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Special issue for the 9th International Conference
on Lattice Path Combinatorics and Applications

PREFACE TO THE SPECIAL ISSUE FOR
THE 2021 LATTICE PATH CONFERENCE

CYRIL BANDERIER, CHRISTIAN KRATTENTHALER, AND MICHAEL WALLNER

1. The Lattice Path Conference

1.1. History of the conference. Following an interdisciplinary interest for lattice paths
after the publication in 1979 of the two books Lattice Path Combinatorics with Statistical
Applications by Tadepalli Venkata Narayana and Lattice Path Counting and Applications
by Sri Gopal Mohanty, Mohanty initiated a series of conferences on this topic.

Sri Gopal Mohanty, father of
the Lattice Path Conference.

The first two events were held at McMaster University in
1984 and 1990, and then at the University of Delhi in 1994,
University of Vienna in 1998, University of Athens in 2002,
East Tennessee State University in 2007, University of
Siena in 2010, Cal Poly Pomona University in 2015, Centre
International de Rencontres Mathématiques in 2021. A
new initiative started by dedicating the fourth conference
in Wien to the memory of Germain Kreweras (1918–1998)
and Tadepalli Venkata Narayana (1930–1987), both of
whom made a significant contribution to the field. In
the same spirit, the 2002 conference was dedicated to
the memory of István Vincze (1912–1999). The 2015
conference was dedicated to Shreeram Shankar Abhyankar
(1930–2013), Philippe Flajolet (1948–2011), and Lajos
Takács (1924–2015).

For each conference there is the tradition to have a journal special issue where anyone
could submit work related to lattice paths.1 We shall come back to the current special
issue in Section 2. Before, let us say a few words about the event itself.

1.2. The 2021 Lattice Path Conference. The 9th Lattice Path Conference was held
in hybrid form (given the circumstances of the global Covid pandemic) during 21–25 June
2021 at the Centre International de Rencontres Mathématiques (CIRM) in Luminy, France.
This event attracted 227 registered participants with affiliations from the “four corners of
the world” from 34 different countries of which 24 attended in person. Moreover, about 40
more people attended casually online without being registered (we made the event fully
open), and some colleagues even organized some watch parties in their university, so the
real number of participants in the event will remain unknown.

1See the website of the Lattice Path Conference for links to these special issues and further information.
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As visible via some details in the above photos,
the 2021 Lattice Path Conference was a hybrid conference.

The conference consisted of 27 invited talks and 22 accepted posters, leaving also time
for scientific discussions. The presentations covered a wide range of topics, including

• algebraic combinatorics (Young tableaux, representation theory, symmetric polyno-
mials, representation theory, . . . ),

• analytic combinatorics (kernel method, symbolic method, asymptotics, . . . ),
• enumerative combinatorics (walks in convex and non-convex cones, alternating

sign matrices, generating functions, bijections, . . . ),
• probability theory (Brownian motion, Markov chains, random trees, . . . ),
• computer algebra (orthogonal polynomials, holonomy theory, . . . ),
• theoretical computer science (random generations, context-free grammars, . . . ),
• number theory (integer partitions, continued fractions, . . . ),
• theoretical physics (Liouville quantum gravity, square ice, . . . ).

The conference was a great success, with many stimulating talks and discussions. We
would like to thank all of the participants, including the invited speakers and the attendees,
for their contributions to the conference. We would also like to extend our gratitude to the
staff at CIRM, who, like always, was warmly welcoming, even in this difficult period: CIRM
reopened for our meeting after many months of closure due to the Covid containment and
the interdiction of meetings. Finally, we would like to thank Kilian Raschel who was the
main sponsor of this event via his ERC starting grant COMBINEPIC, which allowed us
to help CIRM who financially suffered a lot of so many months of closure.

This event successfully brought together leading experts in the field and contributed
to the development of new research directions. Several conjectures were even solved
during the event! We hope that our special issue dedicated to this conference will serve
as a valuable resource for researchers in combinatorics, probability theory, and statistical
physics, and that they will inspire further research on lattice paths.

Let us now give the lists of organizers, speakers, and participants of this meeting.

1.3. Scientific and organizing committee.
• Cyril Banderier (CNRS, Université Sorbonne Paris Nord)
• Jehanne Dousse (CNRS, Université Lyon 1)
• Enrica Duchi (Université Paris Diderot)
• Christian Krattenthaler (Universität Wien)
• Greta Panova (University of Southern California)
• Kilian Raschel (CNRS, Université de Tours)
• Michael Wallner (TU Wien)
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1.4. Invited talks.

George Andrews (Pennsylvania State University):
Schmidt type partitions and partition analysis

Andrei Asinowski (Alpen-Adria-Universität Klagenfurt):
Vectorial kernel method and lattice paths with patterns

Philippe Biane (CNRS, Université Paris-Est):
Mating of discrete trees and walks in the quarter-plane

Alin Bostan (INRIA, Saclay):
How to prove or disprove the algebraicity of a generating function using
a computer

Mireille Bousquet-Mélou (CNRS, Université de Bordeaux):
Invariants for walks avoiding a quadrant

Timothy Budd (Radboud University):
Winding of simple walks on the square lattice

Philippe Di Francesco (University of Illinois at Urbana-Champaign
and IPhT Saclay):
Triangular ice: combinatorics and limit shapes

Sergi Elizalde (Dartmouth College):
Counting lattice paths by the number of crossings and major index

Ilse Fischer (University of Vienna):
The alternating sign matrices/descending plane partitions relation:
n+3 pairs of equivalent statistics
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Ira Gessel (Brandeis University):
Redundant generating functions in lattice path enumeration

Vadim Gorin (MIT):
Addition of matrices at high temperature

Tony Guttmann (Melbourne University):
Extracting asymptotics from series coefficients

Nina Holden (ETH Zürich):
Random triangulations and bijective paths to Liouville quantum gravity

Mourad E.H. Ismail (University of Central Florida):
Orthogonal polynomials, moments, and continued fractions

Satya Majumdar (CNRS, Université Paris Sud):
Nonintersecting Brownian bridges in the flat-to-flat geometry

Olya Mandelshtam (University of Waterloo):
A Markov chain on tableaux that projects to a multispecies totally
asymmetric zero range process

Irène Marcovici (Université de Lorraine):
Bijections between walks inside a triangular domain and Motzkin paths
of bounded amplitude

Stephen Melczer (University of Pennsylvania):
Lattice walks and analytic combinatorics in several variables
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Robin Pemantle (University of Pennsylvania):
Generating function technologies: applications to lattice paths

Bruno Salvy (INRIA / ENS Lyon):
Computation of tight enclosures for Laplacian eigenvalues

Michael Singer (North Carolina State University):
Differentially algebraic generating series for walks in the quarter plane

Perla Sousi (University of Cambridge):
The uniform spanning tree in 4 dimensions

Andrea Sportiello (CNRS, Université Paris Nord):
Boltzmann sampling in linear time: irreducible context-free structures

Xavier Viennot (CNRS, Université de Bordeaux):
Heaps and lattice paths

Karen Yeats (University of Waterloo):
Łukasiewicz walks and generalized tandem walks

Doron Zeilberger (Rutgers University):
Using symbolic dynamical programming in lattice paths combinatorics

Paul Zinn-Justin (Melbourne University):
Generalized pipe dreams and lower-upper scheme

A recording of all the talks can be found at https://lipn.fr/~banderier/LPC/2021/.
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1.5. Accepted posters.
• Ault Shaun, Charles Kicey: From lattice paths to standard Young tableaux
• Cyril Banderier, Marie-Louise Lackner, Michael Wallner: Latticepathology and symmetric

functions
• Nicholas Beaton: Walks obeying two-step rules on the square lattice
• Swee Hong Chan, Igor Pak, Greta Panova: Log-concavity in posets and random walks
• Sergey Dovgal, Mohamed Lamine Lamali, Philippe Duchon: A phase transition in

non-deterministic walks with two or more variables
• Andrew Elvey Price: Enumeration of walks with small steps by winding angle
• Rigoberto Flórez, José L. Ramírez, Fabio A. Velandia, Diego Villamiza: Restricted Dyck

paths
• Xi Chen, Bishal Deb, Alexander Dyachenko, Tomack Gilmore, Alan Sokal: Coefficientwise

total positivity of some matrices defined by linear recurrences
• Hans Höngesberg: Weight-preserving bijections between integer partitions and a class of

alternating sign trapezoids
• Heba Ayeda, David Beecher, Alan Krinik, Jeremy J. Lin, David Perez, Thuy Vu Dieu

