## Bipolar orientations of maps and quadrant walks

Mireille Bousquet-Mélou, CNRS, LaBRI, Université de Bordeaux
joint work with
Éric Fusy \& Kilian Raschel


(C) Jérémie Bettinelli

## Outline

I. Bipolar orientations of planar maps
II. From bipolar orientations to quadrant walks
[Kenyon, Miller, Sheffield, Wilson 15(a)]
III. Enumeration of quadrant walks
IV. A bijective proof
V. Asymptotics

## Rooted planar maps



## With degree constraints: rooted triangulations



## Bipolar orientations of maps

- a rooted planar map, with root vertex $N$ (the north pole)
- another marked vertex $S$ (the south pole) in the outer face
- an acyclic orientation
- $S$ is the only source and $N$ the only sink



## Bipolar orientations of maps

- a rooted planar map, with root vertex $N$ (the north pole)
- another marked vertex $S$ (the south pole) in the outer face
- an acyclic orientation
- $S$ is the only source and $N$ the only sink



## Bipolar maps: basic facts

- simple orientations around a vertex/face



## Bipolar maps: basic facts

- simple orientations around a vertex/face
- $M$ admits a bipolar orientation from $S$ to $N$ iff $M \cup\{S, N\}$ is 2-connected
[De Fraysseix, Ossona de Mendez, Rosenstiehl 95]


## Bipolar maps: basic facts

- simple orientations around a vertex/face
- $M$ admits a bipolar orientation from $S$ to $N$ iff $M \cup\{S, N\}$ is 2-connected
- the number $\operatorname{bip}(M)$ of bipolar orientations of $M$ from $N$ to $S$ can be computed from the chromatic polynomial of $M \cup\{S, N\}$
[De Fraysseix, Ossona de Mendez, Rosenstiehl 95]
[Greene \& Zaslavsky 83], [Lass 01]


## Bipolar maps: basic facts

- simple orientations around a vertex/face
- $M$ admits a bipolar orientation from $S$ to $N$ iff $M \cup\{S, N\}$ is 2-connected
- the number $\operatorname{bip}(M)$ of bipolar orientations of $M$ from $N$ to $S$ can be computed from the chromatic polynomial of $M \cup\{S, N\}$
[De Fraysseix, Ossona de Mendez, Rosenstiehl 95]
[Greene \& Zaslavsky 83], [Lass 01]
- Aim: compute, or characterize, the generating function

$$
\sum_{M \operatorname{map}} \operatorname{bip}(M) t^{\mathrm{e}(M)}=\sum_{O \text { bip. orient. }} t^{\mathrm{e}(O)},
$$

where the sum runs over a given family of planar maps $M$ (or the corresponding bipolar orientations), and $\mathrm{e}(M)$ is the edge number.

## Maps equipped with an additional structure

In combinatorics, and in theoretical physics

- Spanning trees [Mullin 67, Bernardi]
- Spanning forests [Bouttier et al., Sportiello et al., mbm-Courtiel]
- Proper colourings [Tutte 68-84]
- Self-avoiding walks [Duplantier-Kostov]
- Hard particles [Bouttier et al., mbm, Schaeffer, Jehanne]
- The $q$-state Potts model (equivalent to the Tutte polynomial) [Eynard-Bonnet 99, Baxter, Bernardi-mbm, Borot et al. ]
- Loop models [Borot et al., Eynard, Kristjansen, Zinn-Justin]
- Eulerian orientations [Kostov, Zinn-Justin, Bonichon et al., Guttmann, mbm \& Elvey Price]


## Bipolar orientations with $n$ edges: Two main questions

No degree restriction on faces


$$
b(n)=1,2,6,22,92,422,2074
$$



Triangulations, quadrangulations, etc.

