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• Let A be the number of edges joining sites of the same color

• Let B be the number of edges joining sites of opposite color

• Let E = 1
2(A− B) (the “energy” of the configuration)

• Let T be a positive real parameter (the “temperature”)

• Sites spontaneously consider to flip their color

• If the flip decreases the energy, it is performed unconditionally

• Else, it is only performed with probability p = e−∆E/T

• Note: p→ 1 for T → ∞ and p→ 0 for T → 0
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High temperature
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Low temperature
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Medium temperature
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Eventually, the probability of observing a certain configuration s is

e−E(s)/T∑
c e

−E(c)/T

where c runs over all configurations and E(c) is the energy of the
configuration c.
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E( ) = 1
2
(0− 4) = −2

P = x−2

The denominator

P =
∑
c

e−E(c)/T =
∑
c

xE(c)

is called the partition function for the lattice under consideration
(e.g., {1, . . . , n}2)
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E( ) = 1
2
(2− 2) = 0

P = 1+ x−2
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∑
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∑
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E( ) = 1
2
(2− 2) = 0

P = 3+ x−2
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∑
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∑
c
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is called the partition function for the lattice under consideration
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E( ) = 1
2
(2− 2) = 0

P = 4+ x−2
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∑
c
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is called the partition function for the lattice under consideration
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E( ) = 1
2
(2− 2) = 0

P = 5+ x−2

The denominator

P =
∑
c

e−E(c)/T =
∑
c

xE(c)

is called the partition function for the lattice under consideration
(e.g., {1, . . . , n}2)
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E( ) = 1
2
(4− 0) = 2

P = 5+ x−2 + x2

The denominator

P =
∑
c

e−E(c)/T =
∑
c

xE(c)

is called the partition function for the lattice under consideration
(e.g., {1, . . . , n}2)
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E( ) = 1
2
(2− 2) = 0

P = 6+ x−2 + x2

The denominator

P =
∑
c

e−E(c)/T =
∑
c

xE(c)

is called the partition function for the lattice under consideration
(e.g., {1, . . . , n}2)
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E( ) = 1
2
(2− 2) = 0

P = 7+ x−2 + x2

The denominator

P =
∑
c

e−E(c)/T =
∑
c

xE(c)

is called the partition function for the lattice under consideration
(e.g., {1, . . . , n}2)
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2
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E( ) = 1
2
(2− 2) = 0

P = 8+ x−2 + 2x2

The denominator
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∑
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is called the partition function for the lattice under consideration
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E( ) = 1
2
(2− 2) = 0

P = 9+ x−2 + 2x2

The denominator

P =
∑
c

e−E(c)/T =
∑
c

xE(c)

is called the partition function for the lattice under consideration
(e.g., {1, . . . , n}2)
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E( ) = 1
2
(2− 2) = 0
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E( ) = 1
2
(2− 2) = 0

P = 12+ x−2 + 2x2

The denominator

P =
∑
c

e−E(c)/T =
∑
c

xE(c)

is called the partition function for the lattice under consideration
(e.g., {1, . . . , n}2)
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E( ) = 1
2
(0− 4) = −2

P = 12+ 2x−2 + 2x2

The denominator

P =
∑
c

e−E(c)/T =
∑
c

xE(c)

is called the partition function for the lattice under consideration
(e.g., {1, . . . , n}2)
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E( ) =

P = 12+ 2x−2 + 2x2

P = 24+ 4x−2 + 16x−1 + 16x+ 4x2

The denominator

P =
∑
c

e−E(c)/T =
∑
c

xE(c)

is called the partition function for the lattice under consideration
(e.g., {1, . . . , n}2)
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E( ) =

P = 12+ 2x−2 + 2x2

P = 24+ 4x−2 + 16x−1 + 16x+ 4x2

P = 24+ 4x−2 + 16x−1 + 16x+ 4x2
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E( ) =

P = 12+ 2x−2 + 2x2

P = 24+ 4x−2 + 16x−1 + 16x+ 4x2

P = 152+ 4x−4 + 16x−3 + 48x−2

+ 112x−1 + 112x+ 48x2

+ 16x3 + 4x4
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P = 102x−3 + 144x−1 + 198x+ 48x3 + 18x5 + 2x9
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P = 20524+2x−16+32x−12+64x−10+424x−8+1728x−6+6688x−4+
13568x−2+13568x2+6688x4+1728x6+424x8+64x10+32x12+2x16