Lu, Weizhong Wong: Lattice paths with alternating probabilities
• Josef Küstner, Michael Schlosser, Meesue Yoo: Lattice paths and negatively indexed

weight-dependent binomial coefficients
• Florian Lehner, Christian Lindorfer, Wolfgang Woess: The language of self-avoiding walks
• Satya Majumdar, Francesco Mori, Gregory Schehr: Distribution of the time between

maximum and minimum of random walks
• Stéphane Ouvry, Alexios Polychronakos, Shuang Wu: Algebraic area counting for lattice

closed random walks
• Alan Krinik, Gerardo Rubino: The exponential-dual matrix method: applications to

Markov chain analysis
• Andrei Asinowski, Benjamin Hackl, Sarah Selkirk: Down-step statistics in generalized

Dyck paths
• Myrto Kallipoliti, Robin Sulzgruber, Elini Tzanaki: Patterns in Shi tableaux and Dyck paths
• Malvina Vamvakari: On q-order statistics
• Florian Aigner, Gabriel Frieden: qRSt: A probabilistic Robinson–Schensted correspondence

for Macdonald polynomials
• Quang-Nhat Le, Sinai Robins, Christophe Vignat, Tanay Wakhare: A continuous analogue

of lattice path enumeration
• Jisun Huh, Sun-Young Nam, Meesue Yoo: LLT polynomials in a nutshell: on Schur

expansion of LLT polynomials
• Benjamin De Bruyne, Satya Majumdar, Gregory Schehr: Generating discrete-time

constrained random walks.
The poster session was organized on the online platform Gather.town, where all the posters
can still be perused.



Preface to the special issue for the 2021 Lattice Path Conference 13

1.6. The Hotel Latticepathologia escape game. The image below shows a part of
the “Hotel Latticepathologia” (a virtual location designed by Cyril Banderier, Jehanne
Dousse, and Michael Wallner), where the poster session was taking place.

This virtual place gave the online participants the opportunity to socialize and to partic-
ipate in an escape game! In its first part, you have to identify a mysterious mathematician
in each room in the Hotel Latticepathologia (https://tinyurl.com/s6njbsku), using clues
scattered throughout. Will you succeed?

In its second part, you have to solve a collection of puzzles designed in collaboration
with Vivien Ripoll; see https://lipn.fr/~cb/LPC/2021/Puzzles/. It includes a musical
concert by 9 conference participants. Don’t miss it!

Below is a sample puzzle from the escape game. Can you solve it?

Confusing Dream
   
 

I had the strangest dream last night: a Zoom meeting with some of our mathematical heroes. Luckily I was able to take a screenshot
before waking up! They look utterly confused by the situation, though I note they all have one extraordinary feature.

  
 

They were discussing the discovery of a new lattice path. I managed to copy it there:    https://□□.□□/□□□□□□□□

Puzzle 2

Reawakens grimier Happiest jello flip Grand honey line Smaller wildlife

Envy toward chalk Banal agent cue Soir dominicalConjure label bio

Salsa jackpot Took math, zeroed in Marijuana's vain rants Firemen slay archenemy

______________________________________________________________________________________________________________________
LPC Puzzle Hunt by Solving Fun                                                                                                                                              Puzzle by Vivien Ripoll
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1.7. Registered participants. Most of the 227 registered participants were online. A few of
them had the opportunity to enjoy CIRM’s beautiful surroundings.

List of registered participants: David Adame-Carrillo, Mohammed Ageel, Florian Aigner, Marie
Albenque, Seamus Albion, Ian Alevy, Irha Ali, George Andrews, Omer Angel, Margaret Archibald, David
Ash, Andrei Asinowski, Shaun Ault, Jean-Christophe Aval, Heba Ayeda, Arvind Ayyer, Beáta Bényi,
Cyril Banderier, Josaphat Baolahy, Elena Barcucci, Jean-Luc Baril, Erik Bates, Nicholas Beaton, David
Beecher, Chiheb Ben Bechir, Sudip Bera, Olivier Bernardi, Antonio Bernini, David Bevan, Philippe
Biane, Arthur Blanc-Renaudie, Aubrey Blecher, Alin Bostan, Mireille Bousquet-Mélou, Cédric Boutillier,
Jérémie Bouttier, Timothy Budd, Théophile Buffière, Ariane Carrance, Giulio Cerbai, Swee Hong Chan,
Linxiao Chen, Shaoshi Chen, Frédéric Chyzak, Lapo Cioni, Alice Contat, Michael Coopman, Sylvie
Corteel, Logan Crew, Cesar Cuenca, Nicolas Curien, Stéphane Dartois, Benjamin De Bruyne, Bishal
Deb, Nachum Dershowitz, Hiranya Kishore Dey, Philippe Di Francesco, Lucia Di Vizio, Ruiwen Dong,
Robert Donley, Jehanne Dousse, Sergey Dovgal, Thomas Dreyfus, Michael Drmota, Enrica Duchi, Dennis
Eichhorn, Sergi Elizalde, Andrew Elvey Price, Sen-Peng Eu, Wenjie Fang, Valentin Féray, Luca Ferrari,
Ilse Fischer, Rigoberto Flórez, Luis Fredes, Gabriel Frieden, Éric Fusy, Ira Gessel, Sudhir Ghorpade,
Juan Gil, Tomack Gilmore, Vadim Gorin, Adam Gregory, Tony Guttmann, Hans Höngesberg, Benjamin
Hackl, Aliakbar Haghighi, Eva-Maria Hainzl, Charlotte Hardouin, Kilian Hermann, Clemens Heuberger,
Pawel Hitczenko, Hung Hoang, Nina Holden, Sam Hopkins, Yueyun Hu, Justin Hua, Mourad E. H. Ismail,
Svante Janson, Helen Jenne, Frédéric Jouhet, Josef Küstner, Wonwoo Kang, Manuel Kauers, Rinat
Kedem, Ghizlane Kettani, Mikhail Khristoforov, Charles Kicey, Donghyun Kim, Sergey Kirgizov, Victor
Kleptsyn, Arnold Knopfmacher, Isaac Konan, Irina Kourkova, Christian Krattenthaler, Alan Krinik,
Nishu Kumari, Raunak Kundagrami, Florian Lehner, Helder Lima, Zhicong Lin, Christian Lindorfer,
Martin Loebl, Baptiste Louf, Torsten Mütze, Satya Majumdar, Pritam Majumder, Olya Mandelshtam,
Jean-Francois Marckert, Irène Marcovici, Barbara Margolius, Hana Melánová, Stephen Melczer, Laurent
Menard, Sri Gopal Mohanty, Derrick Mohlala, Francesco Mori, Lukas Nabergall, Philippe Nadeau, Victor
Nador, Mehdi Naima, Hiroshi Naruse, Andreas Nessmann, David Nguyen, Hadrien Notarantonio, Soichi
Okada, Stéphane Ouvry, J. E. Paguyo, Nimisha Pahuja, Greta Panova, Jay Pantone, Eveliina Peltola,
Robin Pemantle, Karol Penson, Leonid Petrov, Renzo Pinzani, Thomas Prellberg, Helmut Prodinger,
Sanjay Ramassamy, José Ramírez, Kilian Raschel, Vivien Ripoll, Tom Roby, Martin Rubey, Gerardo
Rubino, Tiadora Ruza, Nasser Saad, Bruce Sagan, Manjil Pratim Saikia, Bruno Salvy, Yoshio Sano, Gilles
Schaeffer, Gregory Schehr, Michael Schlosser, Jeanne Scott, Blair Seidler, Sarah Selkirk, Timo Seppalainen,
Michael F. Singer, Alexandros Singh, Erik Slivken, Rebecca Smith, Alan Sokal, U-Keun Song, Perla Sousi,
Andrea Sportiello, Richard Stanley, Dennis Stanton, Benedikt Stufler, Adrian Tanasa, Benjamin Terlat,
Vasu Tewari, Paul Thévenin, Mikhail Tikhonov, Jordan Tirrell, Jessica Tomasko, Joonas Turunen, Eleni
Tzanaki, Malvina Vamvakari, Roger Van Peski, Zoé Varin, Ekaterina Vassilieva, Fabio Velandia, Xavier
Viennot, Christophe Vignat, Diego Villamizar, Michael Voit, Trung Vu, David Wahiche, Tanay Wakhare,
Michael Wallner, Harriet Walsh, Guoliang Wang, Sebastian Wild, Mark Wilson, Peter Winkler, Wolfgang
Woess, Elaine Wong, Zaidan Wu, Karen Yeats, Meesue Yoo, Sergey Yurkevich, Doron Zeilberger, Noam
Zeilberger, Jiang Zeng, Yan Zhuang, Paul Zinn-Justin.
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2. Our special issue in the “Séminaire Lotharingien de Combinatoire”

