahon; and Major MacMahon was, in general the slightly quicker and more accurate of the two."

Ramanujan's Lost Notebookin Five VolumesThoughts and

THE PATH FROM THE LAST LETTER TO THE LOST NOTEBOOK

・ロト ・聞 ト ・ ヨト ・ ヨト Ramanujan's Lost Notebookin Five VolumesThoughts and

э

"He returned from England only to die, as the saying goes. He lived for less than a year. Throughout this period, I lived with him without break. He was only skin and bones. He often complained of severe pain. In spite of it he was always busy doing his Mathematics. That, evidently helped him to forget the pain. I used to gather the sheets of papers which he filled up. I would also give the slate whenever he asked for it. He was uniformly kind to me. In his conversation he was full of wit and humour. Even while mortally ill, he used to crack jokes. One day he confided in me that he might not live beyond thirty-five and asked me to meet the event with courage and fortitude. He was well looked after by his friends. He often used to repeat his gratitude to all those who had helped him in his life "

A B + A B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

UNIVERSITY OF MADRAS, 12th January 1920.

I am extremely sorry for not writing you a single letter up to now I discovered very interesting functions recently which I call "Mock" θ -functions. Unlike the "False" θ -functions (studied partially by Prof. Rogers in his interesting paper) they enter into mathematics as beautifully as the ordinary θ -functions. I am sending you with this letter some examples Mock θ -functions

$$\phi(q) = 1 + rac{q}{1+q^2} + rac{q^4}{(1+q^2)(1+q^4)} + \cdots, \ \psi(q) = rac{q}{1-q} + rac{q^4}{(1-q)(1-q^3)} + rac{q^9}{(1-q)(1-q^3)(1-q^5)} + \cdots.$$

.

Mock D-finctions $\phi(v) = 1 + \frac{v}{1+v} + \frac{v}{(1+v^{-})(1+v^{+})}$ $\psi(v) = \frac{1}{1-v} + \frac{2^{1/2}}{4^{-v}} + \frac{2^{1/2}}{(1-v)} + \frac{2^{1/2}}{(1-v)(1-v)}$ $\chi(\bar{v}) = 1 + \frac{2}{7 - 2 + 2} + \frac{24}{9 - 2 + 2 \sqrt{1 - 2 + 2}}$ There presents nelated to fig) × 29(-2) - f(2) = f(2) + 44(-2) -29.7-2 order 1+12(1+2)(1+2) order Here are of the 3rd Noch D-functions of stradig $f(v) = 1 + \frac{v}{1+v} + \frac{v}{(1+v)(1+v^2)}$ + 219 (1+9)(1+72)(1+2) $\Psi(\hat{v}) = \gamma + v^{\circ}(1+\hat{v}) + v^{\circ}(1+\hat{v})(1+\hat{v})$ $\chi(v) = 1 + \frac{v}{1-v^2} + \frac{v^2}{(1-v^2)(1-v^3)}$ + 9/10 (1+ 1) (1+ 2) (1+2) $= \left| + \right| \frac{2^{-2}}{(1-2^{+})(1-2^{+})(1-2^{+})} + \frac{2^{-2}}{(1-2^{+})(1-2^{+})} + \frac{2^{-2}}{(1-2^{+})(1-2^{+})} + \frac{2^{-2}}{(1-2^{+})(1-2^{+})}$

Ramanujan's Lost Notebookin Five VolumesThoughts and

(57 $F(v) = 1 + \frac{v^{2}}{1 - v} + \frac{v^{2}}{(1 - v)(1 - 9^{2})}$ $\phi(-v) + \chi(v) = 2 F(v).$ $f(v) + 2F(v^2) - 2 = \phi(-v^2) + \psi(v)$ $f(v) + x + (v) = \frac{1 - zv + 2v^{4} - zv^{4}}{(1 - v)(1 - v^{4})(1 - v^{4})($ $\psi(v) - F(v) + I = v \cdot \frac{1 + v^{-} + 2^{e} + v^{-} + 2^{e}}{(1 - v^{p})(1 - v^{p})(1 - v^{p})}$ $\begin{array}{c} (y) = 1 \\ f(y) = 1 \\ f(y) = 1 \\ \end{array}$ $\phi(v) = y + z^{4}(1+z) + z^{2}(1+z)(1+z^{3}) + z^{4}(1+z^{3}) + z^{4}(1+z$ $\gamma(v) = 1 + v (v + v) + v^{\circ} (v + v) (v + v) (v + v) + v^{\circ} (v + v) (v + v)$ $\chi(v) = \frac{1}{1-v} + \frac{v}{(1-v^{-})(1-v^{0})} + (1-v^{0})(1-v^{0})$ - 2 2 3 - x - y +) (TO) (TO) (TO) $F(r) = \frac{1}{1-r_1} + \frac{r_1^4}{(1-r_1)(1-r_2^2)} + \frac{r_1^2}{r_1r_2}$ have got similar regulationses Much vo functions (f 7 to order) (i) $1 + \frac{9}{1-9^2} + \frac{9}{4-9^3} (1-9^5)$ (ii) ⁹/_{1-y} + ²⁴/_(1-y) + ¹/_(1-y) + ²⁴/_(1-y)
 (iii) ¹/_{1-y} + ²⁴/_(1-y) + ²⁶/_(1-y) + ²⁶/_(1-y)
 (iv) ¹/_{1-y} + ²⁶/_(1-y) + ²⁶/_(1-y)
 (iv) ¹/_{1-y} + ²⁶/_(1-y) + ²⁶/_(1-y)
 (iv) ¹/_{1-y} + ²⁶/_(1-y)
 (iv) ¹/_{1-y}
 </ other. Ever yours sincerely S. Ramany any

