
Séminaire Lotharingien de Combinatoire 87B (2023)
Article #5, 12pp.

Special issue for the 9th International Conference
on Lattice Path Combinatorics and Applications

LEFT-TO-RIGHT MAXIMA IN DYCK PATHS

AUBREY BLECHER1 AND ARNOLD KNOPFMACHER2

1University of the Witwatersrand, Johannesburg, South Africa;
https://independent.academia.edu/AubreyBlecher

2University of the Witwatersrand, Johannesburg, South Africa;
https://scholar.google.com/citations?user=v8k5QLUAAAAJ

Abstract. In a Dyck path a peak which is (weakly) higher than all the preceding
peaks is called a strict (weak) left-to-right maximum. We obtain explicit generating
functions for both weak and strict left-to-right maxima in Dyck paths. The proofs of
the associated asymptotics make use of analytic techniques such as Mellin transforms,
singularity analysis and formal residue calculus.
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1. General introduction

A Dyck path is a lattice path in the first quadrant, that starts at the origin (0,0) with an
up step (u = (1, 1)) and thereafter only up and down (d = (1, −1)) steps are allowed under
the conditions that it may not go below the x-axis and that it may terminate only if the
end point is on the x-axis. A Dyck path with n up steps must end at the point (2n, 0); see
the definition in [16]. Such a Dyck path is said to have length 2n. For a detailed study of
properties of Dyck paths see [7]. For further recent work on Dyck paths; see [1–4,6, 9, 15].

Given an arbitrary Dyck path, we mean by a strict left-to-right maximum, any peak
(successive pair of the form ud) in the Dyck path which is greater than the height all
peaks to its left. A weak left-to-right maximum is a peak which is greater than or equal to
the height of all peaks to its left. From here on, by left-to-right maxima we mean strict
left-to-right maxima unless otherwise stated.

A standard combinatorial problem is the accounting for the number of left-to-right
maxima in combinatorial structures such as permutations and words over a fixed alphabet.
In this paper we focus on obtaining a generating function for the number of left-to-right
maxima in Dyck paths. This is a bivariate generating function which tracks the number of
up steps by z and the number of left-to-right maxima by x. We also obtain a generating
function for the total number of left-to-right maxima in Dyck paths with n up steps.
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Figure 1. Two Dyck paths of length 14 and height 3

As an introduction to the method we will use for the construction of the first generating
function above, here follows a sketch (Figure 1) of two Dyck paths of height 3. The left-to-
right maxima are marked in the left case by A and P and in the right case by E and P . P
also marks the first maximum height attained by the Dyck paths. We begin at the origin
with a u step tracked in the generating function by z which leaves us at the point E. This
single up step is followed by a possibly empty upside-down Dyck path of maximum height 1.

In the left example in Figure 1, this part is indeed empty (and therefore not requiring x)
but not in the right example where the path between E and B is an upside-down Dyck
path of height 1 which gives rise to a left-to-right maximum thus requiring an x tracker.
Then we have another single u step and we proceed recursively in this way leaving us
eventually at the next left-to-right maximum which is point A in the left example and P
in the right. In the left example, right of A is again a possibly empty upside-down Dyck
path, this time of maximum height 2 where the non empty case is tracked again by x.
We are referring to the path between A and B which is actually of height 1. Once P is
reached, it is followed by the rest of the path which is conceived as a right to left portion
of a Dyck path. In the section dealing with this, the generating function for these latter
Dyck paths ending at height r will be given and used, as will the generating function for
Dyck paths of a fixed height h, which is used as indicated above for the possibly empty
upside-down Dyck paths that occur sequentially before the point P is attained.