$a(3 k+1)=1,1,5,42,462,6006,87516$


## The number of bipolar orientations with $n$ edges

## Proposition [R. Baxter 01]

The number of bipolar orientations with $n$ edges is

$$
b(n)=\frac{2}{n(n+1)^{2}} \sum_{k=1}^{n}\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1} \sim \frac{32}{\sqrt{3} \pi} 8^{n} n^{-4} .
$$

This sequence is P -recursive (the associated generating function $\sum b(n) t^{n}$ is D-finite):

$$
(n+6)(n+5) b(n+2)=\left(7 n^{2}+49 n+82\right) b(n+1)+8(n+2)(n+1) b(n)
$$

## The number of bipolar orientations with $n$ edges

## Proposition [R. Baxter 01]

The number of bipolar orientations with $n$ edges is

$$
b(n)=\frac{2}{n(n+1)^{2}} \sum_{k=1}^{n}\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1} \sim \frac{32}{\sqrt{3} \pi} 8^{n} n^{-4} .
$$

This sequence is P -recursive (the associated generating function $\sum b(n) t^{n}$ is D-finite):

$$
(n+6)(n+5) b(n+2)=\left(7 n^{2}+49 n+82\right) b(n+1)+8(n+2)(n+1) b(n)
$$

But but but... these numbers count Baxter permutations! [G. Baxter 64] [Chung, Graham, Hoggatt \& Kleiman 78]

## The number of bipolar orientations with $n$ edges

## Proposition [R. Baxter 01]

The number of bipolar orientations with $n$ edges is

$$
b(n)=\frac{2}{n(n+1)^{2}} \sum_{k=1}^{n}\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1} \sim \frac{32}{\sqrt{3} \pi} 8^{n} n^{-4} .
$$

This sequence is P-recursive (the associated generating function $\sum b(n) t^{n}$ is D-finite):

$$
(n+6)(n+5) b(n+2)=\left(7 n^{2}+49 n+82\right) b(n+1)+8(n+2)(n+1) b(n)
$$

But but but... these numbers count Baxter permutations! [G. Baxter 64] [Chung, Graham, Hoggatt \& Kleiman 78]
$\Rightarrow$ Bijections with Baxter permutations, non-intersecting 3-tuples of paths [Bonichon, mbm \& Fusy 09, Felsner, Fusy, Noy \& Orden 11, Fusy, Poulalhon \& Schaeffer 09]

## Bipolar orientations: a simple recursive structure



## Bipolar orientations: a simple recursive structure

Two ways of adding an edge:


- Every bipolar map is obtained exactly once
- The left outer degree and the North degree can be described recursively


## Prescribing face degrees

- Due to edge contractions, the above recursive construction behaves badly (apart from triangulations)


## Prescribing face degrees

- Due to edge contractions, the above recursive construction behaves badly (apart from triangulations)


## Proposition [Tutte 73]

The number of bipolar orientations of triangulations of a digon having $n=3 k+1$ edges is

$$
a(k)=\frac{2(3 k)!}{k!(k+1)!(k+2)!} \sim \frac{\sqrt{3}}{\pi} 27^{k} k^{-4} .
$$

The sequence is P-recursive (hypergeometric):

$$
(k+1)(k+2) a(k)=3(3 k-1)(3 k-2) a(k-1) .
$$

This is also the number of rectangular Young tableaux of height 3 and width $k$.

## Prescribing face degrees

- Due to edge contractions, the above recursive construction behaves badly (apart from triangulations)
- A new construction: a bijection with lattice paths [Kenyon, Miller, Sheffield, Wilson, 15(a)]


## Bipolar orientations with prescribed face degrees

Denote $\bar{x}:=1 / x, \bar{y}:=1 / y$, and let

$$
S(x, y):=x \bar{y}+\sum_{i, j \geq 0} z_{i+j} \bar{x}^{i} y^{j} .
$$

## Enumeration by face degrees [mbm, Fusy \& Raschel 18(a)]

The generating function of bipolar orientations of a digon, with each edge weighted by $t$ and each (inner) face of degree $k+2$ weighted by $z_{k}$, is

$$
B=-\left[x^{0} y^{0}\right] \frac{t y^{2}}{x} \frac{S_{2}^{\prime}(x, y)}{1-t S(x, y)}\left(1-\frac{\bar{x}^{2}}{t}+\sum_{k \geq 0} z_{k}(k+1) \bar{x}^{k+2}\right)
$$

When degrees are bounded, the RHS is a rational series and $B$ is a D-finite series.