The “Séminaire Lotharingien de Combinatoire” is an international biannual seminar,
cofounded in 1980 by Dominique Foata (Strasbourg), Adalbert Kerber (Aachen and
Bayreuth), and Volker Strehl (Erlangen). The name of the seminar comes from the fact that
these cities were almost covered by Lotharingia, a part of the Carolingian Empire. In 1994,
an eponymous journal was launched and quickly gathered a wider international audience,
welcoming also articles independent of any participation to the actual seminar. On
some occasions, the journal has had special issues dedicated to Festschriften or conference
proceedings. All volumes are freely accessible at https://www.mat.univie.ac.at/~slc/.

We are pleased to add another volume to this collection of the journal of the Séminaire
Lotharingien de Combinatoire. Our volume, dedicated to the themes of the 2021 Lattice
Path Conference, contains the following contributions:

1. Helmut Prodinger: A walk in my lattice path garden
2. Anthony J. Guttmann and Václav Kotěšovec: A numerical study of L-convex

polyominoes and 201-avoiding ascent sequences
3. David W. Ash: Introducing DASEP: the doubly asymmetric simple exclusion process
4. Stéphane Ouvry and Alexios P. Polychronakos: Signed area enumeration for lattice

paths
5. Aubrey Blecher and Arnold Knopfmacher: Left-to-right maxima in Dyck paths
6. Rigoberto Flórez, Toufik Mansour, José L. Ramírez, Fabio A. Velandia, and Diego

Villamizar: Restricted Dyck paths on valleys sequence
7. Sergi Elizalde: Counting lattice paths by crossings and major index II: tracking

descents via two-rowed arrays
8. Jang Soo Kim and Dennis Stanton: Three families of q-Lommel polynomials
9. Malvina Vamvakari: On q-order statistics

10. Thomas Dreyfus: Differential algebraic generating series of weighted walks in the
quarter plane

11. Rodolphe Garbit and Kilian Raschel: The generating function of the survival
probabilities in a cone is not rational

12. Rafik Aguech, Asma Althagafi, and Cyril Banderier: Height of walks with resets,
the Moran model, and the discrete Gumbel distribution

We would like to thank all the authors for their patience during the interactions with
the editors, which (hopefully!) resulted in a pleasantly polished volume. . . Last but not
least, we would like to also thank all the referees for their excellent work. We hope that
the reader will enjoy this volume and will eventually be motivated to contribute to the
next Lattice Path Conference!
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3. A panorama on lattice paths

Let us end this preface with two beautiful photos taken during a random walk in the
proximity of the conference location (warm thanks to Andreas Nessmann and Sergey
Dovgal for sharing them with us).

A path. . . what else could end our preface?
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Prelude

A famous lattice path related to Bach. . .
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A WALK IN MY LATTICE PATH GARDEN

HELMUT PRODINGER1

1Stellenbosch University and NITheCS (National Institute for Theoretical and Com-
putational Sciences), South Africa; https://www.math.tugraz.at/~prodinger

Abstract. Various lattice path models are reviewed. The enumeration is done using
generating functions. A few bijective considerations are woven in as well. The kernel
method is often used. Computer algebra was an essential tool. Some results are new,
some have appeared before, but all are interesting.

The lattice path models considered are Hoppy walks and several models involving
skew Dyck paths, Schröder paths, hex-trees, decorated ordered trees, multi-edge trees,
etc., related to the sequence A002212 in the On-line Encyclopedia of Integer Sequences
(created by N. Sloane). Weighted unary-binary trees also occur and we there improve
on our old paper on Horton–Strahler numbers [P. Flajolet and H. Prodinger, 1986], by
using a different substitution. Some material on Motzkin numbers and paths is also
discussed. Some new results on ‘Deutsch paths’ in a strip are included as well. During
the Covid period, I spent much time with this beautiful concept that I dare to call
Deutsch paths, since Emeric Deutsch stands at the beginning with a problem that he
posted in the American Mathematical Monthly some 20 years ago. Peaks and valleys,
studied by Rainer Kemp 40 years ago under the names max-turns and min-turns,
are revisited with a more modern approach, streamlining the analysis, relying on the
‘subcritical case’ (named so by Philippe Flajolet), the adding a new slice technique
and once again the kernel method.
Keywords: Skew Dyck paths, decorated Dyck paths, generating functions, Motzkin
paths, kernel method.



22 H. Prodinger

Contents

1. Introduction 22
2. Hoppy walks 23
3. Combinatorics of the OEIS sequence A002212 29
4. Binary trees and Horton–Strahler numbers 30
5. Marked ordered trees 36
6. A bijection between multi-edge trees and 3-coloured Motzkin paths 39
7. The combinatorics of skew Dyck paths 42
8. More about Motzkin paths 53
9. Oscillations in Dyck paths revisited 59
10. Deutsch-paths in a strip 63
11. Conclusion 67
References 68

1. Introduction

Around 20 years ago I published a collection of examples about applications of the
kernel method in the present journal. The success of this enterprise was unexpected and
came as a very pleasant surprise. My current plan is to present again a collection of
subjects, loosely related as they all have a lattice path flavour (trees are also allowed in
my private book when lattice paths are mentioned). The subjects cover my last 2 or 3
years of research; some results were only posted on arXiv, and some are completely new.

As in the predecessor paper, the kernel method plays a role again, but also analytic
techniques like singularity analysis and Mellin transform, as well as bijective results.

Let me emphasize that this is not a survey about lattice path enumeration, but a
personal survey, that is, a very personal account of some of my interests and recent
activities. Of course, I hope that some people will like it, and that some readers will even
contact me to further investigate the models presented in this article. It is not a long
novel, I organized the material rather as a collection of short stories, roughly in the order
as I worked on them.

While some methods might be intimidating for the uninitiated, I tried to provide an
accessible introduction, also by explaining and simplifying older proofs and applying old
and powerful tools to many beautiful and attractive up-to-date problems. Even with
traditional bricks, traditional timber, traditional paint one can build a beautiful house, a
beautiful home, a beautiful garden!

People who want to properly learn the subject (via different approaches all keeping
some intimate links with enumerative combinatorics) can go to Christian Krattenthaler’s
survey [29], or the older books by Mohanty [31] and Narayana [32] or to many deep and
sophisticated articles by Mireille Bousquet-Mélou and Philippe Flajolet. I apologize to all
those that I did not mention although I should have.
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The sections are arranged in roughly the form they were conceived. They have their
own little introductions so that a casual reader can look at various parts at his/her leisure.
Like a walk in a real garden, you can just cross it or you can explore, in butterfly style,
various flowers and other beauties.

