ONSAGER'S SOLUTION OF THE ISING MODEL COULD HAVE BEEN GUESSED

Manuel Kauers • Institute for Algebra • JKU

Joint work with Doron Zeilberger

- Let A be the number of edges joining sites of the same color
- Let A be the number of edges joining sites of the same color
- Let B be the number of edges joining sites of opposite color
- Let A be the number of edges joining sites of the same color
- Let B be the number of edges joining sites of opposite color
- Let $E=\frac{1}{2}(A-B)$ (the "energy" of the configuration)
- Let A be the number of edges joining sites of the same color
- Let B be the number of edges joining sites of opposite color
- Let $E=\frac{1}{2}(A-B)$ (the "energy" of the configuration)
- Let T be a positive real parameter (the "temperature")
- Let A be the number of edges joining sites of the same color
- Let B be the number of edges joining sites of opposite color
- Let $E=\frac{1}{2}(A-B)$ (the "energy" of the configuration)
- Let T be a positive real parameter (the "temperature")
- Sites spontaneously consider to flip their color
- Let A be the number of edges joining sites of the same color
- Let B be the number of edges joining sites of opposite color
- Let $E=\frac{1}{2}(A-B)$ (the "energy" of the configuration)
- Let T be a positive real parameter (the "temperature")
- Sites spontaneously consider to flip their color
- If the flip decreases the energy, it is performed unconditionally
- Let A be the number of edges joining sites of the same color
- Let B be the number of edges joining sites of opposite color
- Let $E=\frac{1}{2}(A-B)$ (the "energy" of the configuration)
- Let T be a positive real parameter (the "temperature")
- Sites spontaneously consider to flip their color
- If the flip decreases the energy, it is performed unconditionally
- Else, it is only performed with probability $p=e^{-\Delta E / T}$
- Let A be the number of edges joining sites of the same color
- Let B be the number of edges joining sites of opposite color
- Let $E=\frac{1}{2}(A-B)$ (the "energy" of the configuration)
- Let T be a positive real parameter (the "temperature")
- Sites spontaneously consider to flip their color
- If the flip decreases the energy, it is performed unconditionally
- Else, it is only performed with probability $p=e^{-\Delta E / T}$
- Note: $\mathrm{p} \rightarrow 1$ for $\mathrm{T} \rightarrow \infty$ and $\mathrm{p} \rightarrow 0$ for $\mathrm{T} \rightarrow 0$

High temperature

Low temperature

Medium temperature

Eventually, the probability of observing a certain configuration s is

$$
\frac{e^{-E(s) / T}}{\sum_{c} e^{-E(c) / T}}
$$

where c runs over all configurations and $\mathrm{E}(\mathrm{c})$ is the energy of the configuration c .

Eventually, the probability of observing a certain configuration s is

$$
\frac{e^{-E(s) / T}}{\sum_{c} e^{-E(c) / T}}
$$

where c runs over all configurations and $\mathrm{E}(\mathrm{c})$ is the energy of the configuration c .

The denominator

$$
P=\sum_{c} e^{-E(c) / T}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

Eventually, the probability of observing a certain configuration s is

$$
\frac{e^{-E(s) / T}}{\sum_{c} e^{-E(c) / T}}
$$

where c runs over all configurations and $\mathrm{E}(\mathrm{c})$ is the energy of the configuration c .

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
P=x^{-2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
E(\bigcirc)=\frac{1}{2}(2-2)=0
$$

$$
P=1+x^{-2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
E(\bigcirc)=\frac{1}{2}(2-2)=0
$$

$$
P=2+x^{-2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
E(\bigcirc)=\frac{1}{2}(2-2)=0
$$

$$
P=3+x^{-2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
E(\bigcirc)=\frac{1}{2}(2-2)=0
$$

$$
P=4+x^{-2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
E(\bigcirc)=\frac{1}{2}(2-2)=0
$$

$$
P=5+x^{-2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
\begin{gathered}
E()=\frac{1}{2}(4-0)=2 \\
P=5+x^{-2}+x^{2}
\end{gathered}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
\begin{gathered}
E(O)=\frac{1}{2}(2-2)=0 \\
P=6+x^{-2}+x^{2}
\end{gathered}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
\begin{gathered}
E()=\frac{1}{2}(2-2)=0 \\
P=7+x^{-2}+x^{2}
\end{gathered}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
E(\bigcirc)=\frac{1}{2}(4-0)=2
$$

$$
P=7+x^{-2}+2 x^{2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
\begin{gathered}
E()=\frac{1}{2}(2-2)=0 \\
P=8+x^{-2}+2 x^{2}
\end{gathered}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
\begin{gathered}
E(O)=\frac{1}{2}(2-2)=0 \\
P=9+x^{-2}+2 x^{2}
\end{gathered}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
E(\bigcirc)=\frac{1}{2}(2-2)=0
$$

$$
P=10+x^{-2}+2 x^{2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
E(\bigcirc)=\frac{1}{2}(2-2)=0
$$

$$
P=11+x^{-2}+2 x^{2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
E(\bigcirc)=\frac{1}{2}(2-2)=0
$$

$$
P=12+x^{-2}+2 x^{2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
E(O)=\frac{1}{2}(0-4)=-2
$$

$$
P=12+2 x^{-2}+2 x^{2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
P=12+2 x^{-2}+2 x^{2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
P=24+4 x^{-2}+16 x^{-1}+16 x+4 x^{2}
$$

$$
P=12+2 x^{-2}+2 x^{2}
$$

The denominator

$$
P=\sum_{c} e^{-E(c) / T}=\sum_{c} x^{E(c)}
$$

is called the partition function for the lattice under consideration (e.g., $\{1, \ldots, n\}^{2}$)

$$
P=24+4 x^{-2}+16 x^{-1}+16 x+4 x^{2}
$$

$$
P=12+2 x^{-2}+2 x^{2}
$$

$$
P=24+4 x^{-2}+16 x^{-1}+16 x+4 x^{2}
$$

$$
\begin{aligned}
& P=24+4 x^{-2}+16 x^{-1}+16 x+4 x^{2} \\
& P=12+2 x^{-2}+2 x^{2} \\
& \left.P=\begin{array}{l}
P= \\
\\
\\
\\
\\
\\
+152+4 x^{-4}+16 x^{3}+4 x^{4}
\end{array}\right)+48 x^{-2} \\
& 0
\end{aligned}
$$

$P=102 x^{-3}+144 x^{-1}+198 x+48 x^{3}+18 x^{5}+2 x^{9}$

$\mathrm{P}=20524+2 x^{-16}+32 x^{-12}+64 x^{-10}+424 x^{-8}+1728 x^{-6}+6688 x^{-4}+$ $13568 x^{-2}+13568 x^{2}+6688 x^{4}+1728 x^{6}+424 x^{8}+64 x^{10}+32 x^{12}+2 x^{16}$