Ramanujan's Lost Notebookin Five VolumesThoughts and

When the Royal Society asked me to write G. N. Watson's obituary memoir I wrote to his widow to ask if I could examine his papers. She kindly invited me to lunch and afterwards his son took me upstairs to see them. They covered the floor of a fair sized room to a depth of about a foot, all jumbled together, and were to be incinerated in a few days. One could make lucky dips and, as Watson never threw anything away, the result might be a sheet of mathematics but more probably a receipted bill or a draft of his income tax for 1923. By extraordinary stroke of luck one of my dips brought up the Ramanujan material which Hardy must have passed on to him when he proposed to edit the earlier notebooks.

20 (1-v)(1-v2)(1-v3) F(V) = 11-20 cm == + 2")(1-22" cm ==== + 2"); f(2) = 1 + 1- 29 con cont + 9. + (1-1) con 2 + 2 2) (1- 27 " con 2 = 7 + 23) F(9 t) = A(9) - 48 t-cost 2mg . 13(9) n=1#2. $\begin{aligned} f(y^{\frac{1}{2}}) &= \int_{-\infty}^{\infty} f(y)^{\frac{1}{2}} - f(y)^{$ A(7) = $\frac{1-\frac{y^2-y^2+y^2+\cdots}{(l-y)^2(l-y^4)^2}}{(l-y)^2(l-y^4)^2},$ B(p) = $(1 - 2\sqrt{3})(1 - 2\sqrt{3})(1 - 2\sqrt{3})$ C(1) = R(v) = $\phi(\nu) = -1 + \frac{1}{1-\nu} + \frac{2}{(1-\nu)(1-\nu-2)(+\nu^2)}$ $\begin{array}{c} & (1-\overline{y}) \underbrace{(1-\overline{y}) \underbrace{(1-\overline{y}) \underbrace{(1-\overline{y}) \underbrace{(1-\overline{y})}}_{2} \underbrace{(1-\overline{y}) \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y}) \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y}) \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y}) \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y}) \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y}) \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y}) \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y}) \underbrace{(1-\overline{y})}_{2} \underbrace{(1-\overline{y})}$ $\frac{\frac{y}{1-y}}{=3} + \frac{2^{2}}{(1-y^{2})(1-y^{2})} + \frac{2}{(1-y^{2})(1-y^{2})(1-y^{2})}$ $= 3 \frac{y}{(y)} + \frac{y}{(y)} D(y)$ 0.011-2010-200 - 4) (1-7/2) -\$ (2) - 3 2) (+2) (-2) ¥(v) + y.

Ramanujan's Lost Notebookin Five VolumesThoughts and

▶ < ∃ >

æ

$$\frac{-11}{26} \cdot \frac{2}{26} = \frac{a_2(a_1-1)(a_3+a_4, +a_3+a_4+a_1+a_1+1)}{(a_3+a_4+a_4+a_1+1)}$$

$$\frac{1}{26} = \frac{1}{22(a_2+1)(a_3+a_4+a_1+a_1+1)}$$

$$\frac{1}{126} = \frac{1}{26} \cdot \frac{1}{26} + \frac{1}{26} \cdot \frac{1}{26} - \frac{1}{26} + \frac{1}{26} \cdot \frac{1}{26} + \frac{1}{26} \cdot \frac{1}{26} - \frac{$$

Ramanujan's Lost Notebookin Five VolumesThoughts and

+ 9 (a, -1) + 2°a2 + 2° (a3+1) + 24 (a4+a2+1) + 915 (as + as + a, +1) + 98 (as + a1 + a3 + a2 + a101) + 97 (a3+1) (a4 + a2+1) + 28a2 (ax + a4 + a3 + a2 + a1 + 1) + g?az(a3+1)(a4+a2+1) + g10a2(a0+1)(a5+a3+a1+1) + 8/1 a1 a2 (ag + as - + a2 + as + a1 + a, + 2) +9/2 (as + 22 + 21 + 1) (25 + 23 + 25 + 25 + 26 + 1) $X(a_{1}-2a_{3}+2a_{2}-a_{1}+1).$ + y 13 (a, -1) (a2 - a, +1) (a10 + 2ag + 2ag + 2ag + 2ag + 2ag + 4 as + 6 as + 8 as + 9 az + 9 a, + 9) + 9/4 (a2+1) (a3+1) (a4+42+44 (a3- a3 + 21, +1) + 8 15 a, 22 (25+2, +23+2 L +1) (27-26+24+2) $+g^{\mu}(a_3+1)(a_3+a_2+a_1+1)(a_5+a_4+a_5+a_2+a_1+1)$ × (25-224+223-222+321-3) + 8/17 (a,+1) (a, +1) (a, +a, +a, +a, +a, +1) x(a, - 2, + a, + a, -1, $+ g^{18}(a_g + a_e + i)(a_s + a_e + a_i + i)(a_s + a_g + a_s + a_e + a_g + i)$ × (a6 - 2 a5 + a6 + a3 - a2 + j) +9/19 a (a,-1)(a,+ ++1)(à,+ +++1)) Hag - a, + a, + 2 a 3 + a 2 - 1) 4 g?0 (a2-a1+1) (a3+19) (a3+44+43+42+4