I spent probably a year of work on that project, and so it can be hoped that the interested
enthusiast can learn something from it. In the first place, I would like to mention the
large variety of combinatorial objects, perhaps not known to everybody. Then I mention
the “right” substitution of auxiliary variables that one finds in various places of the paper.
Without them, certain computations/considerations would be (almost) impossible, in
particular since computer algebra systems are not good to deal with roots. There are a
few asymptotic calculations woven in, both related to my old friends, the height of trees
and the register function (Horton–Strahler numbers). As mentioned, I do not distinguish
much (cum grano salis) between lattice paths and trees. There are also a few attractive
bijections to be found. I spent myriads of hours with Maple to guess the quantities of
interest, especially in the context of Deutsch paths in a strip and bounded marked trees.
Many explicit formulæ were found with the kernel method, often in combination with the
adding-a-new-slice procedure.

My motivation for this work, apart from numerous improvements related to the existing
literature, is a personal credo about how to proceed in various instances of this personal
survey. I like generating functions and explicit expressions and I am not so thrilled by
bounds and estimates. I know that I open a can of worms with such a statement, but
nobody is forced to proceed like me. But those who do can take home something beautiful.
It is clear to me that many researchers will not agree with ‘beautiful’ and replace it with
something else. Fortunately, different views are allowed, and I mention freely that Philippe
Flajolet’s work, especially his younger period, had a lasting effect on the way I consider
things. I should also mention Emeric Deutsch here, who is responsible for skew Dyck
paths, marked trees, Deutsch paths and more.

So I send this swan song into the world. May it encourage younger people to pick up
some stones in the garden in the hope that they are actually rough diamonds.

2. Hoppy walks

This section (which is extending our unpublished preprint arXiv:2009.13474) can be
seen as a warm-up, introducing all the typical techniques, before a much longer section.

Deng and Mansour [10] introduce a rabbit named Hoppy and let him move according to
certain rules. While the story about Hoppy is charming and entertaining, we do not need
this here and move straight ahead to the enumeration issues. Eventually, the enumeration
problem is one about k-Dyck paths (k ≥ 1). The up-steps are (1, k) and the down-steps
are (1,−1). The model that has (1, 1) as up-step and the down-step are (1,−k) will also
be called k-Dyck paths.

The question is about the length of the last sequence of down-steps (shown in red in
Figure 1). Or, phrased differently, how many k-Dyck paths end on level j with an up-step.
Note that such paths have length n = m+ km− j. The recent paper [49] consider these
paths, although without the restriction that the last step must be an up-step.
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• • • • • • • • • •
m up-steps

j

Figure 1. The rabbit Hoppy thinking in the lattice path garden. . . on the
number of final down-steps in paths with steps (1,−1) and (1, k).
Source: https://en.wikipedia.org/wiki/File:Oryctolagus_cuniculus_Tasmania_2.jpg

The original description of Deng and Mansour is a reflection of Figure 1, with up-steps
of size 1 and down-steps of size −k, but we prefer it as given here, since we are going
to use the adding-a-new-slice method; see [18, 38]. A slice is here a run of down-steps,
followed by an up-step. So, for each path, one begin with an up-step, and then m − 1
new slices are added. We keep track of the level after each slice, using a variable u. The
variable z is used to count the number of up-steps.

Deng and Mansour work out a formula which comprises O(m) terms. For our walks, we
obtain a more compact sum of only O(j) terms (recall that j is the level of the last point).

We start with the following substitution which encodes that one adds a new slice

uj −→ z
∑

0≤h≤j

uh+k = zuk

1 − u
(1 − uj+1).

Now let Fm(z, u) be the generating function of paths having m runs of down-steps. The
substitution leads to

Fm+1(z, u) = zuk

1 − u
Fm(z, 1) − zuk+1

1 − u
Fm(z, u), F0(z, u) = zuk.

Let F = ∑
m≥0 Fm, so that we do not care about the number m anymore; then

F (z, u) = zuk + zuk

1 − u
F (z, 1) − zuk+1

1 − u
F (z, u),

or, more conveniently,

F (z, u)(1 − u+ zuk+1) = zuk(1 − u+ F (z, 1)).

The equation 1−u+zuk+1 = 0 (the so-called kernel equation) is famous when enumerating
(k + 1)-ary trees (or k-Dyck paths). Its relevant combinatorial solution (also the only one
being analytic at the origin) is

u =
∑

ℓ≥0

1
1 + ℓ(k + 1)

(
1 + ℓ(k + 1)

ℓ

)
zℓ.
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Now, since u := u cancels the kernel and the left-hand side, (u− u) must be a factor of
the right-hand side (which is a polynomial in u); this gives

zuk(1 − u+ F (z, 1)) = −zuk(u− u).

Cancelling the kernel equation is thus a method which brings additional equations, allowing
us to identify F (z, 1), and then F (z, u) which is given by

F (z, u) = zuk u− u

1 − u+ zuk+1 .

The first factor has even a combinatorial interpretation, as a description of the first
step of the path. It is also clear from this that the level reached is at least k after each
slice. We do not care about the factor zuk anymore, as it produces only a simple shift.
The main interest is now how to get to the coefficients of

u− u

1 − u+ zuk+1

in an efficient way. First we deal with the denominators (j ≥ k + 1)

Sj := [uj] 1
1 − u+ zuk+1 =

∑

0≤m≤j/k

(−1)m

(
j − km

m

)
zm.

One way to see this formula is to prove by induction that the sums Sj satisfy the recursion
Sj − Sj−1 + zSj−k−1 = 0 and initial conditions S0 = · · · = Sk = 1. In [49] such expressions
also appear as determinants. Summarizing,

1
1 − u+ zuk+1 =

∑

m≥0
(−1)mzm

∑

j≥km

(
j − km

m

)
uj.

Now we read off coefficients:

[uj] u

1 − u+ zuk+1 =
∑

0≤m≤j/k

(−1)m

(
j − km

m

)
zm

∑

ℓ≥0

1
1 + ℓ(k + 1)

(
1 + ℓ(k + 1)

ℓ

)
zℓ

and further

[zn][uj] u

1 − u+ zuk+1 =
∑

0≤m≤j/k

(−1)m

1 + (n−m)(k + 1)

(
j − km

m

)(
1 + (n−m)(k + 1)

n−m

)
.

The final answer to the Deng–Mansour enumeration (without the shift) is

 ∑

0≤m≤j/k

(−1)m

1 + (n−m)(k + 1)

(
j − km

m

)(
1 + (n−m)(k + 1)

n−m

)
− (−1)n

(
j − 1 − kn

n

)
.

(2.1)
If one wants to take care of the factor zuk as well, one needs to do the replacements
n → n+ 1 and j → j + k in the formula just derived. That enumerates then the k-Dyck
paths ending at level j after n up-steps, where the last step is an up-step.

The main contribution of this section is this equation (2.1); let us now discuss three
variations about these walks.
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An application. In [1] the authors considered the total number of down-steps of the
last down-run in all k-Dyck paths. For k = 2, 3, 4, this corresponds to the sequences
A334680, A334682, A334719 in the OEIS1, respectively. So, if the path ends on level j, the
contribution to the total is j.

All we have to do here is to differentiate

F (z, u) = zuk u− u

1 − u+ zuk+1

with respect to u, and then replace u by 1. The result is
u

z
− u− 1

z
,

and the coefficient of zm therein is
1

1 + (m+ 1)(k + 1)

(
1 + (m+ 1)(k + 1)

m+ 1

)
− 1

1 +m(k + 1)

(
1 +m(k + 1)

m

)
.

The bivariate generating function does this enumeration cleanly and quickly.

Hoppy’s early adventures. Now we investigate what Hoppy does after his first up-step;
he might follow with 0, 1, . . . , k down-steps. Eventually, we want to sum all these steps
(red in the picture).