$P=2470 x^{-15}+14800 x^{-13}+82750 x^{-11}+314300 x^{-9}+$
$1024150 x^{-7}+2645740 x^{-5}+5276500 x^{-3}+7413900 x^{-1}+$
$7431800 x+5230300 x^{3}+2696080 x^{5}+1014900 x^{7}+311800 x^{9}+$ $74500 x^{11}+16300 x^{13}+3140 x^{15}+850 x^{17}+100 x^{19}+50 x^{21}+2 x^{25}$

$$
\begin{gathered}
\mathrm{P}=13172279424+2 x^{-36}+72 x^{-32}+144 x^{-30}+1620 x^{-28}+6048 x^{-26}+35148 x^{-24}+ \\
159840 x^{-22}+804078 x^{-20}+3846576 x^{-18}+17569080 x^{-16}+71789328 x^{-14}+ \\
260434986 x^{-12}+808871328 x^{-10}+2122173684 x^{-8}+4616013408 x^{-6}+8196905106 x^{-4}+ \\
11674988208 x^{-2}+11674988208 x^{2}+8196905106 x^{4}+4616013408 x^{6}+2122173684 x^{8}+ \\
808871328 x^{10}+260434986 x^{12}+71789328 x^{14}+17569080 x^{16}+3846576 x^{18}+ \\
804078 x^{20}+159840 x^{22}+35148 x^{24}+6048 x^{26}+1620 x^{28}+144 x^{30}+72 x^{32}+2 x^{36}
\end{gathered}
$$

If $\mathrm{P}_{\mathrm{n}, \mathrm{m}}$ is the partition function for the $\mathrm{n} \times \mathrm{m}$-torus, what happens for $n, m \rightarrow \infty$?

If $\mathrm{P}_{\mathrm{n}, \mathrm{m}}$ is the partition function for the $\mathrm{n} \times \mathrm{m}$-torus, what happens for $\mathrm{n}, \mathrm{m} \rightarrow \infty$? It diverges.

If $\mathrm{P}_{\mathrm{n}, \mathrm{m}}$ is the partition function for the $\mathrm{n} \times \mathrm{m}$-torus, what happens for $\mathrm{n}, \mathrm{m} \rightarrow \infty$? It diverges.

Consider the free energy per site

$$
f(x):=\lim _{n, m \rightarrow \infty} \frac{\log \left(P_{n, m}\right)}{n m}
$$

If $\mathrm{P}_{\mathrm{n}, \mathrm{m}}$ is the partition function for the $\mathrm{n} \times \mathrm{m}$-torus, what happens for $n, m \rightarrow \infty$? It diverges.

Consider the free energy per site

$$
f(x):=\lim _{n, m \rightarrow \infty} \frac{\log \left(P_{n, m}\right)}{n m}
$$

This limit exists, and it knows everything about the system, for example:

If $\mathrm{P}_{\mathrm{n}, \mathrm{m}}$ is the partition function for the $\mathrm{n} \times \mathrm{m}$-torus, what happens for $n, m \rightarrow \infty$? It diverges.

Consider the free energy per site

$$
f(x):=\lim _{n, m \rightarrow \infty} \frac{\log \left(P_{n, m}\right)}{n m}
$$

This limit exists, and it knows everything about the system, for example:

- "Internal energy": $\mathrm{U}(x)=x \mathrm{f}^{\prime}(x)$

If $\mathrm{P}_{\mathrm{n}, \mathrm{m}}$ is the partition function for the $\mathrm{n} \times \mathrm{m}$-torus, what happens for $n, m \rightarrow \infty$? It diverges.

Consider the free energy per site

$$
f(x):=\lim _{n, m \rightarrow \infty} \frac{\log \left(P_{n, m}\right)}{n m}
$$

This limit exists, and it knows everything about the system, for example:

- "Internal energy": $\mathrm{U}(x)=x f^{\prime}(x)$
- "Specific heat": $C(x)=x f^{\prime}(x)+x^{2} f^{\prime \prime}(x)$

If $\mathrm{P}_{\mathrm{n}, \mathrm{m}}$ is the partition function for the $\mathrm{n} \times \mathrm{m}$-torus, what happens for $n, m \rightarrow \infty$? It diverges.

Consider the free energy per site

$$
f(x):=\lim _{n, m \rightarrow \infty} \frac{\log \left(P_{n, m}\right)}{n m}
$$

This limit exists, and it knows everything about the system, for example:

- "Internal energy": $\mathrm{U}(x)=x f^{\prime}(x)$
- "Specific heat": $C(x)=x f^{\prime}(x)+x^{2} f^{\prime \prime}(x)$

If $\mathrm{P}_{\mathrm{n}, \mathrm{m}}$ is the partition function for the $\mathrm{n} \times \mathrm{m}$-torus, what happens for $n, m \rightarrow \infty$? It diverges.

Consider the free energy per site

$$
f(x):=\lim _{n, m \rightarrow \infty} \frac{\log \left(P_{n, m}\right)}{n m}
$$

This limit exists, and it knows everything about the system, for example:

- "Internal energy": $\mathrm{U}(x)=x f^{\prime}(x)$
- "Specific heat": $C(x)=x f^{\prime}(x)+x^{2} f^{\prime \prime}(x)$

If $\mathrm{P}_{\mathrm{n}, \mathrm{m}}$ is the partition function for the $\mathrm{n} \times \mathrm{m}$-torus, what happens for $n, m \rightarrow \infty$? It diverges.

Consider the free energy per site

$$
f(x):=\lim _{n, m \rightarrow \infty} \frac{\log \left(P_{n, m}\right)}{n m}
$$

This limit exists, and it knows everything about the system, for example:

- "Internal energy": $\mathrm{U}(\mathrm{x})=\mathrm{xf}^{\prime}(x)$
- "Specific heat": $C(x)=x f^{\prime}(x)+x^{2} f^{\prime \prime}(x)$

Theorem (Onsager 1944):
$f(x)=\log \left(x+x^{-1}\right)-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n}{n}^{2}\left(\frac{x-x^{-1}}{\left(x+x^{-1}\right)^{2}}\right)^{2 n}$

Theorem (Onsager 1944):
$f(x)=\log \left(x+x^{-1}\right)-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n}{n}^{2}\left(\frac{x-x^{-1}}{\left(x+x^{-1}\right)^{2}}\right)^{2 n}$
Proof: difficult.

Theorem (Onsager 1944):
$f(x)=\log \left(x+x^{-1}\right)-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n}{n}^{2}\left(\frac{x-x^{-1}}{\left(x+x^{-1}\right)^{2}}\right)^{2 n}$
Proof: difficult.
Goal: recover this formula by guessing, only using knowledge that was available to Onsager, as well as computer algebra.

Theorem (Onsager 1944):
$f(x)=\log \left(x+x^{-1}\right)-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n}{n}^{2}\left(\frac{x-x^{-1}}{\left(x+x^{-1}\right)^{2}}\right)^{2 n}$
Proof: difficult.
Goal: recover this formula by guessing, only using knowledge that was available to Onsager, as well as computer algebra.