## Bipolar orientations with prescribed face degrees

Denote $\bar{x}:=1 / x, \bar{y}:=1 / y$, and let

$$
S(x, y):=x \bar{y}+\sum_{i, j \geq 0} z_{i+j} \bar{x}^{i} y^{j} .
$$

Let $Y_{1}=t x+O\left(t^{2}\right)$ is the unique power series in $t$ (with coefficients that are Laurent polynomials in $x$ ) satisfying $1=t S\left(x, Y_{1}\right)$.

Enumeration by face degrees [mbm, Fusy \& Raschel 18(a)]
The generating function of bipolar orientations of a digon, with each edge weighted by $t$ and each (inner) face of degree $k+2$ weighted by $z_{k}$, is

$$
B=-\left[x^{0} y^{0}\right] \frac{t y^{2}}{x} \frac{S_{2}^{\prime}(x, y)}{1-t S(x, y)}\left(1-\frac{\bar{x}^{2}}{t}+\sum_{k \geq 0} z_{k}(k+1) \bar{x}^{k+2}\right)
$$

When degrees are bounded, the RHS is a rational series and $B$ is a D-finite series. Equivalently,

$$
B=\left[x^{0}\right] \frac{Y_{1}}{x}\left(1-\frac{\bar{x}^{2}}{t}+\sum_{k \geq 0} z_{k}(k+1) \bar{x}^{k+2}\right)
$$

## Recurrence relations for $(k+2)$-angulations by edges

Bipolar orientations: a D-finite series

$$
B=-\left[x^{0} y^{0}\right] \frac{t y^{2}}{x} \frac{S_{2}^{\prime}(x, y)}{1-t S(x, y)}\left(1-\frac{\bar{x}^{2}}{t}+\sum_{k \geq 0} z_{k}(k+1) \bar{x}^{k+2}\right)
$$

## Recurrence relations for $(k+2)$-angulations by edges

Bipolar orientations: a D-finite series

$$
B=-\left[x^{0} y^{0}\right] \frac{t y^{2}}{x} \frac{S_{2}^{\prime}(x, y)}{1-t S(x, y)}\left(1-\frac{\bar{x}^{2}}{t}+\sum_{k \geq 0} z_{k}(k+1) \bar{x}^{k+2}\right)
$$

- $k=1$ (triangulations)

$$
(n+3)(n+2) a(n+1)=3(3 n+2)(3 n+1) a(n)
$$

- $k=2$ (quadrangulations)

$$
(n+4)(n+3)^{2} a(n+2)=4(2 n+3)(n+3)(n+1) a(n+1)+12(2 n+3)(2 n+1)(n+1) a(n)
$$

- $k=3$ (pentagulations)

$$
27(3 n+8)(3 n+4)(5 n+3)(3 n+5)^{2}(3 n+7)^{2}(n+2)^{2} a(n+2)=
$$

$$
\begin{gathered}
60(5 n+7)(3 n+5)(5 n+9)(5 n+6)(3 n+4)(8+5 n)\left(145 n^{3}+532 n^{2}+626 n+233\right) a(n+1) \\
\quad-800(5 n+6)(5 n+1)(5 n+7)(5 n+2)(5 n+3)(5 n+9)(5 n+4)(8+5 n)^{2} a(n)
\end{gathered}
$$

Software: [Bostan, Lairez, Salvy 13]

# II. From bipolar orientations to quadrant walks 

[Kenyon, Miller, Sheffield, Wilson, 15(a)]



## The KMSW construction

Take a lattice walk with two kinds of steps:

- SE steps $(1,-1)$
- NW steps $(-i, j)$ with $i, j \geq 0$


The construction starts from a walk and a bipolar orientation reduced to an edge, and yields an incomplete bipolar orientation.