•
•

•
•

•
•k − i = h

one up-step m up-steps

A new slice is now an up-step, followed by a sequence of down-steps. The substitution
of interest is:

ui → z
∑

0≤h≤i+k

uh = z

1 − u
− zui+k+1

1 − u
.

Furthermore
Fh+1(z, u) = z

1 − u
Fh(z, 1) − zuk+1

1 − u
Fh(z, u),

and F0 = uh, the starting level. We have

H(z, u) =
∑

h≥0
Fh(z, u) = uh + z

1 − u
H(z, 1) − zuk+1

1 − u
H(z, u)

or
H(z, u)(1 − u+ zuk+1) = uh(1 − u) + zH(z, 1).

1The On-line Encyclopedia of Integer Sequences (OEIS) is a database available at https://oeis.org/.
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Plugging in u into the right-hand side gives 0, thus one has

zH(z, 1) = −uh(1 − u),

which itself implies

H(z, u) = uh(1 − u) − uh(1 − u)
1 − u+ zuk+1 .

But we only need H(z, 0), since we return to the x-axis at the end:

H(z, 0) = [[h = 0]] + uh+1 − uh.

(The Iverson notation [[P ]] which is 1 when P is true and 0 otherwise is the notation of
choice for combinatorialists, [21].) The total contribution of red steps is then

k +
k∑

h=0
(k − h)(uh+1 − uh) =

k∑

h=1
uh;

the coefficient of zm in this is the total contribution. Since u = 1 + zuk+1, there is the
further simplification

−1 + 1
z

+ 1
1 − u

=
∑

m≥1

k

m+ 1

(
(k + 1)m

m

)
zm.

Indeed, for m ≥ 1, we have

[zm]
(

−1 + 1
z

+ 1
1 − u

)
= −[zm] 1

zuk+1

= −[zm+1]
∑

ℓ≥0

−(k + 1)
(k + 1)ℓ− (k + 1)

(
(k + 1)ℓ− (k + 1)

ℓ

)
zℓ

= [zm+1]
∑

ℓ≥0

(k + 1)
(k + 1)(ℓ− 1)

(
(k + 1)(ℓ− 1)

ℓ

)
zℓ

= (k + 1)
(k + 1)m

(
(k + 1)m
m+ 1

)
= k

m+ 1

(
(k + 1)m

m

)
.

We did not expect such a simple answer k
m+1

(
(k+1)m

m

)
to this question about Hoppy’s early

adventures! This analysis of Hoppy’s early adventures covers sequences A007226, A007228,
A124724 of [52], with references to [1].

Hoppy walks into negative territory. Hoppy is now adventurous and allows himself
to go to level −1 as well, but not deeper. The setup with generating functions is the same,
but the u-variable counts the level relative to the −1 level, so this has to be corrected
later.

Hoppy, after some initial frustration discovers that he can now start with an up-step or
a down-step. First, let us start Hoppy with an up-step:

F (z, u) = zuk+1 + zuk

1 − u
F (z, 1) − zuk+1

1 − u
F (z, u),

which we conveniently rewrite as

F (z, u)(1 − u+ zuk+1) = zuk+1(1 − u) + zukF (z, 1).
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Since the left-hand side cancels for u = u, we get that u = u is also cancelling the
right-hand side (which is a polynomial in u), and this implies that

u(1 − u) + F (z, 1) = 0.

This finally gives

F (z, u) = zuk

1 − u+ zuk+1

(
u(1 − u) − u(1 − u)

)
.

But Hoppy can also start with a downstep. So we have to add the result of the previous
computation, and get finally

G(z, u) = zuk

1 − u+ zuk+1

(
u(1 − u) − u(1 − u)

)
+ zuk

1 − u+ zuk+1

(
u− u

)

or better

G(z, u) = zuk

1 − u+ zuk+1

(
u2 − u2

)
.

Now we need
∂

∂u
G(z, 1) −G(z, 1).

This subtraction is necessary, since the contribution of uj is not j as before but only j − 1.
The result is

u2

z
− 2u2 − 1

z
.

Hoppy knows that ud has beautiful coefficients:

ud =
∑

ℓ≥0

(
d− 1 + (k + 1)ℓ

ℓ

)
d

kℓ+ d

and he inserts k = 2 which gives A030983:

3z + 16z2 + 83z3 + 442z4 + 2420z5 + · · · ,

k = 3 which gives A334608:

5z + 34z2 + 236z3 + 1714z4 + 12922z5 + · · · ,

k = 4 which gives A334610:

7z + 58z2 + 505z3 + 4650z4 + 44677z5 + · · · .

In general, we have

u2

z
− 2u2 − 1

z
=
∑

ℓ≥0

[(
1 + (k + 1)(ℓ+ 1)

ℓ+ 1

)
2

k(ℓ+ 1) + 2 − 2
(

1 + (k + 1)ℓ
ℓ

)
2

kℓ+ 2

]
zℓ.

Happy Hoppy decides to stop this line of computations here.
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3. Combinatorics of the OEIS sequence A002212

The following (sub)sections give some (mostly new) results about the sequence

1, 1, 3, 10, 36, 137, 543, 2219, 9285, 39587, 171369, 751236, 3328218, 14878455, . . . ,

which is A002212 in the OEIS. In the following four sections we consider different combina-
torial structures enumerated by this sequence.

• Hex-trees are identified as weighted unary-binary trees, with weight one (see the
article by Hana Kim and Richard Stanley [26]). Apart from left and right branches,
as in binary trees, there are also unary branches, and they can come in different
colours, here in just one colour. Unary-binary trees played a role in the present
authors scientific development, as documented in [17], a paper written with the
late and great Philippe Flajolet, about the register function (Horton–Strahler
numbers) of unary-binary trees. In Section 4, we offer an improvement, using a
“better” substitution than in [17]. The results can now be made fully explicit. As a
by-product, this provides a definition and analysis of the Horton–Strahler numbers
of hex-trees.

• Then we move to skew Dyck paths, as considered by Emeric Deutsch, Emanuele
Munarini, and Simone Rinaldi in [12]. They are like Dyck paths, but allow for an
extra step (−1,−1), provided that the path does not intersect itself. An equivalent
model, defined and described using a bijection, is from [12]: marked ordered trees;
see Section 5. They are like ordered trees, with an additional feature, namely
each rightmost edge (except for one that leads to a leaf) can be coloured with
two colours. Since we find this class of trees to be interesting, we analyze two
parameters of them: number of leaves and height. While the number of leaves for
ordered trees is about n/2, it is only n/10 in the new model. For the height, the
leading term

√
πn drops to 2√

5
√
πn. Of course, many more parameters of this new

class of trees could be investigated, which we encourage to do.

• The next two classes of structures are multi-edge trees; see Section 6. Our interest
in them was already triggered in an earlier publication, together with Clemens
Heuberger and Stephan Wagner [24]. They may be seen as ordered trees, but with
weighted edges. The weights are integers ≥ 1, and a weight a may be interpreted as
a parallel edges. The other class are 3-Motzkin paths. They are like Motzkin paths
(Dyck paths plus horizontal steps); however, the horizontal steps come in three
different colours. A bijection is described. Since 3-Motzkin paths and multi-edge
trees are very much alike (using a variation of the classical rotation correspondence),
all the structures that are discussed in this paper can be linked via bijections.
Since these trees are not so common in the combinatorics community, details and
examples are presented for the readers’ benefit.

• Skew Dyck paths are finally discussed in more detail in Section 7.
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4. Binary trees and Horton–Strahler numbers

This section is classical and serves as the basis of some new developments about weighted
unary-binary trees. A full account can be found in [36].