2. Left-to-right maxima in Dyck paths

We start this section by referring to the paper [14] by Prodinger on the first sojourn
in Dyck paths. Using the notation from [14], we let C(h) be the number of paths of
height ≤ h with steps which follow all rules of Dyck paths except that they terminate at
height h, and we let A(h) be the number of Dyck paths of height ≤ h (which by definition
end at height zero). It is shown in [14] that

C(h) := zh
√

1 − 4z2

λ1h+2 − λ2h+2

and
A(h) := λ1

h+1 − λ2
h+1

λ1h+2 − λ2h+2 , (2.1)

where λ1 and λ2, are given by

λ1 = 1 +
√

1 − 4z2

2 ; λ2 = 1 −
√

1 − 4z2

2 .
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As explained in the introductory section, we consider a sequence of possibly empty
Dyck paths of height ≤ h for h = 1, 2, . . . . At the end of each path in the sequence, we
have a single up step that leads to the next left-to-right maximum and eventually to the
first overall maximum of the entire Dyck path. We let x count the number of left-to-right
maxima attained by the Dyck path. This leads to our first theorem:

Theorem 2.1. The generating function for the number of left-to-right maxima tracked
by x, for Dyck paths of maximum height r and length tracked by z is

F (x, z, r) := zrxC(r)
r−1∏
h=1

(1 + x(A(h) − 1)).

So, the total number of left-to-right maxima for Dyck paths of fixed height r is found
by differentiating the above function with respect to x and setting x = 1. The derivative
at this point is given by

∂

∂x
F (x, z, r)

∣∣∣∣
x=1

= zr C(r)
r−1∏
h=1

A(h) + zrC(r)
r−1∏
h=1

A(h)
r−1∑
i=1

A(i) − 1
A(i)

= zr C(r)
r−1∏
h=1

A(h)
(

1 +
r−1∑
i=1

A(i) − 1
A(i)

)

= zrC(r)
r−1∏
h=1

A(h)
(

r −
r−1∑
i=1

1
A(i)

)
(2.2)

Note that zrC(r)∏r−1
h=1 A(h) telescopes to become

z2r (1 − 4z2)(
−λ1+r

2 + λ1+r
1

) (
−λ2+r

2 + λ2+r
1

)
but the full generating function becomes very complicated as a function of z.

To simplify this generating function, we substitute

z2 = u

(1 + u)2

in (2.2) which implies

λ1 = 1
1 + u

; λ2 = u

1 + u
; C(r) = (1 − u)(1 + u)1+rzr

1 − u2+r
; A(r) = (1 + u) (1 − u1+r)

1 − u2+r

and obtain

T (r) := ∂

∂x
F (x, z, r)

∣∣∣∣
x=1

= (1 − u)2ur(1 + u)
(1 − u1+r) (1 − u2+r)

(
r −

r−1∑
i=1

1 − u2+i

(1 + u) (1 − u1+i)

)
.

The full generating function for the total number of left-to-right maxima in all Dyck
paths of length n is

Tot(u) :=
∞∑

r=1
T (r).
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Consequently, we have the following proposition:

Proposition 2.2. The generating function Tot(u) for the total number of left-to-right
maxima in Dyck paths of length n tracked by z is given by (using z2 = u

(1+u)2 ):

Tot(u) =
∞∑

r=1

(1 − u)2ur(1 + u)
(1 − u1+r) (1 − u2+r)

(
r −

r−1∑
i=1

1 − u2+i

(1 + u) (1 − u1+i)

)
. (2.3)

In order to obtain the series expansion for this, we use the equivalent inverse substitution
for u, namely

u = 1 − 2z2 −
√

1 − 4z2

2z2 , (2.4)

and obtain in terms of z,

Tot(u) = z2 + 2z4 + 6z6 + 19z8 + 63z10 + 216z12 + 758z14 + 2705z16 + 9777z18

+ 35698z20 + O(z21).

We illustrate the bold term of the series by means of the black dots in Figure 2.

Figure 2. All 14 Dyck paths of length 8: they have 19 strict left-to-
right maxima (indicated by black dots) and 10 weak left-to-right maxima
(indicated by circles).
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The type of series expansion for Tot(u) in Proposition 2.2 involves what is called Lambert
series. There are currently no computer algebra packages that can automatically simplify
expressions like Equation (2.3). Instead, it is therefore necessary to make the following
lengthy calculations in order to derive Theorem 2.3.