## The KMSW construction

The construction starts from a walk and a bipolar orientation reduced to an edge, and yields an incomplete bipolar orientation.

- every SE step $(1,-1)$ creates an edge.
- every NW step $(-i, j)$ creates a face of degree $i+j+2$ and an edge.


Example: walk
$(0,2)(1,-1)(1,-1)(-1,0)(1,-1)(-3,1)(-1,0)(1,-1)(0,1)(0,1)$

## The KMSW construction

## Proposition [Kenyon et al. 15(a)]

This construction is a bijection from lattice paths to incomplete bipolar orientations.


## The KMSW construction

## Proposition [Kenyon et al. 15(a)]

This construction is a bijection from lattice paths to incomplete bipolar orientations.

- steps $\Leftrightarrow$ (solid) edges in the orientation (minus 1 )
- steps $(-i, j) \Leftrightarrow$ faces of oriented degree $(i+1, j+1)$
- coordinates of the endpoints $\Leftrightarrow$ left and right boundaries of the map.




## The KMSW construction: Some specializations



incomplete
half-plane


left incomplete


complete

## The KMSW construction: Some specializations



incomplete
half-plane


left incomplete


complete

## The KMSW construction: Some specializations



incomplete


left incomplete

## quadrant



complete

## The KMSW construction: Some specializations



Enumeration of walks confined to the quadrant
III. Counting quadrant walks: a very active topic

## III. Counting quadrant walks: a very active topic

- SLC 74, March 2015, Ellwangen: Three lectures by Alin Bostan "Computer Algebra for Lattice Path Combinatorics"
- SLC 77, September 2016, Strobl: Three lectures by Kilian Raschel "Analytic and Probabilistic Tools for Lattice Path Enumeration"



## Counting quadrant walks

- With small steps (included in $\{-1,0,1\}^{2}$ )

- sporadic cases [Gessel, Gouyou-Beauchamps, Kreweras, Krattenthaler, Niederhausen, Sagan...]
- uniform approach [Mishna, mbm-Mishna 10]
- D-finite and algebraic cases [Bostan \& Kauers 10, mbm-Mishna 10, Zeilberger]
- non-D-finite cases [Kurkova \& Raschel 12, Bostan, Raschel, Salvy 14]
- D-algebraic cases [Bernardi, mbm \& Raschel 18(a)]
- non-D-algebraic cases [Dreyfus, Hardouin, Roques \& Singer 17(a)]
- an attractive mixture of methods: power series algebra, bijections, complex analysis, computer algebra, differential Galois theory...


## Counting quadrant walks

- With small steps (included in $\{-1,0,1\}^{2}$ )

- sporadic cases [Gessel, Gouyou-Beauchamps, Kreweras, Krattenthaler, Niederhausen, Sagan...]
- uniform approach [Mishna, mbm-Mishna 10]
- D-finite and algebraic cases [Bostan \& Kauers 10, mbm-Mishna 10, Zeilberger]
- non-D-finite cases [Kurkova \& Raschel 12, Bostan, Raschel, Salvy 14]
- D-algebraic cases [Bernardi, mbm \& Raschel 18(a)]
- non-D-algebraic cases [Dreyfus, Hardouin, Roques \& Singer 17(a)]
- an attractive mixture of methods: power series algebra, bijections, complex analysis, computer algebra, differential Galois theory...
- With arbitrary steps
- an approach that solves (some) D-finite cases [Bostan, mbm \& Melczer 18(a)]


## Counting quadrant walks

- With small steps (included in $\{-1,0,1\}^{2}$ )