7



P = 2470x−15 + 14800x−13 + 82750x−11 + 314300x−9 +
1024150x−7 + 2645740x−5 + 5276500x−3 + 7413900x−1 +

7431800x+ 5230300x3 + 2696080x5 + 1014900x7 + 311800x9 +
74500x11 + 16300x13 + 3140x15 + 850x17 + 100x19 + 50x21 + 2x25

7



P = 13172279424 + 2x−36 + 72x−32 + 144x−30 + 1620x−28 + 6048x−26 + 35148x−24 +
159840x−22 + 804078x−20 + 3846576x−18 + 17569080x−16 + 71789328x−14 +

260434986x−12+808871328x−10+2122173684x−8+4616013408x−6+8196905106x−4+
11674988208x−2 + 11674988208x2 + 8196905106x4 + 4616013408x6 + 2122173684x8 +

808871328x10 + 260434986x12 + 71789328x14 + 17569080x16 + 3846576x18 +
804078x20 + 159840x22 + 35148x24 + 6048x26 + 1620x28 + 144x30 + 72x32 + 2x36
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If Pn,m is the partition function for the n×m-torus, what happens
for n,m→ ∞?

It diverges.

Consider the free energy per site

f(x) := lim
n,m→∞ log(Pn,m)

nm

This limit exists, and it knows everything
about the system, for example:

• “Internal energy”: U(x) = xf ′(x)

• “Specific heat”: C(x) = xf ′(x) + x2f ′′(x)
x

1 2 3 4

0

1

2

f(x)

U(x)

C(x)
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Theorem (Onsager 1944):

f(x) = log(x+ x−1) −
1

4

∞∑
n=1

1

n

(
2n

n

)2( x− x−1

(x+ x−1)2

)2n

Proof: difficult.

Goal: recover this formula by guessing, only using knowledge that
was available to Onsager, as well as computer algebra.

Note: f(x) is D-finite, so we are in business!
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(x28 − 12x26 + 34x24 + 36x22 − 145x20 − 24x18 + 220x16 − 24x14 −
145x12+36x10+34x8−12x6+x4)f(5)(x)+(16x27−172x25+380x23+
748x21− 1548x19− 1144x17+ 2200x15+ 664x13− 1352x11− 28x9+
300x7− 68x5+ 4x3)f(4)(x) + (69x26− 660x24+ 770x22+ 4972x20−
6973x18−7720x16+11644x14+3128x12−5797x10+316x8+290x6−
36x4−3x2)f(3)(x)+(81x25−672x23−554x21+8216x19−6021x17−
22816x15+21732x13+11920x11−14889x9+3328x7−346x5+24x3−
3x)f ′′(x)+(15x24−96x22−630x20+3048x18−6075x16+8736x14−
12068x12+32624x10−16119x8+2816x6+58x4−24x2+3)f ′(x) = 0

(order 5, degree 28)
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Problem 1: f(x) is not a (formal) power series

• Apply a change of variables proposed in 1941 by van der
Waerden

• This puts us into the realm of formal power series

Problem 2: We cannot compute enough terms to guess f(x)

• Apply a change of variables proposed in 1941 by Kramers and
Wannier

• This turns the series into one that satisfies a shorter equation
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Van der Waerden’s change of variables (1941)

Write

Pn,m(x) =
(x+ 2+ x−1

2

)nm
Zn,m(w)

with

w =
x− 1

x+ 1
,

and translate everything from P and x to Z and w.