THE MOCK THETA CONJECTURES

・ロト ・聞 と ・ ヨ と ・ ヨ と … Ramanujan's Lost Notebookin Five VolumesThoughts and

э

$$\begin{split} f_0(q) &= 1 + \frac{q}{1+q} + \frac{q^4}{(1+q)(1+q^2)} + \cdots, \\ \phi_0(q) &= 1 + q(1+q) + q^4(1+q)(1+q^3) + q^9(1+q)(1+q^3)(1+q^5) + \cdots, \\ \psi_0(q) &= q + q^3(1+q) + q^6(1+q)(1+q^2) + q^{10}(1+q)(1+q^2)(1+q^3) + \cdots, \\ F_0(q) &= 1 + \frac{q^2}{1-q} + \frac{q^8}{(1-q)(1-q^3)} + \cdots, \\ \chi_0(q) &= 1 + \frac{q}{1-q^2} + \frac{q^2}{(1-q^3)(1-q^4)} + \frac{q^3}{(1-q^4)(1-q^5)(1-q^6)} + \cdots \\ &= 1 + \frac{q}{1-q} + \frac{q^3}{(1-q^2)(1-q^3)} + \frac{q^5}{(1-q^3)(1-q^4)(1-q^5)} + \cdots \end{split}$$

Ramanujan's Lost Notebookin Five VolumesThoughts and

$$\begin{split} \phi(v) &= -1 + \left\{ \frac{1}{(-v)} + \frac{2^{-s}}{(1-v)^{s}(1-v)^{2s}(1-v)} \right\} & \\ &+ \frac{2^{2s}}{(1-v)^{s}(1-v^{s})(1-v^{s})(1-v^{s})} \\ \psi(v) &= -1 + \left\{ \frac{1}{(-v)^{s}} + \frac{2^{s}}{(1-v)^{s}(1-v^{s})(1-v^{s})} \right\}. \end{split}$$

$$\begin{split} \phi_0(-q) &= \prod_{n=0}^\infty \frac{(1-q^{5n+5})(1+q^{5n+2})(1+q^{5n+3})}{(1-q^{10n+2})(1-q^{10n+8})} \\ &+ 1 - \sum_{n=0}^\infty \frac{q^{5n^2}}{(1-q)(1-q^6)\cdots(1-q^{5n+1})(1-q^4)(1-q^9)\cdots(1-q^{5n-1})}. \end{split}$$

$$\begin{split} \phi_0(-q) &= \prod_{n=0}^\infty \frac{(1-q^{5n+5})(1+q^{5n+2})(1+q^{5n+3})}{(1-q^{10n+2})(1-q^{10n+8})} \\ &+ 1 - \prod_{n=0}^\infty (1-q^{5n+5})^{-1} \left\{ \frac{1}{1-q} + (1-q^{-1}) \sum_{n=1}^\infty \frac{(-1)^n q^{n(15n+5)/2}(1+q^{5n})}{(1-q^{5n+1})(1-q^{5n-1})} \right\}. \end{split}$$

Ramanujan's Lost Notebookin Five VolumesThoughts and

EQUIVALENTLY

$$\prod_{n=1}^{\infty} (1-q^{10n}) \sum_{n=0}^{\infty} \frac{q^{n^2}}{(1+q)\cdots(1+q^n)}$$
$$= \sum_{n=-\infty}^{\infty} \frac{(-1)^n q^{2n}}{1-q^{5n+1}}$$
$$-2\sum_{n=-\infty}^{\infty} \frac{(-1)^n q^{15n^2+15n+2}}{1-q^{10n+2}}$$

◆□ > ◆□ > ◆豆 > ◆豆 > Ramanujan's Lost Notebookin Five VolumesThoughts and

æ

MOCK THETA CONJECTURES $r_a(n) = \#$ OF PTNS OF n WITH RANK $\equiv a \pmod{5}$ rank = (largest part) - (# of parts) The rank of 5 + 4 + 2 + 1 + 1 + 1 is 5 - 6 = -1.