- sporadic cases [Gessel, Gouyou-Beauchamps, Kreweras, Krattenthaler, Niederhausen, Sagan...]
- uniform approach [Mishna, mbm-Mishna 10]
- D-finite and algebraic cases [Bostan \& Kauers 10, mbm-Mishna 10, Zeilberger]
- non-D-finite cases [Kurkova \& Raschel 12, Bostan, Raschel, Salvy 14]
- D-algebraic cases [Bernardi, mbm \& Raschel 18(a)]
- non-D-algebraic cases [Dreyfus, Hardouin, Roques \& Singer 17(a)]
- an attractive mixture of methods: power series algebra, bijections, complex analysis, computer algebra, differential Galois theory...
- With arbitrary steps
- an approach that solves (some) D-finite cases
[Bostan, mbm \& Melczer 18(a)]
including those corresponding to bipolar orientations [mbm, Fusy \& Raschel 18(a)]


## Walk enumeration for bipolar orientations

Parameters and variables:

- steps/edges: variable $t$
- steps $(-i, j)$ (faces): variable $z_{i+j}$ (degree selection)
- coordinates of the endpoint: variables $x, y$

Example:

$$
\text { weight }(w)=t^{4} z_{2} z_{1} x^{1} y^{0}
$$

The step polynomial (generating function of the steps)


$$
S(x, y):=x \bar{y}+\sum_{i, j \geq 0} z_{i+j} \bar{x}^{i} y^{j}
$$

## Walk enumeration for bipolar orientations

Parameters and variables:

- steps/edges: variable $t$
- steps $(-i, j)$ (faces): variable $z_{i+j}$ (degree selection)
- coordinates of the endpoint: variables $x, y$

Example:

$$
\text { weight }(w)=t^{4} z_{2} z_{1} x^{1} y^{0}
$$

The step polynomial (generating function of the steps)


$$
S(x, y):=x \bar{y}+\sum_{i, j \geq 0} z_{i+j} \bar{x}^{i} y^{j}
$$

Unrestricted walks: a rational series

$$
U(x, y)=\frac{1}{1-t S(x, y)}
$$

## Walk enumeration for bipolar orientations

Parameters and variables:

- steps/edges: variable $t$
- steps $(-i, j)$ (faces): variable $z_{i+j}$ (degree selection)
- coordinates of the endpoint: variables $x, y$

Example:

$$
\text { weight }(w)=t^{4} z_{2} z_{1} x^{1} y^{0}
$$

The step polynomial (generating function of the steps)


$$
S(x, y):=x \bar{y}+\sum_{i, j \geq 0} z_{i+j} \bar{x}^{i} y^{j}
$$

Bipolar orientations

$$
B=-\left[x^{0} y^{0}\right] \frac{t y^{2}}{x} \frac{S_{2}^{\prime}(x, y)}{1-t S(x, y)}\left(1-\frac{\bar{x}^{2}}{t}+\sum_{k \geq 0} z_{k}(k+1) \bar{x}^{k+2}\right)
$$

## Walk enumeration for bipolar orientations

Parameters and variables:

- steps/edges: variable $t$
- steps $(-i, j)$ (faces): variable $z_{i+j}$ (degree selection)
- coordinates of the endpoint: variables $x, y$

Example:

$$
\text { weight }(w)=t^{4} z_{2} z_{1} x^{1} y^{0}
$$

The step polynomial (generating function of the steps)


$$
S(x, y):=x \bar{y}+\sum_{i, j \geq 0} z_{i+j} \bar{x}^{i} y^{j}
$$

Bipolar orientations: an alternative formula

$$
B=\left[x^{0}\right] \frac{Y_{1}(x)}{x}\left(1-\frac{\bar{x}^{2}}{t}+\sum_{k \geq 0} z_{k}(k+1) \bar{x}^{k+2}\right)
$$

## Walks in a half-plane

Half-plane walks: an algebraic series

$$
H(x)=\frac{Y_{1}(x)}{t x} \text {, }
$$

where $Y_{1}(x)$ is the unique series in $t$ satisfying $1=t S\left(x, Y_{1}(x)\right)$.
Proof. First return decomposition (largest down move $=-1$ )