Note:

f(x) = log
( 2

1−w2

)
+

lim
n→∞ log(Zn,n(w))

n2
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(14w36 − 131w34 − 18w32 + 2487w30 − 4184w28 + 517w26 −
390w24 − 521w22 + 9480w20 − 8561w18 − 1182w16 + 4957w14 −
3584w12 + 1263w10 − 138w8 − 11w6 + 2w4)g(5)(w) + (224w35 −
1798w33 − 2296w31 + 39766w29 − 63952w27 + 65362w25 −

132112w23 + 52462w21 + 117672w19 − 134738w17 + 84904w15 −
24158w13 − 4416w11 + 3206w9 − 32w7 − 102w5 + 8w3)g(4)(w) +
(966w34 − 6543w32 − 21066w30 + 183603w28 − 304248w26 +
481689w24 − 1009950w22 + 603411w20 + 125400w18 −

410805w16 + 324858w14 − 132495w12 + 22176w10 − 5973w8 +
1710w6 − 183w4 − 6w2)g(3)(w) + (1134w33 − 6177w31 −

43482w29+ 222213w27− 388776w25+ 967263w23− 2351094w21+
1447773w19− 240672w17− 406155w15+ 482682w13− 99801w11−
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Feature: 1
n2 log(Zn,n(w)) converges in the power series sense

How can we compute these coefficients?

• Enumerating all 2n
2

configurations is feasible for n ≤ 5
• We can use transfer matrices to compute Pn,m(x)



x3 1 1 x−1 1 x−1 x−1 1

x2 x x−1 1 x−1 1 x−2 x

x2 x−1 x 1 x−1 x−2 1 x

x 1 1 x x−2 x−1 x−1 x2

x2 x−1 x−1 x−2 x 1 1 x

x 1 x−2 x−1 1 x x−1 x2

x x−2 1 x−1 1 x−1 x x2

1 x−1 x−1 1 x−1 1 1 x3
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n2 log(Zn,n(w)) converges in the power series sense

How can we compute these coefficients?

• Enumerating all 2n
2

configurations is feasible for n ≤ 5
• We can use transfer matrices to compute Pn,m(x)

• For a suitable 2n × 2n matrix T we have Pn,m(x) = Tr(Tm)

• Using the structure of T , we can compute Tr(Tm) efficiently

• This approach is feasible for n ≤ 12, which is not enough
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Feature: 1
n2 log(Zn,n(w)) converges in the power series sense

Feature: Zn,m(w) is a polynomial with integer coefficients.

The coefficient of wk counts how many polygonal shapes with k
edges of a certain type fit on the n×m-torus.
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Feature: Zn,m(w) is a polynomial with integer coefficients.

The coefficient of wk counts how many polygonal shapes with k
edges of a certain type fit on the n×m-torus.

Feature: For n,m > k, we have [wk]Zn,m = polyk(nm)

[w2]Zn,m = 0 [w3]Zn,m = 0

[w4]Zn,m = 1nm [w5]Zn,m = 0

[w6]Zn,m = 2nm [w7]Zn,m = 0

[w8]Zn,m = 9
2nm+ 1

2(nm)2 [w9]Zn,m = 0

[w10]Zn,m = 6nm+ (nm)2 [w11]Zn,m= 0

[w12]Zn,m = 112
3 nm+ 13

2 (nm)2 + 1
6(nm)3 [w13]Zn,m= 0

[w14]Zn,m = 130nm+ 21(nm)2 + (nm)3 [w15]Zn,m= 0
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The coefficient of wk counts how many polygonal shapes with k
edges of a certain type fit on the n×m-torus.

Feature: For n,m > k, we have [wk]Zn,m = polyk(nm)

To compute polyk for a specific k, fix a sufficiently large n, com-
pute [wk]Zn,m for m = k + 1, . . . , 2k using transfer matrices, and
interpolate.

Note: when n is odd, already n > k/2 is sufficiently large.

We were able to compute polyk for all k ≤ 32.
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The coefficient of wk counts how many polygonal shapes with k
edges of a certain type fit on the n×m-torus.

Feature: For n,m > k, we have [wk]Zn,m = polyk(nm)

Feature: g(w) = lim
n→∞ logZn,n(w)

n2
=

∞∑
k=0

(
[X1]polyk(X)

)
wk

= 1w4+2w6+ 9
2w

8+6w10+ 112
3 w

12+130w14+ · · ·

Unfortunately, 32 terms of g(w) are still not enough.
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Feature: Zn,m(w) is a polynomial with integer coefficients.

The coefficient of wk counts how many polygonal shapes with k
edges of a certain type fit on the n×m-torus.