Note: $f(x)$ is D-finite, so we are in business!
$\left(x^{28}-12 x^{26}+34 x^{24}+36 x^{22}-145 x^{20}-24 x^{18}+220 x^{16}-24 x^{14}-\right.$ $\left.145 x^{12}+36 x^{10}+34 x^{8}-12 x^{6}+\chi^{4}\right) f^{(5)}(x)+\left(16 x^{27}-172 x^{25}+380 x^{23}+\right.$ $748 x^{21}-1548 x^{19}-1144 x^{17}+2200 x^{15}+664 x^{13}-1352 x^{11}-28 x^{9}+$ $\left.300 x^{7}-68 x^{5}+4 x^{3}\right) f^{(4)}(x)+\left(69 x^{26}-660 x^{24}+770 x^{22}+4972 x^{20}-\right.$ $6973 x^{18}-7720 x^{16}+11644 x^{14}+3128 x^{12}-5797 x^{10}+316 x^{8}+290 x^{6}-$ $\left.36 x^{4}-3 x^{2}\right) f^{(3)}(x)+\left(81 x^{25}-672 x^{23}-554 x^{21}+8216 x^{19}-6021 x^{17}-\right.$ $22816 x^{15}+21732 x^{13}+11920 x^{11}-14889 x^{9}+3328 x^{7}-346 x^{5}+24 x^{3}-$ $3 x) f^{\prime \prime}(x)+\left(15 x^{24}-96 x^{22}-630 x^{20}+3048 x^{18}-6075 x^{16}+8736 x^{14}-\right.$ $\left.12068 x^{12}+32624 x^{10}-16119 x^{8}+2816 x^{6}+58 x^{4}-24 x^{2}+3\right) f^{\prime}(x)=0$
$\left(x^{28}-12 x^{26}+34 x^{24}+36 x^{22}-145 x^{20}-24 x^{18}+220 x^{16}-24 x^{14}-\right.$ $\left.145 x^{12}+36 x^{10}+34 x^{8}-12 x^{6}+\chi^{4}\right) f^{(5)}(x)+\left(16 x^{27}-172 x^{25}+380 x^{23}+\right.$ $748 x^{21}-1548 x^{19}-1144 x^{17}+2200 x^{15}+664 x^{13}-1352 x^{11}-28 x^{9}+$ $\left.300 x^{7}-68 x^{5}+4 x^{3}\right) f^{(4)}(x)+\left(69 x^{26}-660 x^{24}+770 x^{22}+4972 x^{20}-\right.$ $6973 x^{18}-7720 x^{16}+11644 x^{14}+3128 x^{12}-5797 x^{10}+316 x^{8}+290 x^{6}-$ $\left.36 x^{4}-3 x^{2}\right) f^{(3)}(x)+\left(81 x^{25}-672 x^{23}-554 x^{21}+8216 x^{19}-6021 x^{17}-\right.$ $22816 x^{15}+21732 x^{13}+11920 x^{11}-14889 x^{9}+3328 x^{7}-346 x^{5}+24 x^{3}-$ $3 x) f^{\prime \prime}(x)+\left(15 x^{24}-96 x^{22}-630 x^{20}+3048 x^{18}-6075 x^{16}+8736 x^{14}-\right.$ $\left.12068 x^{12}+32624 x^{10}-16119 x^{8}+2816 x^{6}+58 x^{4}-24 x^{2}+3\right) f^{\prime}(x)=0$
(order 5, degree 28)

Problem 1: $f(x)$ is not a (formal) power series

Problem 1: $f(x)$ is not a (formal) power series

- Apply a change of variables proposed in 1941 by van der Waerden

Problem 1: $f(x)$ is not a (formal) power series

- Apply a change of variables proposed in 1941 by van der Waerden
- This puts us into the realm of formal power series

Problem 1: $f(x)$ is not a (formal) power series

- Apply a change of variables proposed in 1941 by van der Waerden
- This puts us into the realm of formal power series

Problem 2: We cannot compute enough terms to guess $f(x)$

Problem 1: $f(x)$ is not a (formal) power series

- Apply a change of variables proposed in 1941 by van der Waerden
- This puts us into the realm of formal power series

Problem 2: We cannot compute enough terms to guess $f(x)$

- Apply a change of variables proposed in 1941 by Kramers and Wannier

Problem 1: $f(x)$ is not a (formal) power series

- Apply a change of variables proposed in 1941 by van der Waerden
- This puts us into the realm of formal power series

Problem 2: We cannot compute enough terms to guess $f(x)$

- Apply a change of variables proposed in 1941 by Kramers and Wannier
- This turns the series into one that satisfies a shorter equation

Problem 1: $f(x)$ is not a (formal) power series

- Apply a change of variables proposed in 1941 by van der Waerden
- This puts us into the realm of formal power series

Problem 2: We cannot compute enough terms to guess $f(x)$

- Apply a change of variables proposed in 1941 by Kramers and Wannier
- This turns the series into one that satisfies a shorter equation

Van der Waerden's change of variables (1941)

Write

$$
P_{n, m}(x)=\left(\frac{x+2+x^{-1}}{2}\right)^{n m} Z_{n, m}(w)
$$

with

$$
w=\frac{x-1}{x+1}
$$

and translate everything from P and χ to Z and \boldsymbol{w}.

Van der Waerden's change of variables (1941)

Write

$$
P_{n, m}(x)=\left(\frac{x+2+x^{-1}}{2}\right)^{n m} Z_{n, m}(w)
$$

with

$$
w=\frac{x-1}{x+1}
$$

and translate everything from P and χ to Z and w. Note:

$$
f(x)=\log \left(\frac{2}{1-w^{2}}\right)+\lim _{n \rightarrow \infty} \frac{\log \left(Z_{n, n}(w)\right)}{n^{2}}
$$

Van der Waerden's change of variables (1941)

Write

$$
P_{n, m}(x)=\left(\frac{x+2+x^{-1}}{2}\right)^{n m} Z_{n, m}(w)
$$

with

$$
w=\frac{x-1}{x+1}
$$

and translate everything from P and x to Z and w. Note:

$$
g(w):=\lim _{n \rightarrow \infty} \frac{\log \left(Z_{n, n}(w)\right)}{n^{2}}
$$