Binary trees may be expressed by the following symbolic equation, which says that they
include the empty tree and trees recursively built from a root followed by two subtrees,
which are binary trees:

B = □ +
B B

Binary trees are counted by Catalan numbers and there is an important parameter reg,
which in Computer Science is called the register function. It associates to each binary tree
(which is used to code an arithmetic expression, with data in the leaves and operators in
the internal nodes) the minimal number of extra registers that is needed to evaluate the
tree. The optimal strategy is to evaluate difficult subtrees first, and use one register to keep
its value, which does not hurt, if the other subtree requires less registers. If both subtrees
are equally difficult, then one more register is used, compared to the requirements of the
subtrees. This natural parameter is among combinatorialists known as the Horton–Strahler
numbers, and we will adopt this name throughout this paper.

There is a recursive description of this function: reg(□) = 0, and if tree t has subtrees
t1 and t2, then

reg(t) =




max{reg(t1), reg(t2)} if reg(t1) ̸= reg(t2),
1 + reg(t1) otherwise.

The recursive description attaches numbers to the nodes, starting with 0’s at the leaves
and then going up; the number appearing at the root is the Horton–Strahler number of
the tree.

2
1 2

0 1 1 1
0 0 0 0 0 0

Let Rp denote the family of trees with Horton–Strahler number equal to p, then one
gets immediately from the recursive definition:

Rp =
Rp−1 Rp−1

+
Rp

∑
j<p

Rj

+ ∑
j<p

Rj Rp

In terms of generating functions, these equations are translated into
Rp(z) = zR2

p−1(z) + 2zRp(z)
∑

j<p

Rj(z);

the variable z is used to mark the size (i.e., the number of internal nodes) of the binary
tree. A historic account of these concepts, from the angle of Philippe Flajolet, who was
one of the pioneers is [50]; compare also [48].
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Amazingly, the recursion for the generating functions Rp(z) can be solved explicitly!
The substitution

z = u

(1 + u)2

that de Bruijn, Knuth, and Rice [9] also used, produces the nice expression

Rp(z) = 1 − u2

u

u2p

1 − u2p+1 .

Of course, once this is known, it can be proved by induction, using the recursive formula.
For the readers benefit, this will be sketched now. We start with the auxiliary formula

∑

0≤j<p

u2j

1 − u2j+1 = u

1 − u
− u2p

1 − u2p ,

which we will prove now by induction: For p = 0, the formula 0 = u
1−u

− u
1−u

is correct,
and then

∑

0≤j<p+1

u2j

1 − u2j+1 = u

1 − u
− u2p

1 − u2p + u2p

1 − u2p+1

= u

1 − u
− u2p(1 + u2p)

1 − u2p+1 + u2p

1 − u2p+1 = u

1 − u
− u2p+1

1 − u2p+1 .

Now the formula for Rp(z) can also be proved by induction. First, R0(z) = 1−u2

u
u

1−u2 = 1,
as it should, and

zR2
p−1(z) + 2zRp(z)

∑

j<p

Rj(z)

= u

(1 + u)2
(1 − u2)2

u2
u2p

(1 − u2p)2 + 2u
(1 + u)2Rp(z)

∑

j<p

1 − u2

u

u2j

1 − u2j+1

= u2p−1(1 − u)2

(1 − u2p)2 + 2(1 − u)
(1 + u) Rp(z)

∑

j<p

u2j

1 − u2j+1 .

Solving

Rp(z) = u2p−1(1 − u)2

(1 − u2p)2 + 2(1 − u)
(1 + u) Rp(z)

[
u

1 − u
− u2p

1 − u2p

]

leads to

Rp(z)1 − u

1 + u

[
1 + 2 u2p

1 − u2p

]
= u2p−1(1 − u)2

(1 − u2p)2 ,

or, simplified

Rp(z) = u2p−1(1 − u2)
(1 − u2p)(1 + u2p) = 1 − u2

u

u2p

1 − u2p+1 ,

which is the formula that we needed to prove. Alternatively, this formula can also be
proved by converting the sum into a telescoping sum, by extending the numerator and
denominator by (1 − u2j ), and using a partial fraction decomposition. □
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Weighted unary-binary trees and Horton–Strahler numbers. The family of unary-
binary trees M might be defined by the symbolic equation

M = +
M MM \ {□}

□ +

The equation for the generating function is

M(z) = 1 + z(M(z) − 1) + zM(z)2

with the solution

M(z) = 1 − z −
√

1 − 6z + 5z2

2z = 1 + z + 3z2 + 10z3 + 36z4 + · · · ;

the coefficients form again sequence A002212 in [52] and enumerate Schröder paths, among
many other things. We will come to equivalent structures a bit later.

In the instance of unary-binary trees, we can also work with a substitution. Set
z = u

1+3u+u2 , then M(z) = 1 + u. Unary-binary trees and the register function were
investigated in [17], but the present favourable substitution was not used. Therefore, in
this previous paper, asymptotic results were available but no explicit formulæ.

This works also with a weighted version, where we allow unary edges with a different
colours. Then

N = +
N N

a ·
N \ {□}

□ +

and with the substitution z = u
1+(a+2)u+u2 , the generating function is beautifully expressed

as N(z) = 1 + u. For a = 0, this covers also binary trees.
We will consider the Horton–Strahler numbers of unary-binary trees in the sequel. The

definition is naturally extended by

reg
( )

= reg(t).
t

Now we can move again to Rp(z), the generating function of (generalized) unary-binary
trees with Horton–Strahler number p. The recursion (for p ≥ 1) is

Rp =
Rp−1 Rp−1

+
Rp

∑
j<p

Rj

+ ∑
j<p

Rj Rp Rp

+ a·

In terms of generating functions, these equations read as

Rp(z) = zR2
p−1(z) + 2zRp(z)

∑

j<p

Rj(z) + azRp(z), p ≥ 1; R0(z) = 1.

Amazingly, with the substitution z = u
1+(a+2)u+u2 , formally we get the same solution as in

the binary case:

Rp(z) = 1 − u2

u

u2p

1 − u2p+1 .
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The proof by induction is as before. One sees another advantage of the substitution. On a
formal level, many manipulations do not need to be repeated. Only when one switches
back to the z-world, things become different.

Hex-trees. Hex-trees either have two non-empty successors, or one of 3 types of unary
successors (called left, middle, right). The author has seen this family first in [26], but one
can find older literature following the references and the usual search engines [2, 23]. We
start with a symbolic equation, as usual.

H =
H \ {□} H \ {□}

+ +
H \ {□} H \ {□}

+
H \ {□}

□ + +

The generating function satisfies (by translation of the symbolic equation)

H(z) = 1 + z(H(z) − 1)2 + z + 3z(H(z) − 1) =
1 − z −

√
(1 − z)(1 − 5z)

2z
= 1 + z + 3z2 + 10z3 + 36z4 + 137z5 + 543z6 + 2219z7 + 9285z8 + 39587z9 + · · · .

The same generating function also appears in [24], and it is sequence A002212 in the
OEIS [52]. One can rewrite the symbolic equation as

H =
H H

+
H \ {□}

□ +

and sees in this way that the hex-trees are just unary-binary trees (with parameter a = 1).

Continuing with enumerations. First, we will enumerate the number of (generalized)
unary-binary trees with n (internal) nodes. For that we need the notion of generalized
trinomial coefficients, viz.

(
n; 1, a, 1

k

)
:= [zk](1 + az + z2)n.

Of course, for a = 2, this simplifies to a binomial coefficient
(

2n
k

)
. We will use contour

integration to pull out coefficients, and the contour of integer, in whatever variable,
is a small circle (or equivalent) around the origin. The desired number is (recall that
z = u

1+(a+2)u+u2 )

[zn](1 + u) = 1
2πi

∮ dz

zn+1 (1 + u)

= 1
2πi

∮ du(1 − u2)(1 + (a+ 2)u+ u2)n+1

(1 + (a+ 2)u+ u2)2un+1 (1 + u)

= [un+1](1 − u)(1 + u)2(1 + (a+ 2)u+ u2)n−1

=
(
n− 1; 1, a+ 2, 1

n+ 1

)
+
(
n− 1; 1, a+ 2, 1

n

)

−
(
n− 1; 1, a+ 2, 1

n− 1

)
−
(
n− 1; 1, a+ 2, 1

n− 2

)
.
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Then we introduce Sp(z) = Rp(z)+Rp+1(z)+Rp+2(z)+· · · , the generating function of trees
with Horton–Strahler number ≥ p. Using the summation formula proved earlier, we get

Sp(z) = 1 − u2

u

u2p

1 − u2p = 1 − u2

u

∑

k≥1
uk2p

.