Ramanujan's Lost Notebookin Five VolumesThoughts and

4月 4日 4日 4日 5日

1ST MOCK CONJECTURE (Proved by Hickerson)

 $r_1(5n)-r_0(5n)$

EQUALS THE # OF PTNS OF *n* IN WHICH THE LARGEST PART IS ODD AND EACH PART IS $\geq \frac{1}{2}$ (LARGEST PART)

Ramanujan's Lost Notebookin Five VolumesThoughts and

SUMS-OF-TAILS

イロン イロン イヨン イヨン Ramanujan's Lost Notebookin Five VolumesThoughts and

æ

 $\begin{aligned} \int_{T}^{T} S &= (1+\nu)(1+\nu^{2})(0+\nu^{3})\cdots the \\ &+ \frac{2}{1+\nu} + \frac{2^{2}}{(1+\nu)(1+\nu^{3})} + \frac{2^{2}}{(1+\nu)(1+\nu^{3})(1+\nu^{3})} + \end{aligned}$ $= | + v [1 - v(1 - v) + v(1 - v)(1 - v) - v^{2}(1 - v)(1 - v' X_{1} + v)] + = 2 \left\{ \frac{1}{2}s + (2 - 1) + (s - (1 + v)) + (s - (1 + v)(1 + v^{2})) + - \right\}$ - 28 (+ + 22 + 2-, + ·.) $= 2 \left\{ \frac{1}{2} + (1 - \frac{1}{1 - \nu}) + (1 - \frac{1}{1 - \nu}) + \cdots \right\} \\ - 22 \left(\frac{\nu^{2}}{1 - \nu} + \frac{2}{1 - \nu} + \frac{2}{1 - \nu} + \frac{2}{1 - \nu} + \cdots \right\}$

OR IN STANDARD NOTATION IF $S = \prod_{n=1}^{\infty} (1 + q^n) = \prod_{n=1}^{\infty} \frac{1}{(1 - q^{2n-1})}$ THEN

$$\sum_{n=0}^{\infty} \frac{q^{n(n+1)/2}}{(1+q)(1+q^2)\cdots(1+q^n)}$$

=1 = $q \sum_{n=0}^{\infty} (-q)^n (1-q)(1-q^2)\cdots(1-q^n)$
=2{ $\frac{S}{2} + \sum_{n=1}^{\infty} (S - (1+q)(1+q^2)\cdots(1+q^n)) - 2S \sum_{n=1}^{\infty} \frac{q^n}{1-q^n}$
=2{ $\frac{S}{2} + \sum_{n=0}^{\infty} (S - \frac{1}{(1-q)(1-q^3)\cdots(1-q^{2n+1})}) - 2S \sum_{n=1}^{\infty} \frac{q^{2n}}{1-q^{2n}}$

Ramanujan's Lost Notebookin Five VolumesThoughts and

・部・・モ・・モ・・モ

LET

$$egin{aligned} & R(q) := \ & \sum_{n=0}^{\infty} rac{q^{n(n+1)/2}}{(1+q)(1+q^2)\cdots(1+q^n)} \ & = & 1+q\sum_{n=0}^{\infty} (-q)^n (1-q)(1-q^2)\cdots(1-q^n) \end{aligned}$$

Ramanujan's Lost Notebookin Five VolumesThoughts and

・ロト・4回ト・4回ト・4回ト・4日ト

Dyson, Hickerson & I proved that if

$$R(q)=\sum_{n=0}^{\infty}c_nq^n,$$

then asymptotically 100% of the c_n are ZERO, and for any integer M between $-\infty$ and ∞ , $c_n = M$ infinitely many times.

ALSO IT IS INFORMATIVE TO CONTRAST

$$R(q) = 1 + \sum_{n=1}^{\infty} rac{q^{rac{n(n+1)}{2}}}{(1+q)(1+q^2)\cdots(1+q^n)}$$

with

$$1+\sum_{n=1}^{\infty}rac{q^{rac{n(n+1)}{2}}}{(1+q)(1+q^2)\cdots(1+q^n)}$$

Ramanujan's Lost Notebookin Five VolumesThoughts and

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

ALSO IT IS INFORMATIVE TO CONTRAST

$$R(q) = 1 + \sum_{n=1}^{\infty} rac{q^{rac{n(n+1)}{2}}}{(1+q)(1+q^2)\cdots(1+q^n)}$$

with

$$1 + \sum_{n=1}^{\infty} \frac{q^{\frac{n(n+1)}{2}}}{(1+q)(1+q^2)\cdots(1+q^n)} = 2$$

Ramanujan's Lost Notebookin Five VolumesThoughts and

<□> < □> < □> < □>

э

NATHAN FINE, IN HIS WONDERFUL, RAMANUJANESQUE BOOK, BASIC HYPERGEOMETRIC SERIES AND APPLICATIONS, INDEPENDENTLY FOUND ONE RESULT OF THIS NATURE:

LET

$$\Phi(q) = \sum_{n=1}^{\infty} \frac{q^n}{1-q^n} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}q^{\frac{n(n+1)}{2}}}{(1-q)\cdots(1-q^{n-1})(1-q^n)}$$

THEN

$$\Phi(q) = \sum_{n=0}^{\infty} \left(1 - \prod_{j>n} (1-q^j) \right)$$

OR

$$\frac{\Phi(q)}{\prod_{n=1}^{\infty}(1-q^n)} = \sum_{j=0}^{\infty} \left(\frac{1}{\prod_{k=1}^{\infty}(1-q^k)} - \prod_{k=1}^{j}\frac{1}{(1-q^k)}\right)$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

SIMILARLY, D. ZAGIER HAS PROVED

$$\sum_{n\geq 0}\left(\prod_{j=1}^\infty(1-q^j)-\prod_{j=1}^n(1-q^j)
ight)
onumber \ = rac{1}{2}\mathcal{H}(q)+D(q)\prod_{j=1}^\infty(1-q^j),$$

where

$$H(q) = \sum_{n=1}^{\infty} n\chi(n)q^{(n^2-1)/24}$$

 χ the unique primitive character of conductor 12.