To simplify Equation (2.3) we swap the order of the summations in the double sum,
and thereafter use partial fractions on the r-indexed sum (which then telescopes as in
line (2.5)) to obtain

∞∑
r=1

(1 − u)2ur(1 + u)
(1 − u1+r) (1 − u2+r)

r−1∑
i=1

1 − u2+i

(1 + u) (1 − u1+i)

= (1 − u)2
∞∑

i=1

1 − u2+i

(1 − u1+i)

∞∑
r=i+1

ur

(1 − u1+r) (1 − u2+r)

= (1 − u)2
∞∑

i=1

1 − u2+i

(1 − u1+i)
u1+i

(1 − u) (1 − u2+i) . (2.5)

Now changing the index of summation from i to r,

(1 − u)
∞∑

i=1

1 − u2+i

(1 − u1+i)
u1+i

(1 − u2+i) = (1 − u)
∞∑

r=1

u1+r

(1 − u1+r) .

Altogether,

Tot(u) =
∞∑

r=1

(1 − u)2ur(1 + u)r
(1 − u1+r) (1 − u2+r) − (1 − u)

∞∑
r=1

u1+r

(1 − u1+r)

=
∞∑

r=1

(1 − u)ur (r − u − ru2 + u3+r)
(1 − u1+r) (1 − u2+r)

=
∞∑

r=1

rur − u1+r − ru1+r + u2+r − ru2+r + ru3+r + u3+2r − u4+2r

(1 − u1+r) (1 − u2+r) .

Drop the first term rur in the numerator above and apply partial fractions to the rest of
the summand which simplifies to

1 − u + −1 − r + 2u − ru − u2 + ru2

(1 − u) (1 − u1+r) + r + ru − ru2

(1 − u) (1 − u2+r) .

The separated first term with numerator rur after partial fractions leads to
rur

(1 − u) (1 − u1+r) − rur+1

(1 − u) (1 − u2+r) .

Altogether,

Tot(u) =
∞∑

r=1

(
1 − u + −1 − r + 2u − ru − u2 + ru2

(1 − u) (1 − u1+r) + r + ru − ru2

(1 − u) (1 − u2+r)

)

+
∞∑

r=1

rur

(1 − u) (1 − u1+r) −
∞∑

r=1

rur+1

(1 − u) (1 − u2+r) .
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To facilitate the evaluation of the infinite sums, we define a new function (where ∞ is
replaced temporarily by finite M in Tot(u)), namely:

Tot2(u) :=
M∑

r=1

(
1 − u + −1 − r + 2u − ru − u2 + ru2

(1 − u) (1 − u1+r) + r + ru − ru2

(1 − u) (1 − u2+r)

)

+
M∑

r=1

rur

(1 − u) (1 − u1+r) −
M∑

r=1

rur+1

(1 − u) (1 − u2+r) .

We now separate this into disjoint sums and shift the index of summation in the third and
last sums:

Tot2(u) =
M∑

r=1
(1 − u) +

M∑
r=1

−1 − r + 2u − ru − u2 + ru2

(1 − u) (1 − u1+r) +
M+1∑
r=2

(r − 1) (1 + u − u2)
(1 − u)(1 − u1+r)

+
M∑

r=1

rur

(1 − u) (1 − u1+r) −
M+1∑
r=2

(r − 1)ur

(1 − u) (1 − u1+r)

=
M∑

r=1
(1 − u) + −2 + u

(1 − u) (1 − u2) +
M∑

r=2

−1 − r + 2u − ru − u2 + ru2

(1 − u) (1 − u1+r)

+
M∑

r=2

(r − 1) (1 + u − u2)
(1 − u) (1 − u1+r) + M (1 + u − u2)

(1 − u) (1 − u2+M) + u

(1 − u) (1 − u2)

+
M∑

r=2

rur

(1 − u) (1 − u1+r) −
M∑

r=2

(r − 1)ur

(1 − u) (1 − u1+r) − Mu1+M

(1 − u) (1 − u2+M) . (2.6)

We combine the terms in the sums from r equals 2 to M in (2.6) to get

−2 + u + ur

(1 − u) (1 − u1+r) .

Then we simplify the rest to get

Tot2(u) =
M∑

r=2

−2 + u + ur

(1 − u) (1 − u1+r) − 2
1 − u2

−
M
(
−2 + u + u1+M + u2+M − 2u3+M + u4+M

)
(1 − u) (1 − u2+M) .