$\left(14 w^{36}-131 w^{34}-18 w^{32}+2487 w^{30}-4184 w^{28}+517 w^{26}-\right.$ $390 w^{24}-521 w^{22}+9480 w^{20}-8561 w^{18}-1182 w^{16}+4957 w^{14}-$ $\left.3584 w^{12}+1263 w^{10}-138 w^{8}-11 w^{6}+2 w^{4}\right) g^{(5)}(w)+\left(224 w^{35}-\right.$ $1798 w^{33}-2296 w^{31}+39766 w^{29}-63952 w^{27}+65362 w^{25}-$ $132112 w^{23}+52462 w^{21}+117672 w^{19}-134738 w^{17}+84904 w^{15}-$ $\left.24158 w^{13}-4416 w^{11}+3206 w^{9}-32 w^{7}-102 w^{5}+8 w^{3}\right) g^{(4)}(w)+$ $\left(966 w^{34}-6543 w^{32}-21066 w^{30}+183603 w^{28}-304248 w^{26}+\right.$ $481689 w^{24}-1009950 w^{22}+603411 w^{20}+125400 w^{18}-$ $410805 w^{16}+324858 w^{14}-132495 w^{12}+22176 w^{10}-5973 w^{8}+$
$\left.1710 w^{6}-183 w^{4}-6 w^{2}\right) g^{(3)}(w)+\left(1134 w^{33}-6177 w^{31}-\right.$ $43482 w^{29}+222213 w^{27}-388776 w^{25}+967263 w^{23}-2351094 w^{21}+$ $1447773 w^{19}-240672 w^{17}-406155 w^{15}+482682 w^{13}-99801 w^{11}-$ $\left.39264 w^{9}+13005 w^{7}-1002 w^{5}-9 w^{3}-6 w\right) g^{\prime \prime}(w)+\left(210 w^{32}-\right.$
$735 w^{30}-14694 w^{28}+40827 w^{26}-98904 w^{24}+419745 w^{22}-$ $970122 w^{20}+572835 w^{18}-12960 w^{16}-192117 w^{14}+226374 w^{12}-$ $\left.134823 w^{10}+11232 w^{8}+6963 w^{6}-1302 w^{4}+9 w^{2}+6\right) g^{\prime}(w)=0$
$\left(14 w^{36}-131 w^{34}-18 w^{32}+2487 w^{30}-4184 w^{28}+517 w^{26}-\right.$ $390 w^{24}-521 w^{22}+9480 w^{20}-8561 w^{18}-1182 w^{16}+4957 w^{14}-$ $\left.3584 w^{12}+1263 w^{10}-138 w^{8}-11 w^{6}+2 w^{4}\right) g^{(5)}(w)+\left(224 w^{35}-\right.$ $1798 w^{33}-2296 w^{31}+39766 w^{29}-63952 w^{27}+65362 w^{25}-$ $132112 w^{23}+52462 w^{21}+117672 w^{19}-134738 w^{17}+84904 w^{15}-$ $\left.24158 w^{13}-4416 w^{11}+3206 w^{9}-32 w^{7}-102 w^{5}+8 w^{3}\right) g^{(4)}(w)+$ $\left(966 w^{34}-6543 w^{32}-21066 w^{30}+183603 w^{28}-304248 w^{26}+\right.$ $481689 w^{24}-1009950 w^{22}+603411 w^{20}+125400 w^{18}-$ $410805 w^{16}+324858 w^{14}-132495 w^{12}+22176 w^{10}-5973 w^{8}+$
$\left.1710 w^{6}-183 w^{4}-6 w^{2}\right) g^{(3)}(w)+\left(1134 w^{33}-6177 w^{31}-\right.$ $43482 w^{29}+222213 w^{27}-388776 w^{25}+967263 w^{23}-2351094 w^{21}+$ $1447773 w^{19}-240672 w^{17}-406155 w^{15}+482682 w^{13}-99801 w^{11}-$ $\left.39264 w^{9}+13005 w^{7}-1002 w^{5}-9 w^{3}-6 w\right) g^{\prime \prime}(w)+\left(210 w^{32}-\right.$
$735 w^{30}-14694 w^{28}+40827 w^{26}-98904 w^{24}+419745 w^{22}-$ $970122 w^{20}+572835 w^{18}-12960 w^{16}-192117 w^{14}+226374 w^{12}-$ $\left.134823 w^{10}+11232 w^{8}+6963 w^{6}-1302 w^{4}+9 w^{2}+6\right) g^{\prime}(w)=0$ (order 5, degree 36)

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense

$$
n=3: \quad \frac{2}{3} w^{3}+w^{4}+\cdots
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense

$$
\begin{array}{ll}
n=3: & \frac{2}{3} w^{3}+w^{4}+\cdots \\
n=4: & \frac{3}{2} w^{4}+0 w^{5}+\cdots
\end{array}
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense

$$
\begin{array}{ll}
n=3: & \frac{2}{3} w^{3}+w^{4}+\cdots \\
n=4: & \frac{3}{2} w^{4}+0 w^{5}+\cdots \\
n=5: & w^{4}+\frac{2}{5} w^{5}+2 w^{6}+\cdots
\end{array}
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense

$$
\begin{array}{ll}
\mathrm{n}=3: & \frac{2}{3} w^{3}+w^{4}+\cdots \\
\mathrm{n}=4: & \frac{3}{2} w^{4}+0 w^{5}+\cdots \\
\mathrm{n}=5: & w^{4}+\frac{2}{5} w^{5}+2 w^{6}+\cdots \\
\mathrm{n}=6: & w^{4}+0 w^{5}+\frac{7}{3} w^{6}+0 w^{7}+\cdots
\end{array}
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense

$$
\begin{array}{ll}
\mathrm{n}=3: & \frac{2}{3} w^{3}+w^{4}+\cdots \\
\mathrm{n}=4: & \frac{3}{2} w^{4}+0 w^{5}+\cdots \\
\mathrm{n}=5: & w^{4}+\frac{2}{5} w^{5}+2 w^{6}+\cdots \\
\mathrm{n}=6: & w^{4}+0 w^{5}+\frac{7}{3} w^{6}+0 w^{7}+\cdots \\
\mathrm{n}=7: & w^{4}+0 w^{5}+2 w^{6}+\frac{2}{7} w^{7}+\frac{9}{2} w^{8}+\cdots
\end{array}
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense

$$
\begin{array}{ll}
\mathrm{n}=3: & \frac{2}{3} w^{3}+w^{4}+\cdots \\
\mathrm{n}=4: & \frac{3}{2} w^{4}+0 w^{5}+\cdots \\
\mathrm{n}=5: & w^{4}+\frac{2}{5} w^{5}+2 w^{6}+\cdots \\
\mathrm{n}=6: & w^{4}+0 w^{5}+\frac{7}{3} w^{6}+0 w^{7}+\cdots \\
\mathrm{n}=7: & w^{4}+0 w^{5}+2 w^{6}+\frac{2}{7} w^{7}+\frac{9}{2} w^{8}+\cdots \\
\mathrm{n}=8: & w^{4}+0 w^{5}+2 w^{6}+0 w^{7}+\frac{19}{4} w^{8}+0 w^{9}+\cdots
\end{array}
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense

$$
\begin{array}{ll}
n=3: & \frac{2}{3} w^{3}+w^{4}+\cdots \\
n=4: & \frac{3}{2} w^{4}+0 w^{5}+\cdots \\
n=5: & w^{4}+\frac{2}{5} w^{5}+2 w^{6}+\cdots \\
n=6: & w^{4}+0 w^{5}+\frac{7}{3} w^{6}+0 w^{7}+\cdots \\
n=7: & w^{4}+0 w^{5}+2 w^{6}+\frac{2}{7} w^{7}+\frac{9}{2} w^{8}+\cdots \\
n=8: & w^{4}+0 w^{5}+2 w^{6}+0 w^{7}+\frac{19}{4} w^{8}+0 w^{9}+\cdots \\
n=9: & w^{4}+0 w^{5}+2 w^{6}+0 w^{7}+\frac{9}{2} w^{8}+\frac{2}{9} w^{9}+12 w^{10}+\cdots
\end{array}
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense

$$
\begin{array}{ll}
n=3: & \frac{2}{3} w^{3}+w^{4}+\cdots \\
n=4: & \frac{3}{2} w^{4}+0 w^{5}+\cdots \\
n=5: & w^{4}+\frac{2}{5} w^{5}+2 w^{6}+\cdots \\
n=6: & w^{4}+0 w^{5}+\frac{7}{3} w^{6}+0 w^{7}+\cdots \\
n=7: & w^{4}+0 w^{5}+2 w^{6}+\frac{2}{7} w^{7}+\frac{9}{2} w^{8}+\cdots \\
n=8: & w^{4}+0 w^{5}+2 w^{6}+0 w^{7}+\frac{19}{4} w^{8}+0 w^{9}+\cdots \\
n=9: & w^{4}+0 w^{5}+2 w^{6}+0 w^{7}+\frac{9}{2} w^{8}+\frac{2}{9} w^{9}+12 w^{10}+\cdots \\
\mathrm{n}=10: & w^{4}+0 w^{5}+2 w^{6}+0 w^{7}+\frac{9}{2} w^{8}+0 w^{9}+\frac{61}{5} w^{10}+0 w^{11}+\cdots
\end{array}
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense

$$
\begin{array}{ll}
n=3: & \frac{2}{3} w^{3}+w^{4}+\cdots \\
n=4: & \frac{3}{2} w^{4}+0 w^{5}+\cdots \\
n=5: & w^{4}+\frac{2}{5} w^{5}+2 w^{6}+\cdots \\
n=6: & w^{4}+0 w^{5}+\frac{7}{3} w^{6}+0 w^{7}+\cdots \\
n=7: & w^{4}+0 w^{5}+2 w^{6}+\frac{2}{7} w^{7}+\frac{9}{2} w^{8}+\cdots \\
n=8: & w^{4}+0 w^{5}+2 w^{6}+0 w^{7}+\frac{19}{4} w^{8}+0 w^{9}+\cdots \\
n=9: & w^{4}+0 w^{5}+2 w^{6}+0 w^{7}+\frac{9}{2} w^{8}+\frac{2}{9} w^{9}+12 w^{10}+\cdots \\
\mathrm{n}=10: & w^{4}+0 w^{5}+2 w^{6}+0 w^{7}+\frac{9}{2} w^{8}+0 w^{9}+\frac{61}{5} w^{10}+0 w^{11}+\cdots \\
\mathrm{n}=11: & w^{4}+0 w^{5}+2 w^{6}+0 w^{7}+\frac{9}{2} w^{8}+0 w^{9}+12 w^{10}+\frac{2}{11} w^{11}+\cdots
\end{array}
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense How can we compute these coefficients?

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense How can we compute these coefficients?

- Enumerating all $2^{n^{2}}$ configurations is feasible for $n \leq 5$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense How can we compute these coefficients?

- Enumerating all $2^{n^{2}}$ configurations is feasible for $n \leq 5$
- We can use transfer matrices to compute $\mathrm{P}_{\mathrm{n}, \mathfrak{m}}(x)$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense How can we compute these coefficients?

- Enumerating all $2^{n^{2}}$ configurations is feasible for $n \leq 5$
- We can use transfer matrices to compute $\mathrm{P}_{\mathrm{n}, \mathfrak{m}}(x)$

					χ^{-1}		1	χ^{-1}	
	-	χ^{2}	χ	χ^{-1}	1	χ^{-1}	1		x
-0	-	x^{2}	χ^{-1}	x	1	χ^{-1}	χ^{-2}	1	x
	-	x	1	1	x	χ^{-2}	χ^{-1}	χ^{-1}	χ^{2}
	-	χ^{2}	χ^{-1}	χ^{-1}	χ^{-2}	x	1	1	x
		x		x^{-2}	χ^{-1}	1	x	χ^{-1}	χ^{2}
	-	x	χ^{-2}	-	χ^{-1}	1	χ^{-1}	x	χ^{2}
	-		χ^{-1}	χ^{-1}	1	χ^{-1}	1	1	χ^{3}

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense How can we compute these coefficients?

- Enumerating all $2^{n^{2}}$ configurations is feasible for $n \leq 5$
- We can use transfer matrices to compute $P_{n, m}(x)$
- For a suitable $2^{n} \times 2^{n}$ matrix T we have $P_{n, m}(x)=\operatorname{Tr}\left(T^{m}\right)$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense How can we compute these coefficients?

- Enumerating all $2^{n^{2}}$ configurations is feasible for $n \leq 5$
- We can use transfer matrices to compute $P_{n, m}(x)$
- For a suitable $2^{n} \times 2^{n}$ matrix T we have $P_{n, m}(x)=\operatorname{Tr}\left(T^{m}\right)$
- Using the structure of T , we can compute $\operatorname{Tr}\left(\mathrm{T}^{\mathrm{m}}\right)$ efficiently

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense How can we compute these coefficients?

- Enumerating all $2^{n^{2}}$ configurations is feasible for $n \leq 5$
- We can use transfer matrices to compute $P_{n, m}(x)$
- For a suitable $2^{n} \times 2^{n}$ matrix T we have $P_{n, m}(x)=\operatorname{Tr}\left(T^{m}\right)$
- Using the structure of T , we can compute $\operatorname{Tr}\left(\mathrm{T}^{m}\right)$ efficiently

$$
T=\left(\begin{array}{cc}
x & x^{-1} \\
x^{-1} & x
\end{array}\right)^{\otimes n} \operatorname{diag}(\ldots)
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense How can we compute these coefficients?

- Enumerating all $2^{n^{2}}$ configurations is feasible for $n \leq 5$
- We can use transfer matrices to compute $P_{n, m}(x)$
- For a suitable $2^{n} \times 2^{n}$ matrix T we have $P_{n, m}(x)=\operatorname{Tr}\left(T^{m}\right)$
- Using the structure of T , we can compute $\operatorname{Tr}\left(\mathrm{T}^{m}\right)$ efficiently
- This approach is feasible for $n \leq 12$, which is not enough