This gives for $Y=t x H(x)$ the equation $t S(x, Y)=1$, with

$$
S(x, y):=x \bar{y}+\sum_{i, j \geq 0} z_{i+j} \bar{x}^{i} y^{j} .
$$

## Walk enumeration: the quadrant case

Quadrant walks: a D-finite series

$$
Q(0,0)=\left[x^{0}\right] \frac{Y_{1}(x)}{t x}\left(1-\frac{\bar{x}^{2}}{t}+\sum_{k}(k+1) z_{k} \bar{x}^{k+2}\right) .
$$

## Walk enumeration: the quadrant case

Quadrant walks: a D-finite series

$$
Q(0,0)=\left[x^{0}\right] \frac{Y_{1}(x)}{t x}\left(1-\frac{\bar{x}^{2}}{t}+\sum_{k}(k+1) z_{k} \bar{x}^{k+2}\right) .
$$

A functional equation:

$$
\begin{aligned}
Q(x, y)= & 1+t Q(x, y) S(x, y)-t x \bar{y} Q(x, 0) \\
& -t \sum_{i>0 . j \geq 0} z_{i+j} \bar{x}^{i} y^{j}\left(Q_{0}(y)+x Q_{1}(y)+\cdots+x^{i-1} Q_{i-1}(y)\right)
\end{aligned}
$$

where $Q_{i}(y)$ counts quadrant walks ending at abscissa $i$.


## Walk enumeration: the quadrant case

## Quadrant walks: a D-finite series

$$
Q(0,0)=\left[x^{0}\right] \frac{Y_{1}(x)}{t x}\left(1-\frac{\bar{x}^{2}}{t}+\sum_{k}(k+1) z_{k} \bar{x}^{k+2}\right) .
$$

A simple case: triangulations. Take $z_{1}=1$ and $z_{i}=0$ if $i \neq 1$

$$
Q(x, y)=1+Q(x, y) S(x, y)-t x \bar{y} Q(x, 0)-t \bar{x} Q(0, y)
$$



Walks confined to a Weyl chamber, solvable using the reflection principle [Gessel-Zeilberger 92]

## Walk enumeration: the quadrant case

## Quadrant walks: a D-finite series

$$
Q(0,0)=\left[x^{0}\right] \frac{Y_{1}(x)}{t x}\left(1-\frac{\bar{x}^{2}}{t}+\sum_{k}(k+1) z_{k} \bar{x}^{k+2}\right) .
$$

Quadrangulations. Take $z_{2}=1$ and $z_{i}=0$ if $i \neq 2$

IV. Enumeration of quadrant walks: a bijective proof


$$
Q=\left[x^{0}\right] \frac{Y_{1}(x)}{t x}\left(1-\frac{1}{t x^{2}}+\frac{2}{x^{3}}\right)
$$

## IV. Enumeration of quadrant walks: a bijective proof



$$
Q=\left[x^{0}\right] \frac{Y_{1}(x)}{t x}\left(1-\frac{1}{t x^{2}}+\frac{2}{x^{3}}\right)
$$

$$
=\left[x^{0}\right] H(x)\left(1-\frac{1}{t x^{2}}+\frac{2}{x^{3}}\right) \quad \text { half-plane walks }
$$

## IV. Enumeration of quadrant walks: a bijective proof



$$
\begin{aligned}
Q & =\left[x^{0}\right] \frac{Y_{1}(x)}{t x}\left(1-\frac{1}{t x^{2}}+\frac{2}{x^{3}}\right) \\
& =\left[x^{0}\right] H(x)\left(1-\frac{1}{t x^{2}}+\frac{2}{x^{3}}\right) \\
& =H_{0}-\frac{1}{t} H_{2}+2 H_{3}
\end{aligned}
$$



## IV. Enumeration of quadrant walks: a bijective proof



$$
\begin{aligned}
Q_{0} & =\left[x^{0}\right] \frac{Y_{1}(x)}{t x}\left(1-\frac{1}{t x^{2}}+\frac{2}{x^{3}}\right) \\
& =\left[x^{0}\right] H(x)\left(1-\frac{1}{t x^{2}}+\frac{2}{x^{3}}\right) \\
& =H_{0}-\frac{1}{t} H_{2}+2 H_{3}
\end{aligned}
$$