Note that Tot2(u) and Tot(u) match at least for terms up to
[
uM

]
. Since for the present

we are only interested in the terms up to
[
uM

]
, we may set all higher power terms equal

to zero, to produce

Tot2b(u) =
M∑

r=2

−2 + u + ur

(1 − u) (1 − u1+r) − 2
1 − u2 + M

(2 − u)
(1 − u) .
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Noting that M = 1 +∑M
r=2 1,

Tot2b(u) =
M∑

r=2

−2 + u + ur

(1 − u) (1 − u1+r) − 2
1 − u2 + (2 − u)

(1 − u) +
M∑

r=2

(2 − u)
(1 − u)

=
M∑

r=2

−2 + u + ur

(1 − u) (1 − u1+r) + u

1 + u
+

M∑
r=2

(2 − u)
(1 − u) .

Combine the summands in ∑M
r=2. We may now allow M → ∞ to finally obtain the

simplified generating function as per the next theorem:

Theorem 2.3. The simplified generating function for the total number of left-to-right
maxima in Dyck paths is

Tot(u) =
∞∑

r=1

(1 − u)ur

1 − u1+r
. (2.7)

2.1. Formula for total number of left-to-right maxima. In this section, we will
obtain an exact formula for the total number of left-to-right maxima in terms of a well-
known arithmetic function, namely the divisor function d(r). Compare with [5]. Note
that

∞∑
r=1

ur

1 − ur
=

∞∑
r=1

d(r) ur.

To read off coefficients from equation (2.7), we observe that for any formal power
series f(z)

[z2n]f(z) = [un](1 − u)(1 + u)2n−1f(z(u)).

This can be justified by using formal residue calculus; see for example [12]. Therefore

[z2n] Tot(z) = [un](1 − u)(1 + u)2n−1
∞∑

r=1

(1 − u)ur

1 − u1+r

= [un](1 − u)(1 + u)2n−1
∞∑

r=1
(d(r + 1) − d(r))ur

=
n∑

r=1
(d(r + 1) − d(r))

((
2n − 1
n − r

)
−
(

2n − 1
n − r − 1

))
.

Thus we have shown:

Theorem 2.4. The total number of left-to-right maxima in Dyck paths of semi-length n is
given by

n∑
r=1

(d(r + 1) − d(r))
((

2n − 1
n − r

)
−
(

2n − 1
n − r − 1

))
.
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3. Asymptotics for strict left-to-right maxima

In this section we find the asymptotic expression for the total number of strict left-to-
right maxima in Dyck paths. We will follow the approach used to study the height of
planted plane trees by Prodinger in [12]. For related asymptotic calculations concerning
the height of trees and lattice paths; see [10,11,13] and the seminal article by de Bruijn,
Knuth and Rice [5].

First, we extract coefficients of zn in Tot(u). That is we find

[zn]1 − u

u

∞∑
r=2

ur

1 − ur
.

When u is in terms of z2, by (2.4) the function Tot(u) has its dominant singularity at
z = 1/2 which is mapped to u = 1. To study this further we set u = e−t and let t → 0.
Thus

1 − u

u
= et(1 − e−t) = t + t2

2 + t3

6 + · · · . (3.1)

To estimate the harmonic sum f1(t) := ∑∞
r=2

e−rt

1−e−rt as t → 0, we take the Mellin transform
of f1(t), see [8], which is f ∗

1 (s) :=
∫∞

0 f1(t)ts−1 dt. Thus

f ∗
1 (s) = Γ(s)ζ(s)(ζ(s) − 1), for ℜ(s) > 1.

By using the Mellin inversion formula, we have f1(t) = 1
2πi

∫ 2+i∞
2−i∞ f ∗

1 (s) t−s ds (again see [8]).
By computing residues this yields

f1(t) ∼ −1 + γ − log(t)
t

+ 3
4 − 13t

144 + · · · , (3.2)

where γ is Euler’s constant.
Let

g1(t) := et(1 − e−t) f1(t).
From (3.1) and (3.2)

g1(t) ∼ − log(t) − 1 + γ +
(3

4 + 1
2(−1 + γ − log(t))

)
t + · · · .

Let y =
√

1 − 4z2 and writing e−t = u = 1−y
1+y

, we find t = − log 1−y
1+y

= 2y + 2y3

3 + · · · .
In terms of the y variable, we therefore need to compute g1(2y + 2y3

3 + · · · ).

g1

(
2y + 2y3

3 + · · ·
)

∼ (−1 + γ − log(2) − log(y)) + 1
2(1 + 2γ − 2 log(2) − 2 log(y))y

− y2

3 + · · · .