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $\mathfrak{n} \times \mathrm{m}$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $\mathfrak{n} \times \mathrm{m}$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.
Feature: For $n, m>k$, we have $\left[w^{k}\right] Z_{n, m}=\operatorname{poly}_{k}(n m)$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.
Feature: For $n, m>k$, we have $\left[w^{k}\right] Z_{n, m}=\operatorname{poly}_{k}(n m)$

$$
\begin{array}{ll}
{\left[w^{2}\right] Z_{n, m}=0} & {\left[w^{3}\right] Z_{n, m}=0} \\
{\left[w^{4}\right] Z_{n, m}=1 \mathrm{~nm}} & {\left[w^{5}\right] Z_{n, m}=0} \\
{\left[w^{6}\right] Z_{n, m}=2 \mathrm{~nm}} & {\left[w^{7}\right] Z_{n, m}=0} \\
{\left[w^{8}\right] Z_{n, m}=\frac{9}{2} \mathrm{~nm}+\frac{1}{2}(\mathrm{~nm})^{2}} & {\left[w^{9}\right] Z_{n, m}=0} \\
{\left[w^{10}\right] Z_{n, m}=6 n m+(n m)^{2}} & {\left[w^{11}\right] Z_{n, m}=0} \\
{\left[w^{12}\right] Z_{n, m}=\frac{112}{3} n m+\frac{13}{2}(n m)^{2}+\frac{1}{6}(n m)^{3}} & {\left[w^{13}\right] Z_{n, m}=0} \\
{\left[w^{14}\right] Z_{n, m}=130 n m+21(n m)^{2}+(n m)^{3}} & {\left[w^{15}\right] Z_{n, m}=0}
\end{array}
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.
Feature: For $n, m>k$, we have $\left[w^{k}\right] Z_{n, m}=\operatorname{poly}_{k}(n m)$
To compute poly ${ }_{k}$ for a specific k, fix a sufficiently large n, compute $\left[w^{k}\right] Z_{n, m}$ for $m=k+1, \ldots, 2 k$ using transfer matrices, and interpolate.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.
Feature: For $n, m>k$, we have $\left[w^{k}\right] Z_{n, m}=\operatorname{poly}_{k}(n m)$
To compute poly ${ }_{k}$ for a specific k, fix a sufficiently large n, compute $\left[w^{k}\right] Z_{n, m}$ for $m=k+1, \ldots, 2 k$ using transfer matrices, and interpolate.

Note: when n is odd, already $\mathrm{n}>\mathrm{k} / 2$ is sufficiently large.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.
Feature: For $n, m>k$, we have $\left[w^{k}\right] Z_{n, m}=\operatorname{poly}_{k}(n m)$
To compute poly ${ }_{k}$ for a specific k, fix a sufficiently large n, compute $\left[w^{k}\right] Z_{n, m}$ for $m=k+1, \ldots, 2 k$ using transfer matrices, and interpolate.

Note: when n is odd, already $\mathrm{n}>\mathrm{k} / 2$ is sufficiently large.
We were able to compute poly ${ }_{k}$ for all $k \leq 32$.

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.
Feature: For $n, m>k$, we have $\left[w^{k}\right] Z_{n, m}=\operatorname{poly}_{k}(n m)$
Feature: $g(w)=\lim _{n \rightarrow \infty} \frac{\log Z_{n, n}(w)}{n^{2}}=\sum_{k=0}^{\infty}\left(\left[X^{1}\right] \operatorname{poly}_{k}(X)\right) w^{k}$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.
Feature: For $n, m>k$, we have $\left[w^{k}\right] Z_{n, m}=\operatorname{poly}_{k}(n m)$

$$
\begin{array}{ll}
{\left[w^{2}\right] Z_{n, m}=0} & {\left[w^{3}\right] Z_{n, m}=0} \\
{\left[w^{4}\right] Z_{n, m}=1 \mathrm{~nm}} & {\left[w^{5}\right] Z_{n, m}=0} \\
{\left[w^{6}\right] Z_{n, m}=2 \mathrm{~nm}} & {\left[w^{7}\right] Z_{n, m}=0} \\
{\left[w^{8}\right] Z_{n, m}=\frac{9}{2} n m+\frac{1}{2}(n m)^{2}} & {\left[w^{9}\right] Z_{n, m}=0} \\
{\left[w^{10}\right] Z_{n, m}=6 n m+(n m)^{2}} & {\left[w^{11}\right] Z_{n, m}=0} \\
{\left[w^{12}\right] Z_{n, m}=\frac{112}{3} n m+\frac{13}{2}(n m)^{2}+\frac{1}{6}(n m)^{3}} & {\left[w^{13}\right] Z_{n, m}=0} \\
{\left[w^{14}\right] Z_{n, m}=130 n m+21(n m)^{2}+(n m)^{3}} & {\left[w^{15}\right] Z_{n, m}=0}
\end{array}
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.
Feature: For $n, m>k$, we have $\left[w^{k}\right] Z_{n, m}=\operatorname{poly}_{k}(n m)$
Feature: $g(w)=\lim _{n \rightarrow \infty} \frac{\log Z_{n, n}(w)}{n^{2}}=\sum_{k=0}^{\infty}\left(\left[X^{1}\right]\right.$ poly $\left._{k}(X)\right) w^{k}$

$$
=1 w^{4}+2 w^{6}+\frac{9}{2} w^{8}+6 w^{10}+\frac{112}{3} w^{12}+130 w^{14}+\cdots
$$

Feature: $\frac{1}{n^{2}} \log \left(Z_{n, n}(w)\right)$ converges in the power series sense
Feature: $Z_{n, m}(w)$ is a polynomial with integer coefficients.
The coefficient of w^{k} counts how many polygonal shapes with k edges of a certain type fit on the $n \times m$-torus.
Feature: For $n, m>k$, we have $\left[w^{k}\right] Z_{n, m}=\operatorname{poly}_{k}(n m)$
Feature: $g(w)=\lim _{n \rightarrow \infty} \frac{\log Z_{n, n}(w)}{n^{2}}=\sum_{k=0}^{\infty}\left(\left[X^{1}\right]\right.$ poly $\left.y_{k}(X)\right) w^{k}$

$$
=1 w^{4}+2 w^{6}+\frac{9}{2} w^{8}+6 w^{10}+\frac{112}{3} w^{12}+130 w^{14}+\cdots
$$

Unfortunately, 32 terms of $g(w)$ are still not enough.

Problem 1: $f(x)$ is not a (formal) power series

- Apply a change of variables proposed in 1941 by van der Waerden
- This puts us into the realm of formal power series

Problem 2: We cannot compute enough terms to guess $f(x)$

- Apply a change of variables proposed in 1941 by Kramers and Wannier
- This turns the series into one that satisfies a shorter equation

Problem 1: $f(x)$ is not a (formal) power series

- Apply a change of variables proposed in 1941 by van der Waerden
- This puts us into the realm of formal power series

Problem 2: We cannot compute enough terms to guess $f(x)$

- Apply a change of variables proposed in 1941 by Kramers and Wannier
- This turns the series into one that satisfies a shorter equation

Recall: $f(x)=\lim _{n \rightarrow \infty} \frac{\log P_{n, n}(x)}{n^{2}}, \quad g(w)=\lim _{n \rightarrow \infty} \frac{\log Z_{n, n}(w)}{n^{2}}$

Recall: $f(x)=\lim _{n \rightarrow \infty} \frac{\log P_{n, n}(x)}{n^{2}}, \quad g(w)=\lim _{n \rightarrow \infty} \frac{\log Z_{n, n}(w)}{n^{2}}$
Theorem (Kramers-Wannier 1941):

$$
f(x)-\log \left(x+x^{-1}\right)=f\left(x^{*}\right)-\log \left(x^{*}+\left(x^{*}\right)^{-1}\right)
$$

with $x^{*}=\frac{x+1}{x-1}$.