ZAGIER STARTS FROM

$$\sum_{n=0}^{\infty} \left(\prod_{j=1}^{\infty} (1-q^j) - \prod_{j=1}^{n} (1-q^j) \right)$$
$$= -\sum_{n=1}^{\infty} (1-q)(1-q^2) \cdots (1-q^{n-1})nq^n$$

WHICH MAY BE PROVED DIRECTLY BY EXAMINING THE PARTIAL SUMS ON EACH SIDE.

Ramanujan's Lost Notebookin Five VolumesThoughts and

THIS IS EXACTLY ANALOGOUS TO THE TREATMENT OF RAMANUJAN'S FORMULA

$$\sum_{n=0}^{\infty}\left(S-\prod_{j=1}^{n}(1+q^{j})
ight)=\sum_{n=1}^{\infty}(1+q)(1+q^{2})\cdots(1+q^{n-1})nq^{n}$$

(Adv. in Math., 61(1986), p. 159). ALSO EASILY PROVED

KEN ONO, JORGE JIMENEZ URROZ and I EXAMINED THE FOLLOWING QUESTION: WHAT IS GOING ON HERE?

Ramanujan's Lost Notebookin Five VolumesThoughts and

→ < Ξ → <</p>

IN EACH CASE, THERE IS A MISSING VARIABLE WHICH HAS BEEN DIFFERENTIATED AND THEN SET = 1. IS THERE A GENERAL PRINCIPLE?

Ramanujan's Lost Notebookin Five VolumesThoughts and

→ < Ξ → <</p>

THEOREM. SUBJECT TO SOME TEDIOUS BUT NECESSARY CONVERGENCE CONDITIONS, IF

$$\lim_{n\to\infty}\alpha_n=\alpha,$$

AND

$$f(z)=\sum_{n=0}^{\infty}z^{n}\alpha_{n},$$

THEN

$$\lim_{z\to 1^-}\frac{d}{dz}(1-z)f(z)=\sum_{n=0}^\infty(\alpha-\alpha_n).$$

Ramanujan's Lost Notebookin Five VolumesThoughts and

• • = • • = •

э

LET

$$(a,n) = a(a+1)(a+2)\cdots(a+n-1)$$

P. FREITAS AND I EXTENDED THIS RESULT TO

$$\frac{1}{p}\lim_{z\to 1^{-}}\left\{\frac{d^{p}}{dz^{p}}(1-z)f(z)\right\}$$
$$=\sum_{n=0}^{\infty}(n+1,p-1)(\alpha-\alpha_{n+p-1})$$

・日本 ・ 日本 ・ 日本

э

DELIGHTFULLY, THIS GENERAL THEOREM (INSPIRED BY RAMANUJAN) BECAME ESSENTIAL IN JOINT WORK WITH GARVAN AND LIANG CONCERNING spt(n), THE NUMBER OF SMALLEST PARTS IN THE PARTITIONS ON n.

FOR EXAMPLE: spt(4) = 10

 $\underline{4}$, $3+\underline{1}$, $\underline{2}+\underline{2}$, $2+\underline{1}+\underline{1}$, $\underline{1}+\underline{1}+\underline{1}+\underline{1}$

spt(n) CAME INTO PROMINENCE WHEN, IN THE SPIRIT OF RAMANUJAN'S CONGRUENCES FOR p(n), IT WAS FOUND THAT

$$spt(5n+4) \equiv 0(\mod 5)$$
$$spt(7n+5) \equiv 0(\mod 7)$$
$$spt(13n+6) \equiv 0(\mod 13)$$

THE LAST BEING A GREAT SURPRISE.

Ramanujan's Lost Notebookin Five VolumesThoughts and

GARVAN, LIANG & I PROVIDE COMBINATORIAL EXPLANATIONS OF THE CONGRUENCES mod 5 AND 7 AS WELL AS A FULL ACCOUNT OF THE PARITY OF spt(n) (FIRST DONE BY FOLSOM & ONO). CENTRAL TO OUR DEVELOPMENT ARE RESULTS LIKE:

$$\sum_{n=0}^{\infty} \frac{((q)_{2n} - (q)_{\infty})}{(q^2; q^2)_n}$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^n q^{n^2}}{(q; q^2)_n}$$
$$\sum_{n=0}^{\infty} \frac{((q)_n - (q)_{\infty})}{(q)_n^2} = \sum_{n=1}^{\infty} \frac{n q^{n^2}}{(q)_n^2},$$