Replacing y by
√

1 − 4z2 gives

− 1 + γ − log(2) − 1
2 log

(
1 − 4z2

)
+ 1

2
(
1 + 2γ − 2 log(2) − log

(
1 − 4z2

))√
1 − 4z2

+ · · · .
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To use singularity analysis, see [8], it is convenient to put z2 = x, then we find the
coefficient of xn in the above expression as n → ∞. It is asymptotically equal to

22n

(
1

2n
− log(n)

4
√

πn3/2 + 1 − 3γ

4n3/2√π
+ · · ·

)
. (3.3)

To obtain the mean value we must divide by the total number of Dyck paths of
semi-length n, i.e., as n → ∞

1
n + 1

(
2n

n

)
= 22n

(
1

n3/2√π
− 9

8 n5/2√π
+ 145

128 n7/2√π

)
+ · · · . (3.4)

Hence, dividing (3.3) by (3.4) yields

Theorem 3.1. The average number of strong left-to-right maxima in Dyck paths of
semi-length n, as n → ∞ is

√
πn

2 − log(n)
4 + 1

4(1 − 3γ) + O(n−1/2).

Remark 3.2. The asymptotic formula of Theorem 3.1 when n = 200 yields 11.0257 for the
average number of strong left-to-right maxima. Using the exact formula of Theorem 2.4
divided by the Catalan number for n = 200 yields 11.0503 which is indeed a very good
match.

Remark 3.3. The number of strong left-to-right maxima is bounded above by the height
of the path, which is known to be ∼

√
πn as n → ∞, (see, e.g., [12]). We see that

asymptotically the average number is half of the height.

4. Weak left-to-right maxima in Dyck paths

For this question we first need a generating function for Dyck paths of height ≤ h which
have only a single return to the x axis. So using the formula above from (2.1), we obtain
the generating function for these where h ≥ 1 as

D(h, z) = z2A(h − 1).
Now in order to construct the generating function E(h, x, z) for the number of times

a Dyck path of height ≤ h and length n tracked by z, returns to 0 where the latter is
tracked by a variable x in the generating function, we construct a sequence of such Dyck
paths where each term in the generating function for this sequence is multiplied by x.
Thus we obtain

E(h, x, z) = 1
1 − xD(h, z) .

We now reiterate the construction in Theorem 2.1 to obtain the following theorem.

Theorem 4.1. The generating function for the number of weak left-to-right maxima,
tracked by x, for Dyck paths of maximum height r and length tracked by z is

F (x, z, r) := zr+1xC(r − 1)
r∏

h=1
E(h, x, z). (4.1)

To obtain the generating function for the total number of weak left-to-right maxima, we
once again differentiate (4.1) with respect to x and evaluate this at x = 1. We obtain
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Theorem 4.2. The generating function for the total number of weak left-to-right maxima
for Dyck paths of length n tracked by z is

WTot(u) :=
∞∑

r=1

(1 − u)ur (1 − u2)
(1 − u1+r) (1 − u2+r)

(
1 − r + (1 + u)

r∑
i=1

1 − u1+i

1 − u2+i

)
,

where z2 = u
(1+u)2 .

Proof. The derivative of (4.1) is

∂

∂x
F (x, z, r)

∣∣∣∣
x=1

= zr+1C(r − 1)
r∏

h=1
E(h, 1, z)

(
1 +

r∑
i=1

D(i, z)
1 − D(i, z)

)
.

Putting z2 = u
(1+u)2 in the formula above we obtain

zr+1C(r − 1)
r∏

h=1

1
1 − z2A(h − 1) = (1 − u)ur (1 − u2)

(1 − u1+r) (1 − u2+r) ,

while the remaining bracketed part becomes

1 − r + (1 + u)
r∑

i=1

1 − u1+i

1 − u2+i
. □

Now, we simplify Theorem 4.2. The double sum becomes(
1 − u2

)2 ∞∑
i=1

1 − u1+i

1 − u2+i

∞∑
r=i

ur

(1 − u1+r) (1 − u2+r) .