Recall: $f(x)=\lim _{n \rightarrow \infty} \frac{\log P_{n, n}(x)}{n^{2}}, \quad g(w)=\lim _{n \rightarrow \infty} \frac{\log Z_{n, n}(w)}{n^{2}}$
Theorem (Kramers-Wannier 1941):

$$
f(x)-\log \left(x+x^{-1}\right)=f\left(x^{*}\right)-\log \left(x^{*}+\left(x^{*}\right)^{-1}\right)
$$

with $x^{*}=\frac{x+1}{x-1}$.
This equation connects the behaviour at low temperature $\left(x \rightarrow 1^{+}\right)$with the behaviour at high temperature $(x \rightarrow \infty)$

Recall: $f(x)=\lim _{n \rightarrow \infty} \frac{\log P_{n, n}(x)}{n^{2}}, \quad g(w)=\lim _{n \rightarrow \infty} \frac{\log Z_{n, n}(w)}{n^{2}}$
Theorem (Kramers-Wannier 1941):

$$
f(x)-\log \left(x+x^{-1}\right)=f\left(x^{*}\right)-\log \left(x^{*}+\left(x^{*}\right)^{-1}\right)
$$

with $x^{*}=\frac{x+1}{x-1}$.
This equation connects the behaviour at low temperature $\left(x \rightarrow 1^{+}\right)$with the behaviour at high temperature $(x \rightarrow \infty)$ Idea 1: consider $f(x)-\log \left(x+x^{-1}\right)$ instead of $f(x)$

Recall: $f(x)=\lim _{n \rightarrow \infty} \frac{\log P_{n, n}(x)}{n^{2}}, \quad g(w)=\lim _{n \rightarrow \infty} \frac{\log Z_{n, n}(w)}{n^{2}}$
Theorem (Kramers-Wannier 1941):

$$
f(x)-\log \left(x+x^{-1}\right)=f\left(x^{*}\right)-\log \left(x^{*}+\left(x^{*}\right)^{-1}\right)
$$

with $x^{*}=\frac{x+1}{x-1}$.
This equation connects the behaviour at low temperature $\left(x \rightarrow 1^{+}\right)$with the behaviour at high temperature $(x \rightarrow \infty)$ Idea 1: consider $f(x)-\log \left(x+x^{-1}\right)$ instead of $f(x)$

Idea 2: change to a new variable which is invariant under $x \leftrightarrow \chi^{*}$

We search for a symmetric function $z=\operatorname{rat}\left(x, x^{*}\right)$ such that expressing $w=\frac{x-1}{x+1}$ in terms of z gives a series of positive order with only even exponents.

We search for a symmetric function $z=\operatorname{rat}\left(x, x^{*}\right)$ such that expressing $w=\frac{x-1}{x+1}$ in terms of z gives a series of positive order with only even exponents.

Such rational functions can be easily found using Gröbner bases.

We search for a symmetric function $z=\operatorname{rat}\left(x, x^{*}\right)$ such that expressing $w=\frac{x-1}{x+1}$ in terms of z gives a series of positive order with only even exponents.

Such rational functions can be easily found using Gröbner bases.
The smallest solution turns out to be

$$
z=\frac{c x\left(x^{2}-1\right)}{\left(1+x^{2}\right)^{2}}=\frac{c w\left(1-w^{2}\right)}{\left(1+w^{2}\right)^{2}}
$$

where c is an arbitrary nonzero constant.

We search for a symmetric function $z=\operatorname{rat}\left(x, x^{*}\right)$ such that expressing $w=\frac{x-1}{x+1}$ in terms of z gives a series of positive order with only even exponents.

Such rational functions can be easily found using Gröbner bases.
The smallest solution turns out to be

$$
z=\frac{c x\left(x^{2}-1\right)}{\left(1+x^{2}\right)^{2}}=\frac{c w\left(1-w^{2}\right)}{\left(1+w^{2}\right)^{2}}
$$

where c is an arbitrary nonzero constant. Let's take $\mathrm{c}=1$.

$$
f(x)-\log \left(x+x^{-1}\right)
$$

$$
\begin{aligned}
& f(x)-\log \left(x+x^{-1}\right) \\
& =g(w)-\log \left(1+w^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f(x)-\log \left(x+x^{-1}\right) \\
& =g(w)-\log \left(1+w^{2}\right) \\
& =-w^{2}+\frac{3}{2} w^{4}+\frac{5}{3} w^{6}+\frac{19}{4} w^{8}+\frac{59}{5} w^{10}+\frac{75}{2} w^{12}+\frac{909}{7} w^{14}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& f(x)-\log \left(x+x^{-1}\right) \\
& =g(w)-\log \left(1+w^{2}\right) \\
& =-w^{2}+\frac{3}{2} w^{4}+\frac{5}{3} w^{6}+\frac{19}{4} w^{8}+\frac{59}{5} w^{10}+\frac{75}{2} w^{12}+\frac{909}{7} w^{14}+\cdots \\
& =-z^{2}-\frac{9}{2} z^{4}-\frac{100}{3} z^{6}-\frac{1225}{4} z^{8}-\frac{15876}{5} z^{10}-35574 z^{12}+\frac{2944656}{7} z^{14}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& f(x)-\log \left(x+x^{-1}\right) \\
& =g(w)-\log \left(1+w^{2}\right) \\
& =-w^{2}+\frac{3}{2} w^{4}+\frac{5}{3} w^{6}+\frac{19}{4} w^{8}+\frac{59}{5} w^{10}+\frac{75}{2} w^{12}+\frac{909}{7} w^{14}+\cdots \\
& =-z^{2}-\frac{9}{2} z^{4}-\frac{100}{3} z^{6}-\frac{1225}{4} z^{8}-\frac{15876}{5} z^{10}-35574 z^{12}+\frac{2944656}{7} z^{14}+\cdots \\
& \stackrel{?}{=}-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n}{n}^{2} z^{2 n} \quad \text { (honestly guessed!) }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)-\log \left(x+x^{-1}\right) \\
& =g(w)-\log \left(1+w^{2}\right) \\
& =-w^{2}+\frac{3}{2} w^{4}+\frac{5}{3} w^{6}+\frac{19}{4} w^{8}+\frac{59}{5} w^{10}+\frac{75}{2} w^{12}+\frac{909}{7} w^{14}+\cdots \\
& =-z^{2}-\frac{9}{2} z^{4}-\frac{100}{3} z^{6}-\frac{1225}{4} z^{8}-\frac{15876}{5} z^{10}-35574 z^{12}+\frac{2944656}{7} z^{14}+\cdots \\
& \stackrel{?}{=}-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n}{n}^{2} z^{2 n} \quad \text { (honestly guessed!) } \\
& =-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n}{n}^{2}\left(\frac{x\left(x^{2}-1\right)}{\left(1+x^{2}\right)^{2}}\right)^{2 n},
\end{aligned}
$$