Asymptotics. We start by deriving asymptotics for the number of (generalized) unary-
binary trees with n (internal) nodes. This is a standard application of singularity analysis
of generating functions, as described in [16] and [20].

We start from the generating function

N(z) =
1 − az −

√
1 − 2(a+ 2)z + a(a+ 4)z2

2z
and determine the singularity closest to the origin, which is the value making the square
root disappear: z = 1

a+4 . After that, the local expansion of N(z) around this singularity is
determined:

N(z) ∼ 2 −
√
a+ 4

√
1 − (a+ 4)z.

The translation lemmas given in [16] and [20] provide the asymptotics:

[zn]N(z) ∼ [zn]
(

2 −
√
a+ 4

√
1 − (a+ 4)z

)

= −
√
a+ 4 (a+ 4)n n

−3/2

Γ(−1
2) = (a+ 4)n+1/2 1

2
√
πn3/2 .

Just note that a = 0 is the well-known formula for binary trees with n nodes.
Now we move to the generating function for the average number of registers. Apart

from normalization it is
∑

p≥1
pRp(z) =

∑

p≥1
Sp(z) = 1 − u2

u

∑

p≥1

∑

k≥1
uk2p = 1 − u2

u

∑

n≥1
v2(n)un,

where v2(n) is the highest exponent k such 2k divides n.
This has to be studied around u = 1, which, upon setting u = e−t, means around t = 0.

Eventually, and that is the only thing that is different here, this is to be retranslated into
a singular expansion of z around its singularity, which depends on the parameter a.

For the reader’s convenience, we also repeat the steps that were known before. The first
factor is elementary:

1 − u2

u
∼ 2t+ 1

3t
3 + · · · .

For ∑

p≥1

∑

k≥1
e−k2pt,

one applies the Mellin transform, with the result
Γ(s)ζ(s)
2s − 1 .

Applying the inversion formula, one finds
∑

p≥1

∑

k≥1
e−k2pt = 1

2πi

∫ 2+i∞

2−i∞
t−s Γ(s)ζ(s)

2s − 1 ds.
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Shifting the line of integration to the left, the residues at the poles s = 1, s = 0,
s = χk = 2kπi

log 2 , k ̸= 0 provide enough terms for our asymptotic expansion.

1
t

+ γ

2 log 2 − 1
4 − log π

2 log 2 + log t
2 log 2 + 1

log 2
∑

k ̸=0
Γ(χk)ζ(χk)t−χk .

Combined with the elementary factor, this leads to

2 +
(

γ

log 2 − 1
2 − log π

log 2 + log t
log 2

)
t+ 2t

log 2
∑

k ̸=0
Γ(χk)ζ(χk)t−χk +O(t2 log t).

Now we want to translate into the original z-world. Since z = u
1+(a+2)u+u2 , u = 1 translates

into the singularity z = 1
a+4 . Further,

t ∼
√
a+ 4 ·

√
1 − z(a+ 4),

let us abbreviate A = a + 4, and we now want to get the asymptotic behaviour of the
coefficients in the power series expansion of

√
A ·

√
1 − zA log(1 − zA)

2 log 2

+
(

γ

log 2 − 1
2 − log π

log 2 + logA
2 log 2

)√
A ·

√
1 − zA

+ 2
log 2

∑

k ̸=0
Γ(χk)ζ(χk)A

1−χk
2 (1 − zA)

1−χk
2 .

By singularity analysis (see [16,20]), one has

[zn](1 − z)α ∼ n−α−1

Γ(−α)
and

[zn] log(1 − z)
√

1 − z ∼ n−3/2 log n
2
√
π

+ n−3/2

2
√
π

(−2 + γ + 2 log 2).

We start with the most complicated term:

[zn]
√

A·
√

1−zA log(1−zA)
2 log 2

[zn]N(z) ∼
√
A

2 log 2

An

(
n−3/2 log n

2
√

π
+ n−3/2

2
√

π
(−2 + γ + 2 log 2)

)

An+1/2 1
2
√

πn3/2

= log4 n+ 1 + γ

2 log 2 − 1
log 2 .

The next term we consider is
(

γ

log 2 − 1
2 − log π

log 2 + logA
2 log 2

)√
A

[zn]
√

1 − zA

[zn]N(z)

∼
(

γ

log 2 − 1
2 − log π

log 2 + logA
2 log 2

)√
A

[zn]
√

1 − zA

−
√
A[zn]

√
1 − zA

= − γ

log 2 + 1
2 + log π

log 2 − logA
2 log 2 .
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The last term we consider is

2
log 2Γ(χk)ζ(χk)A

1−χk
2

[zn](1 − zA)
1−χk

2

−
√
A[zn]

√
1 − zA

∼ −4
√
π

log 2
Γ(χk)ζ(χk)

Γ
(

χk−1
2

) A
1−χk

2 nχk/2.

Eventually we have evaluated the average value of the Horton–Strahler numbers:

Theorem 4.1. The average Horton–Strahler number of weighted unary-binary trees with
n nodes is given by the asymptotic formula

log4 n− γ

2 log 2 − 1
log 2 + 3

2 + log π
log 2 − logA

2 log 2 − 4
√
πA

log 2
∑

k ̸=0

Γ(χk)ζ(χk)
Γ
(

χk−1
2

) A
−χk

2 nχk/2

= log4 n− γ

2 log 2 − 1
log 2 + 3

2 + log π
log 2 − logA

2 log 2 + ψ(log4 n),

with a tiny periodic function ψ(x) of period 1.

These oscillations are usually bounded by 10−5, say. See [19] for some explicit error
bounds.

5. Marked ordered trees

In [12] we find the following variation of ordered trees. Each rightmost edge might be
marked or not, if it does not lead to an endnode (leaf). We depict a marked edge by the
red colour and draw all of them of size 4 (4 nodes):

Figure 2. All 10 marked ordered trees with 4 nodes.

Accordingly, the marked ordered trees satisfy the following symbolic equation (where
A · · · A refers to ≥ 0 copies of A ):

A = +
A · · · A

+
A · · · A A \{◦}

+
A · · · A A \{◦}

In terms of generating functions, this gives the functional equation

A(z) = z + z

1 − A(z)z + z

1 − A(z)2(A(z) − z),

whose solution is

A(z) = 1 − z −
√

1 − 6z + 5z2

2 = z + z2 + z3 + 3z3 + 10z4 + 36z5 + · · · .
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In fact, as proved in [12], these trees are in bijection with an interesting family of lattice
paths, called skew Dyck paths. The bijection performs a walk around the contour of the
tree (that is, a depth-first search traversal) and translates it into a skew Dyck path as
follows

• black or red edges on the way down become a (+1,+1) step,
• black edges on the way up become a (+1,−1) step,
• red edges on the way up become a (−1,−1) step.

Thus, the 10 trees of Figure 2 translate as follows into skew Dyck paths of length 6:

We will analyze several parameters of skew Dyck paths in Section 7. But, as the present
author believes that trees are more manageable (than these paths) when it comes to
enumeration issues, let us now investigate these marked trees in more detail.

Parameters of marked ordered trees. There are many parameters, usually considered
in the context of ordered trees, that can be considered for marked ordered trees. Of course,
we cannot be encyclopedic about such parameters. We just consider a few parameters and
leave further analysis to the future.

The number of leaves. To get this, it is most natural to use an additional variable u when
translating the symbolic equation, so that znuk refers to trees with n nodes and k leaves.
One obtains

F (z, u) = zu+ z

1 − F (z, u)
(
zu+ 2(F (z, u) − zu)

)
,

with the solution

F (z, u) = −z + zu

2 + 1
2 − 1

2
√

4z2 − 4z + z2u2 − 2zu+ 1

= zu+ z2u+
(
2u+ u2

)
z3 +

(
4u+ 5u2 + u3

)
z4 + · · · .