We use partial fractions on the r-sum and then the double sum telescopes to

(1 − u2)2

(1 − u)u

∞∑
i=1

ui+1

1 − ui+2 .

This is then combined with the single sum which simplifies to

∞∑
r=1

(
(1 − u)ur (1 − u2) (1 − r)

(1 − u1+r) (1 − u2+r) + (1 − u2)2
u1+r

(1 − u)u (1 − u2+r)

)
. (4.2)

In order to further simplify (4.2) we replace ∞ by finite M and then apply partial fractions
to the summand of the first term which splits up as

(−1 + r)(1 − u)(1 + u)
u (1 − u1+r) − (−1 + r + 1)(1 − u)(1 + u)

u (1 − u2+r) − (1 − u)(1 + u)
u (1 − u2+r) .

This is telescoping and simplifies to

−(−1 + M + 1)(1 − u)(1 + u)
u (1 − u2+M) +

M∑
r=1

(
(1 − u2)2

u1+r

(1 − u)u (1 − u2+r) − (1 − u)(1 + u)
u (1 − u2+r)

)
.

Now, replace M by ∑M
r=1 1. Then, letting M tend to ∞, and finally combining all

summands, we obtain
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Theorem 4.3. The simplified generating function for the total number of weak left-to-right
maxima for Dyck paths of length n tracked by z is

WTot(u) =
∞∑

r=1

(1 − u2) ur

1 − u2+r
.

This has series expansion

z2+3z4+9z6+29z8+98z10+341z12+1210z14+4356z16+15860z18+58276z20+O
(
z21
)

.

This is illustrated in Figure 2, where the dots and circles mark all 29 of the weak left-to-right
maxima in Dyck paths of length 8.

4.1. Formula for total number of weak left-to-right maxima. In this section, we
again obtain an exact formula for the total number of left-to-right maxima in terms of the
divisor function d(r). To read off coefficients from Theorem 4.3, as before

[z2n]f(z) = [un](1 − u)(1 + u)2n−1f(z(u)).

Therefore

[z2n] WTot(z) = [un](1 − u)(1 + u)2n−1
∞∑

r=1

(1 − u2)ur

1 − u2+r

= [un](1 − u)(1 + u)2n−1
∞∑

r=1
(d(r + 2) − d(r))ur.

We thus get the following theorem.

Theorem 4.4. The total number of weak left-to-right maxima in Dyck paths of semi-length
n is given by

n∑
r=1

(d(r + 2) − d(r))
((

2n − 1
n − r

)
−
(

2n − 1
n − r − 1

))
.

5. Asymptotics for weak left-to-right maxima

To find an asymptotic expression for WTot(u), we reiterate the approach in Section 3.
This yields

Theorem 5.1. The average number of weak left-to-right maxima in Dyck paths of semi-
length n, as n → ∞ is

√
πn − log(n) + 1

2(5 − 6γ) + O(n−1/2).

Remark 5.2. The asymptotic formula of Theorem 5.1 when n = 200 yields 20.536 for the
average number of weak left-to-right maxima. Using the exact formula of Theorem 4.4
divided by the Catalan number for n = 200 yields 20.368. Taking larger n improves the
accuracy.
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6. Open problems

Theorem 2.4 and Theorem 4.4 are very similar to each other with only a slight change in
their respective summands; this suggests that there is an underlying combinatorial proof.
Also from Theorems 2.3 and 4.3 we obtain

WTot(u) = 1 + u

u
Tot(u) − 1.

We think that accounting for these similarities may be an interesting combinatorial problem
which we leave to the reader. It might also be possible to derive Theorem 2.3 in a simpler
and more direct way instead of using Proposition 2.2.

The statistic left-to-right maximum, ‘lrmax’ is quite important in permutations due to
the fact that it is equidistributed with the ‘cycle’ statistic and is counted nicely by Stirling
numbers of the first kind. One of the main reasons for studying lrmax in permutations is
this equidistribution with the number of cycles. Hence in the current setting one should
anticipate a counterpart statistic in Dyck path to be equidistributed with lrmax.

With respect to permutations, there are other statistics equidistributed with lrmax. In
the Dyck path context one can also introduce such concepts. This may potentially lead to
further interesting research.
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