$$
\begin{aligned}
& f(x)-\log \left(x+x^{-1}\right) \\
& =g(w)-\log \left(1+w^{2}\right) \\
& =-w^{2}+\frac{3}{2} w^{4}+\frac{5}{3} w^{6}+\frac{19}{4} w^{8}+\frac{59}{5} w^{10}+\frac{75}{2} w^{12}+\frac{909}{7} w^{14}+\cdots \\
& =-z^{2}-\frac{9}{2} z^{4}-\frac{100}{3} z^{6}-\frac{1225}{4} z^{8}-\frac{15876}{5} z^{10}-35574 z^{12}+\frac{2944656}{7} z^{14}+\cdots \\
& \stackrel{?}{=}-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n}{n}^{2} z^{2 n} \quad(\text { honestly guessed!) } \\
& =-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n}{n}^{2}\left(\frac{x\left(x^{2}-1\right)}{\left(1+x^{2}\right)^{2}}\right)^{2 n},
\end{aligned}
$$

so

$$
f(x) \stackrel{?}{=} \log \left(x+x^{-1}\right)-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n}{n}^{2}\left(\frac{x\left(x^{2}-1\right)}{\left(1+x^{2}\right)^{2}}\right)^{2 n}
$$

in accordance with Onsager's formula.

And now?

Recall: $f(x)=\lim _{n \rightarrow \infty} \frac{\log P_{n, n}(x)}{n^{2}}$

Recall: $f(x)=\lim _{n \rightarrow \infty} \frac{\log P_{n, n}(x)}{n^{2}}$, where

$$
P_{n, m}=\sum_{c} x^{E(c)}
$$

where

- c runs over all configurations of the $n \times m$ torus
- $\mathrm{E}(\mathrm{c})$ is the "energy" of the configuration, which essentially counts how many edges connect nodes of the same color.

Recall: $f(x)=\lim _{n \rightarrow \infty} \frac{\log P_{n, n}(x)}{n^{2}}$, where

$$
P_{n, m}=\sum_{c} x^{E(c)}
$$

where

- c runs over all configurations of the $n \times m$ torus
- $\mathrm{E}(\mathrm{c})$ is the "energy" of the configuration, which essentially counts how many edges connect nodes of the same color.
We could also count the number F (c) of green vertices.

Recall: $f(x)=\lim _{n \rightarrow \infty} \frac{\log P_{n, n}(x)}{n^{2}}$, where

$$
P_{n, m}=\sum_{c} x^{E(c)} y^{F(c)}
$$

where

- c runs over all configurations of the $n \times m$ torus
- $\mathrm{E}(\mathrm{c})$ is the "energy" of the configuration, which essentially counts how many edges connect nodes of the same color.
We could also count the number F (c) of green vertices.

Recall: $f(x)=\lim _{n \rightarrow \infty} \frac{\log P_{n, n}(x)}{n^{2}}$, where

$$
P_{n, m}=\sum_{c} x^{E(c)} y^{F(c)}
$$

where

- c runs over all configurations of the $n \times m$ torus
- $\mathrm{E}(\mathrm{c})$ is the "energy" of the configuration, which essentially counts how many edges connect nodes of the same color.
We could also count the number F (c) of green vertices.
In physical terms y measures the "external field".

If we define

$$
f(x, y):=\lim _{n, m \rightarrow \infty} \frac{\log \left(P_{n, m}\right)}{n m}
$$

then what can we say about $f(x, y)$?

If we define

$$
f(x, y):=\lim _{n, m \rightarrow \infty} \frac{\log \left(P_{n, m}\right)}{n m}
$$

then what can we say about $f(x, y)$?
Onsager's result is an expression for $f(x, 1)$, and nobody knows an expression for general y.

If we define

$$
f(x, y):=\lim _{n, m \rightarrow \infty} \frac{\log \left(P_{n, m}\right)}{n m}
$$

then what can we say about $f(x, y)$?
Onsager's result is an expression for $f(x, 1)$, and nobody knows an expression for general y.

The function $f(x, y)$ knows some additional features about the physical system, in particular:

- "Magnetization" : $M(x, y)=y \frac{d}{d y} f(x, y)$

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Can we guess this, too?

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Can we guess this, too?

- We still can compute $P_{n, m}(x, y)$ by the transfer matrix method

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Can we guess this, too?

- We still can compute $\mathrm{P}_{\mathrm{n}, \mathrm{m}}(\mathrm{x}, \mathrm{y})$ by the transfer matrix method
- But van der Waerden and Kramers-Wannier break down

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Can we guess this, too?

- We still can compute $\mathrm{P}_{\mathrm{n}, \mathrm{m}}(\mathrm{x}, \mathrm{y})$ by the transfer matrix method
- But van der Waerden and Kramers-Wannier break down

For numerical values x, y, the limit $f(x, y)$ can be obtained numerically from the largest eigenvalue of the transfer matrix.

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Can we guess this, too?

- We still can compute $\mathrm{P}_{\mathrm{n}, \mathrm{m}}(\mathrm{x}, \mathrm{y})$ by the transfer matrix method
- But van der Waerden and Kramers-Wannier break down

For numerical values x, y, the limit $f(x, y)$ can be obtained numerically from the largest eigenvalue of the transfer matrix.

Numerical differentiation gives approximations for $M(x)$.

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Idea: Fit a differential equation against the numerical data.

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Idea: Fit a differential equation against the numerical data. Make an ansatz
$\left(a_{0}+a_{1} x+\cdots+a_{10} x^{10}\right) M(x)+\left(b_{0}+b_{1} x+\cdots+b_{10} x^{10}\right) M^{\prime}(x)=0$
with undetermined integer coefficients a_{i}, b_{i}.

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Idea: Fit a differential equation against the numerical data. Make an ansatz
$\left(a_{0}+a_{1} x+\cdots+a_{10} x^{10}\right) M(x)+\left(b_{0}+b_{1} x+\cdots+b_{10} x^{10}\right) M^{\prime}(x)=0$ with undetermined integer coefficients a_{i}, b_{i}.

Using numerical data for various points χ, we can search for candidates for the a_{i}, b_{i} by integer relation algorithms, e.g. LLL.

Onsager announced (without proof) the formula

$$
M(x, 1)= \begin{cases}0 & \text { if } x<1+\sqrt{2} \\ \left(\frac{\left(x^{2}+1\right)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)}{(x-1)^{4}(x+1)^{4}}\right)^{1 / 8} & \text { if } x \geq 1+\sqrt{2}\end{cases}
$$

Idea: Fit a differential equation against the numerical data. Make an ansatz
$\left(a_{0}+a_{1} x+\cdots+a_{10} x^{10}\right) M(x)+\left(b_{0}+b_{1} x+\cdots+b_{10} x^{10}\right) M^{\prime}(x)=0$
with undetermined integer coefficients a_{i}, b_{i}.
Using numerical data for various points χ, we can search for candidates for the a_{i}, b_{i} by integer relation algorithms, e.g. LLL.

Unfortunately, our accuracy is not enough to find the equation.