where

$$(A)_n = (A; q)_n = \prod_{j=0}^{n-1} (1 - Aq^j).$$

Ramanujan's Lost Notebookin Five VolumesThoughts and

・ロト・4回ト・4回ト・4回ト・4日ト

THE 40 IDENTITIES FOR THE ROGERS-RAMANUJAN FUNCTIONS AND GENERALIZATIONS

Ramanujan's Lost Notebookin Five VolumesThoughts and

▲御▶ ▲理▶ ★理≯

LET

$$G(q) := \prod_{n=1}^{\infty} \frac{1}{(1-q^{5n-4})(1-q^{5n-1})},$$

AND

$$H(q) := \prod_{n=1}^{\infty} \frac{1}{(1-q^{5n-3})(1-q^{5n-2})}.$$

In 1975, Brian Birch uncovered Ramanujan's manuscript on 40 identities relating G(q) and H(q). A typical example is

$$G(q)G(q^4)+qH(q)H(q^4)=rac{\phi(q)}{(q^2;\,q^2)_\infty}$$

where $\phi(q) = \sum_{n=-\infty}^{\infty} q^{n^2}$.

PRIOR TO THE DISCOVERY OF THE LOST NOTEBOOK, EVERY KNOWN PROOF OF THESE FORMULAE RELIED HEAVILY ON THE MODULAR ASPECTS OF G(q) AND H(q). IN THE LOST NOTEBOOK, WE FIND A NON-MODULAR GENERALIZATION OF THE PREVIOUSLY STATED IDENTITY.

NAMELY,

$$\begin{split} &\left(\sum_{n=0}^{\infty} \frac{a^n q^{n^2}}{(q^4; q^4)_n}\right) \left(\sum_{n=0}^{\infty} \frac{a^{-2n} q^{4n^2}}{(q^4; q^4)_n}\right) \\ &+ \left(\sum_{n=0}^{\infty} \frac{a^n q^{(n+1)^2}}{(q^4; q^4)_n}\right) \left(\sum_{n=0}^{\infty} \frac{a^{-2n-1} q^{4n^2+4n}}{(q^4; q^4)_n}\right) \\ &= \frac{1}{(q^4; q^4)_{\infty}} \sum_{n=-\infty}^{\infty} a^n q^{n^2} \end{split}$$

a = 1 YIELDS THE ORIGINAL FORMULA ONCE WE RECALL SOME RESULTS OF L. J. ROGERS

Ramanujan's Lost Notebookin Five VolumesThoughts and

$$G(q) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q;q)_n}$$
$$= (-q^2;q^2)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q^4;q^4)_n},$$

AND

$$H(q) = \sum_{n=0}^{\infty} \frac{q^{n^2 + n}}{(q; q)_n}$$
$$= (-q^2; q^2)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n^2 + 2n}}{(q^4; q^4)_n}$$

Ramanujan's Lost Notebookin Five Volumes Thoughts and

(ロ) (型) (目) (目) (日) (の)

SIMILAR GENERALIZATIONS HOLD FOR RELATED RESULTS OF G. N. WATSON

$$G(-q)\phi(q)-G(q)\phi(-q)=2qH(q^4)\psi(q^2)$$

AND

$$H(-q)\phi(q) + H(q)\phi(-q) = 2G(q^4)\psi(q^2),$$

WHERE

$$\phi(q) = \sum_{n=-\infty}^{\infty} q^{n^2}$$
 $\psi(q) = \sum_{n=0}^{\infty} q^{n(n+1)/2}$

Ramanujan's Lost Notebookin Five VolumesThoughts and

HOW RAMANUJAN PROVED THE RICHMOND-SZEKERES THEOREM

Ramanujan's Lost Notebookin Five VolumesThoughts and

• • = • • = •

ROGERS-RAMANUJAN CONTINUED FRACTION

Ramanujan's Lost Notebookin Five VolumesThoughts and

G. Szekeres & B. Richmond examined the power series of C(q)

 $C(q) = 1 + q - q^{3} + q^{5} + q^{6} - q^{7} - 2q^{8} + 2q^{10} + 2q^{11} - q^{12} - 3q^{13} - q^{14} + 3q^{15} + 3q^{16} - 2q^{17} - 5q^{18} - q^{19} + 6q^{20} + 5q^{21} - 3q^{22} - 8q^{23} - 2q^{24} + \cdots$

高 と く ヨ と く ヨ と

-

LET $C(q) = \sum_{n=0}^{\infty} c_n q^n$, R. and S. showed that eventually c_n and c_{n+5} have the same sign by showing

$$c_n = \frac{\sqrt{2}}{(5n)^{3/4}} e^{\frac{4\pi}{25}\sqrt{5n}} \times \left\{ \cos\left(\frac{2\pi}{5}(n-\frac{2}{5})\right) + O(\frac{1}{\sqrt{n}}) \right\}.$$

A I A I A I A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

IN THE LOST NOTEBOOK WE FIND

$$C(q) = \frac{\sum_{n=-\infty}^{\infty} (-1)^n q^{(15n^2+n)/2} (1+q^{5n+1})}{\prod_{n=1}^{\infty} (1-q^{5n})}$$

FROM THIS RAMANUJAN FINDS FORMULAE FOR

j = 0, 1, 2, 3, 4.