## IV. Enumeration of quadrant walks: a bijective proof



$$
Q_{0}=\left[x^{0}\right] \frac{Y_{1}(x)}{t x}\left(1-\frac{1}{t x^{2}}+\frac{2}{x^{3}}\right)
$$

$$
=\left[x^{0}\right] H(x)\left(1-\frac{1}{t x^{2}}+\frac{2}{x^{3}}\right)
$$

$$
=H_{0}-\frac{1}{t} H_{2}+2 H_{3}
$$



In fact,

$$
Q_{i}=H_{i}-\frac{1}{t} H_{i+2}+2 H_{i+3}
$$

A bijective proof: $H_{i}-Q_{i}=H_{i+2} / t-2 H_{i+3}$


## A bijective proof: $H_{i}-Q_{i}=H_{i+2} / t-2 H_{i+3}$



## A bijective proof: $H_{i}-Q_{i}=H_{i+2} / t-2 H_{i+3}$



## A bijective proof: $H_{i}-Q_{i}=H_{i+2} / t-2 H_{i+3}$



## A bijective proof: $H_{i}-Q_{i}=H_{i+2} / t-2 H_{i+3}$



## A bijective proof: $H_{i}-Q_{i}=H_{i+2} / t-2 H_{i+3}$



## A bijective proof: $H_{i}-Q_{i}=H_{i+2} / t-2 H_{i+3}$



$$
=\frac{1}{t} H_{i+2}^{(1)}
$$

$$
=\frac{1}{t}\left(H_{i+2}-H_{i+2}^{(2)}\right)
$$

$$
=\frac{1}{t} H_{i+2}-2 H_{i+3}
$$



## An algebraicity phenomenon

- Known: Young tableaux of height at most three are counted by Motzkin numbers [Regev 81]

They correspond to quadrant walks ending anywhere.


## An algebraicity phenomenon

- Known: Young tableaux of height at most three are counted by Motzkin numbers [Regev 81]
They correspond to quadrant walks ending anywhere.

- Generalization: the generating function of quadrant walks ending anywhere is $Y / t$, where $Y=Y_{1}(1)$ is the only power series solution of $t S(1, Y)=1$. Equivalently,

$$
Y=t+t \sum_{i, j \geq 0} z_{i+j} Y^{j+1}
$$

[mbm, Fusy, Raschel 18(a)]: an algebraic and a bijective proof


## An algebraicity phenomenon

- Known: Young tableaux of height at most three are counted by Motzkin numbers [Regev 81]
They correspond to quadrant walks ending anywhere. Bijections [Gouyou-Beauchamps 89, Eu 10]

- Generalization: the generating function of quadrant walks ending anywhere is $Y / t$, where $Y=Y_{1}(1)$ is the only power series solution of $t S(1, Y)=1$. Equivalently,

$$
Y=t+t \sum_{i, j \geq 0} z_{i+j} Y^{j+1}
$$

[mbm, Fusy, Raschel 18(a)]: an algebraic and a bijective proof

VI. Asymptotics

## A universal asymptotic behaviour

Given a finite set $\Omega$ of degrees, define $\alpha$ by

$$
1=\sum_{s \in \Omega}\binom{s-1}{2} \alpha^{-s}
$$

and let

$$
\gamma=\sum_{s \in \Omega}\binom{s}{2} \alpha^{-s+2}
$$

A universal behaviour [mbm, Fusy, Raschel 18(a)]
The number of bipolar orientations of a digon with $n$ edges, in which all inner faces have degree in $\Omega$, satisfies (with periodicity contraints)

$$
b^{\Omega}(n) \sim k \gamma^{n} n^{-4}
$$

where the constant $\kappa$ is also explicit.

## In conclusion

- Very rich combinatorics
- Connection with quadrant walks, with the longest increasing sequence in (Baxter) permutations...
- Enumerative results
- What about large random bipolar maps?

(C) Jérémie Bettinelli

(c) Nicolas Curien