Feature: For n,m > k, we have [wk]Zn,m = polyk(nm)
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Problem 1: f(x) is not a (formal) power series

• Apply a change of variables proposed in 1941 by van der
Waerden

• This puts us into the realm of formal power series

Problem 2: We cannot compute enough terms to guess f(x)

• Apply a change of variables proposed in 1941 by Kramers and
Wannier

• This turns the series into one that satisfies a shorter equation
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Recall: f(x) = lim
n→∞ logPn,n(x)

n2
, g(w) = lim

n→∞ logZn,n(w)

n2

Theorem (Kramers-Wannier 1941):

f(x) − log(x+ x−1) = f(x∗) − log(x∗ + (x∗)−1)

with x∗ =
x+ 1

x− 1
.

This equation connects the behaviour at low temperature
(x→ 1+) with the behaviour at high temperature (x→ ∞)

Idea 1: consider f(x) − log(x+ x−1) instead of f(x)

Idea 2: change to a new variable which is invariant under x↔ x∗

18
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We search for a symmetric function z = rat(x, x∗) such that
expressing w = x−1

x+1 in terms of z gives a series of positive order
with only even exponents.

Such rational functions can be easily found using Gröbner bases.

The smallest solution turns out to be

z =
cx(x2 − 1)

(1+ x2)2
=
cw(1−w2)

(1+w2)2
,

where c is an arbitrary nonzero constant. Let’s take c = 1.

19



We search for a symmetric function z = rat(x, x∗) such that
expressing w = x−1

x+1 in terms of z gives a series of positive order
with only even exponents.

Such rational functions can be easily found using Gröbner bases.
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f(x) − log(x+ x−1)

= g(w) − log(1+w2)

= −w2 + 3
2w

4 + 5
3w

6 + 19
4 w

8 + 59
5 w

10 + 75
2 w

12 + 909
7 w

14 + · · ·

= −z2 − 9
2z
4 − 100

3 z
6 − 1225

4 z
8 − 15876

5 z10 − 35574z12 + 2944656
7 z14 + · · ·

?
= −

1

4

∞∑
n=1

1

n

(
2n

n

)2
z2n (honestly guessed!)

= −
1

4

∞∑
n=1

1

n

(
2n

n

)2(x(x2 − 1)
(1+ x2)2

)2n
,

so

f(x)
?
= log(x+ x−1) −

1

4

∞∑
n=1

1

n

(
2n

n

)2(x(x2 − 1)
(1+ x2)2

)2n
in accordance with Onsager’s formula.
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And now?

21



Recall: f(x) = lim
n→∞ logPn,n(x)

n2

, where

Pn,m =
∑
c

xE(c)

yF(c)

where

• c runs over all configurations of the n×m torus

• E(c) is the “energy” of the configuration, which essentially
counts how many edges connect nodes of the same color.

We could also count the number F(c) of green vertices.

In physical terms y measures the “external field”.
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If we define

f(x, y) := lim
n,m→∞ log(Pn,m)

nm

then what can we say about f(x, y)?

Onsager’s result is an expression for f(x, 1), and nobody knows an
expression for general y.

The function f(x, y) knows some additional features about the
physical system, in particular:

• “Magnetization”: M(x, y) = y d
dyf(x, y)
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Onsager announced (without proof) the formula

M(x, 1) =

 0 if x < 1+
√
2(

(x2+1)(x2−2x−1)(x2+2x−1)
(x−1)4(x+1)4

)1/8
if x ≥ 1+

√
2
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M(x)

x
1 2 3 4

0.0

0.2

0.4

0.6

0.8
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Can we guess this, too?

• We still can compute Pn,m(x, y) by the transfer matrix
method

• But van der Waerden and Kramers-Wannier break down

For numerical values x, y, the limit f(x, y) can be obtained numeri-
cally from the largest eigenvalue of the transfer matrix.

Numerical differentiation gives approximations for M(x).
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accurracy is not so bad
as long as we stay away
from the singularity
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Idea: Fit a differential equation against the numerical data.

Make
an ansatz

(a0+a1x+ · · ·+a10x10)M(x)+(b0+b1x+ · · ·+b10x10)M ′(x) = 0

with undetermined integer coefficients ai, bi.

Using numerical data for various points x, we can search for candi-
dates for the ai, bi by integer relation algorithms, e.g. LLL.

Unfortunately, our accuracy is not enough to find the equation.
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