→ < Ξ → <</p>

FOR EXAMPLE

Ramanujan's Lost Notebookin Five VolumesThoughts and

HOWEVER

Ramanujan's Lost Notebookin Five VolumesThoughts and

A PARTITION THEOREM OF B. GORDON ALLOWS US TO TREAT THE SIGN PROBLEM FULLY.

$$A_{k,a}(n) = B_{k,a}(n)$$

WHERE

 $A_{k,a}(n) = \#$ OF PTNS OF *n* INTO PARTS $\neq 0, \pm a \pmod{2k+1}$. $B_{k,a}(n) = \#$ OF PTNS OF *n* INTO $b_1 + b_2 + \cdots + b_j$ WITH $b_i \geq b_{i+1}, \ b_i - b_{i+k-1} \geq 2$, & AT MOST a - 1 OF THE b_i ARE = 1.

FOR
$$1 < a \leq k$$

$$A_{k,a}(n)$$

is non-decreasing in *n*.

 $B_{k,a}(n)$

is non-decreasing in *a*. THUS

$$c_{5m+2} = -B_{37,23}(m-1) + B_{37,2}(m-8) < 0$$

for $m \ge 1$.

INNOCENTS ABROAD

・ロン ・部と ・ヨン ・ヨン Ramanujan's Lost Notebookin Five VolumesThoughts and

æ

HERE ARE TWO SEEMINGLY BENIGN IDENTITIES

$$\sum_{n=0}^{\infty} \frac{(-1)^n q^{n(n+1)/2}}{(-q;q)_n^2} = \sum_{n=0}^{\infty} \frac{(-q)^{n(n+1)/2}}{(-q^2;q^2)_n} - 2\sum_{n=1}^{\infty} \frac{(-1)^n q^{2n^2}}{(-q;q^2)_{2n}},$$
$$\phi(-q) \sum_{n=0}^{\infty} \frac{q^{n(n+1)/2}}{(q^2;q^2)_n} = \sum_{n=0}^{\infty} \frac{(-q)^{n(n+1)/2}}{(-q^2;q^2)_n} + 2\sum_{n=1}^{\infty} \frac{(-1)^n q^{2n^2}}{(-q;q^2)_{2n}}.$$
WHERE $\phi(q) = \sum_{n=-\infty}^{\infty} q^{n^2}$

Ramanujan's Lost Notebookin Five VolumesThoughts and

Image: A Image: A

э

< A

THE PROOF REQUIRES TWO SEEMINGLY TRIVIAL FINITE IDENTITIES

$$(q;q^2)_m \sum_{n=0}^{2m} \frac{(-1)^n}{(\alpha;q)_n(q;q)_{2m-n}} = \sum_{n=0}^m \frac{(-1)^n q^{n^2}}{(q^2;q^2)_{m-n}(\alpha q;q^2)_n}.$$
$$(q;q^2)_m \sum_{n=0}^{2m-1} \frac{(-1)^n}{(q;q)_n(\alpha;q)_{2m-1-n}} = \left(1 - \frac{\alpha}{q}\right) \sum_{n=1}^m \frac{(-1)q^{n^2}}{(q^2;q^2)_{m-n}(\alpha;q^2)_n}.$$

Ramanujan's Lost Notebookin Five VolumesThoughts and

→ < Ξ → <</p>

AND THREE q-HYPERGEOMETRIC SERIES IDENTITIES

$${}_{r+1}\phi_r\binom{a_0,a_1,\ldots,a_2;q,t}{b_1,\ldots,b_r} = \sum_{n=0}^{\infty} \frac{(a_0,a_1,\ldots,a_r;q)_n t^n}{(q,b_1,\ldots,b_r;q)_n}$$

□ > 《日 > 《日

$$\begin{split} \lim_{N \to \infty} {}_{10} \phi_9 \begin{pmatrix} a, q\sqrt{a}, -q\sqrt{a}, b, r_1, -r_1, r_2, -r_2, q^{-N}, -q^{-N}; q, -\frac{a^3q^{2N+3}}{br_1^2 r_2^2} \\ \sqrt{a}, -\sqrt{a}, \frac{aq}{b}, \frac{aq}{r_1}, -\frac{aq}{r_1}, \frac{aq}{r_2}, -\frac{aq}{r_2}, aq^{N+1}, -aq^{N+1} \end{pmatrix} \\ &= \frac{(a^2q^2; q^2)_{\infty}(a^2q^2/(r_1^2r_2^2); q^2)_{\infty}}{(a^2q^2/r_1^2; q^2)_{\infty}(a^2q^2/r_2^2; q^2)_{\infty}} \\ &\times \sum_{n=0}^{\infty} \frac{(r_1^2; q^2)_n (r_2^2; q^2)_n (-aq/b; q)_{2n}}{(q^2; q^2)_n (a^2q^2/b^2; q^2)_n (-aq; q)_{2n}} \left(\frac{a^2q^2}{r_1^2r_2^2} \right)^n \end{split}$$

$$\begin{split} \lim_{N \to \infty} {}_{10}\phi_9 \begin{pmatrix} a, q^2\sqrt{a}, -q^2\sqrt{a}, p_1, p_1q, p_2, p_2q, f, q^{-2N}, q^{-2N+1}; q^2, -\frac{a^3q^{4N+3}}{p_1^2p_2^2f} \\ \sqrt{a}, -\sqrt{a}, \frac{aq^2}{p_1}, \frac{aq}{p_1}, \frac{aq^2}{p_2}, \frac{aq}{p_2}, \frac{aq^2}{p_2}, aq^{2N+2}, aq^{2N+1} \end{pmatrix} \\ \frac{(aq; q)_{\infty}(aq/(p_1p_2); q)_{\infty}}{(aq/p_1; q)_{\infty}(aq/p_2; q)_{\infty}} \sum_{n=0}^{\infty} \frac{(p_1; q)_n(p_2; q)_n(aq/f; q^2)_n}{(q; q)_n(aq/f; q)_n} \left(\frac{aq}{p_1p_2}\right)^n. \end{split}$$

$${}^{10}\phi_9 \binom{a, q\sqrt{a}, -q\sqrt{a}, b_1, c_1, b_2, c_2, b_3, c_3, q^{-N}; q, -\frac{a^3q^{N+3}}{b_1b_2b_3c_1c_2c_3}}{\sqrt{a}, -\sqrt{a}, \frac{aq}{b_1}, \frac{aq}{c_1}, \frac{aq}{b_2}, \frac{aq}{c_2}, \frac{aq}{b_3}, \frac{aq}{c_3}, aq^{N+1}}$$

$$= \frac{(aq; q)_N(aq/(b_3c_3); q)_N}{(aq/b^3; q)_N(aq/c_3; q)_N}$$

$$\times \sum_{m_1,m_2=0}^{\infty} \frac{(aq/(b_1c_1); q)_{m_1}(aq/(b_2c_2); q)_{m_2}(b_2; q)_{m_1}(c_2; q)_{m_1}}{(q; q)_{m_1}(q; q)_{m_2}(aq/b_1; q)_{m_1}(aq/c_1; q)_{m_1}}$$

$$\times \frac{(b_3; q)_{m_1+m_2}(c_3; q)_{m_1+m_2}(q^{-N}; q)_{m_1+m_2}(aq)^{m_1}q^{m_1+m_2}}{(aq/b_2; q)_{m_1+m_2}(aq/c_2; q)_{m_1+m_2}(b_3c_3q^{-N}/a; q)_{m_1+m_2}(b_2c_2)^{m_1}}$$

SURELY THERE MUST BE AN EASIER PROOF

Ramanujan's Lost Notebookin Five VolumesThoughts and

□ > 《注 > 《注 >

э

TRINKETS

メロト メポト メヨト メヨト Ramanujan's Lost Notebookin Five VolumesThoughts and

÷.

$$\sum_{n=0}^{\infty} \frac{q^n}{(1+q^2)(1+q^4)\cdots(1+q^{2n})}$$

=1+q+q^2+q^5-q^7-q^{12}-q^{15}-q^{22}+q^{26}+q^{35}+q^{40}+q^{51}-\cdots
= $\sum_{n=0}^{\infty} (-1)^n q^{n(6n+1)}(1+q^{4n+1})$
+ $\sum_{n=0}^{\infty} (-1)^n q^{(2n+1)(3n+2)}(1+q^{4n+3})$

Ramanujan's Lost Notebookin Five VolumesThoughts and

$$\sum_{n=0}^{\infty} \frac{q^n}{(1+q)(1+q^2)(1+q^3)\cdots(1+q^{2n})}$$

= $(1-q^{11}+q^{13}-\cdots)+q(1-q^5+q^{19}-\cdots)$
= $\sum_{n=0}^{\infty} q^{12n^2+n}(1-q^{22n+11})$
+ $q\sum_{n=0}^{\infty} q^{12n^2+7n}(1-q^{10n+5})$

$$\begin{split} &\sum_{n=0}^{\infty} \frac{q^n}{(1+q)(1+q^3)\cdots(1+q^{2n+1})} \\ &= \sum_{n=0}^{\infty} (-1)^n q^{6n^2+4n} \\ &\sum_{n=0}^{\infty} \frac{q^n}{(1+q)(1+q^2)(1+q^3)\cdots(1+q^{2n+1})} \\ &= 1 - \sum_{n=1}^{\infty} q^{12n^2-n}(1-q^{2n}) \\ &+ q - \sum_{n=1}^{\infty} q^{12n^2-7n}(1-q^{14n}) \end{split}$$

Ramanujan's Lost Notebookin Five VolumesThoughts and

$$\sum_{n=0}^{\infty} \frac{q^n(q;q^2)_n}{(-q;q)_{2n}}$$

=1+q-q^2-q^5+q^7+q^{12}-\cdots
=
$$\sum_{n=0}^{\infty} (-1)q^{n(3n+1)/2}(1+q^{2n+1})$$

Thank You! Alles Gute zum Geburtstag! Happy Birthday, Christian!