The factor 4u+ 5u2 + u3 corresponds to distribution of leaves in the 10 trees of Figure 2.
Of interest is also the average number of leaves, when all marked ordered trees of size n

are considered to be equally likely. For that, we differentiate F (z, u) with respect to u,
and set u := 1, with the result

z

2 + z − z2

2
√

1 − 6z + 5z2
= z

1 − v
, with the parametrization z = v

1 + 3v + v2 . (5.1)

Since F (z, 1) = z(1 + v), it follows that the average is asymptotic to

[zn+1] z
1−v

[zn+1]z(1 + v) =
[zn] 1

1−v

[zn](1 + v) =
[zn] 1√

5
1√

1−5z

5n+ 1
2 1

2
√

π
n3/2

=
n−1/2

Γ( 1
2 )

5n+ 1
2 1

2
√

π
n3/2

= n

10 . (5.2)

Note that the corresponding number for ordered trees (unmarked) is n
2 , so we have

significantly less leaves here.
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The height. As in the seminal paper [9], we define the height in terms of the longest chain
of nodes from the root to a leaf. Further, let ph = ph(z) be the generating function of
marked ordered trees of height at least h. From the symbolic equation, one has

ph+1 = z + z2

1 − ph

+ 2z(ph − z)
1 − ph

= −z + 2z − z2

1 − ph

(for h ≥ 1) and p1 = z.

By some creative guessing, separating numerator and denominator, we find the solution
(where we use the auxiliary algebraic function v, implicitly defined in (5.1)):

ph = z(1 + v) (1 + 2v)h−1 − vh(v + 2)h−1

(1 + 2v)h−1 − vh+1(v + 2)h−1 .

This formula is in fact proved by induction (we start with p1 = z(1 + v) 1−v
1−v2 = z and, then,

the induction step is best checked using a computer).
The limit of ph for h → ∞ is z(1 + v), the generating function of all marked ordered

trees, as expected. Taking differences, we get the generating functions of trees of height at
least h:

p∞ − ph = z(1 − v2) (v + 2)h−1vh

(1 + 2v)h−1 − vh+1(v + 2)h−1 .

From this, the average height can be worked out, as in the model paper [24]. We sketch
the essential steps. For the average height, one needs

∑

h≥0
z(1 − v2) (v + 2)h−1vh

(1 + 2v)h−1 − vh+1(v + 2)h−1

and its behaviour around v = 1, viz.

2z(1 − v)
∑

h≥0

3h−1vh

3h−1 − vh+13h−1 ∼ 2z(1 − v)
∑

h≥1

vh

1 − vh
.

The behaviour of the series can be taken straight from [24]. We find there
∑

h≥1

vh

1 − vh
= − log(1 − v)

1 − v

and
∑

h≥0
z(1 − v2) (v + 2)h−1vh

(1 + 2v)h−1 − vh+1(v + 2)h−1 ∼ −2z log(1 − v).

Thus, the coefficient of zn+1 is asymptotic to −2[zn] log(1 − v). Since 1 − v ∼
√

5
√

1 − 5z,
−2z log(1 − v) ∼ −2z log

√
1 − 5z = −z log(1 − 5z),

and the coefficient of zn+1 in it is asymptotic to 5n

n
. This has to be divided (as derived

inside Formula (5.2)) by
5n+ 1

2
1

2
√
πn3/2 ,

with the result
25n

n

1
5n+ 1

2

√
πn3/2 = 2√

5
√
πn.

Note that the constant in front of
√
πn for ordered trees is 2√

4 = 1, so the average height
for marked ordered trees is indeed a bit smaller thanks to the extra markings.
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6. A bijection between multi-edge trees and 3-coloured Motzkin paths

Multi-edge trees are like ordered (planar, plane, . . . ) trees, but instead of edges there
are multiple edges. When drawing such a tree, instead of drawing, say 5 parallel edges,
we just draw one edge and put the number 5 on it as a label. These trees were studied
in [14,24]. We also considered this model in our unpublished preprint arXiv:2105.03350;
the bijection presented hereafter is new.

The generating function F (z) (where one counts edges) satisfies

F (z) =
∑

k≥0

(
z

1 − z
F (z)

)k

= 1
1 − z

1−z
F (z) ,

whence

F (z) = 1 − z −
√

1 − 6z + 5z2

2z = 1 + z + 3z2 + 10z3 + 36z4 + 137z5 + 543z6 + · · · .

The coefficients form sequence A002212 in the OEIS [52].
A Motzkin path consists of up-steps, down-steps, and horizontal steps; see sequence

A091965 in [52] and the references given there. As Dyck paths, they start at the origin
and end, after n steps again at the x-axis, but are not allowed to go below the x-axis. A
3-coloured Motzkin path is built as a Motzkin path, but there are 3 different types of
horizontal steps, which we call red, green, blue. The generating function M(z) satisfies

M(z) = 1 + 3zM(z) + z2M(z)2 = 1 − 3z −
√

1 − 6z + 5z2

2z2 , or F (z) = 1 + zM(z).

So multi-edge trees with N edges (counting the multiplicities) correspond to 3-coloured
Motzkin paths of length N − 1.

The purpose of this section is to describe a bijection. It transforms trees into paths, but
all steps are reversible.

The details. As a first step, the multiplicities will be ignored, and the tree then has only
n edges. The standard translation of such tree into the world of Dyck paths, which is in
every book on combinatorics, leads to a Dyck path of length 2n. Then the Dyck path will
be transformed bijectively to a 2-coloured Motzkin path of length n− 1 (the colours used
are red and green). This transformation plays a prominent role in [13], but is most likely
much older. I believe that people like Viennot know this for 40 years. I would be glad to
get a proper historic account from the gentle readers.

The last step is then to use the third colour (blue) to deal with the multiplicities.
The first up-step and the last down-step of the Dyck path will be deleted. Then, the

remaining 2n− 2 steps are coded pairwise into a 2-Motzkin path of length n− 1:

•
•

•
−→ •

•
•

•
• −→ •

• •
•

• −→ • •
•

•
• −→ • •

The last step is to deal with the multiplicities. If an edge is labelled with the number a,
we will insert a− 1 horizontal blue steps in the following way. Since there are currently
n − 1 symbols in the path, we have n possible positions to enter something (in the
beginning, in the end, between symbols). We go through the tree in pre-order, and enter
the multiplicities one by one using the blue horizontal steps.



40 H. Prodinger

To illustrate this procedure, we give in Table 1 the list of 10 multi-edge trees with
3 edges, and the corresponding 3-Motzkin paths of length 2, with intermediate steps
completely worked out.

Multi-edge tree Dyck path 2-Motzkin path blue edges added
•
•
•
•

1

1

1

•
•
•

2

1

•
•
•

1

2

•
•

3

•
•
•

•
1

1

1

•
• •
2 1

•
• •
1 2

•
•

•
• 1

11

•
• • •
1 1 1

•
•

• •

1

11

Table 1. First row is a multi-edge tree with 3 edges, second row is the
standard Dyck path (multiplicities ignored), third row is cutting off first
and last step, and then translated pairs of steps, fourth row is inserting blue
horizontal edges, according to multiplicities.

Connecting unary-binary trees with multi-edge trees. This is not too difficult: We
start from multi-edge trees, and ignore the multiplicities at the moment. Then we apply
the classical rotation correspondence (also called: natural correspondence). Then we add
vertical edges, if the multiplicity is higher than 1. To be precise, if there is a node, and an
edge with multiplicity a leads to it from the top, we insert a− 1 extra unary nodes in a
chain on the top, and connect them with unary branches.
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In Table 2 below, we illustrate this procedure on 10 objects.

Multi-edge tree Binary tree (rotation) vertical edges added
•
•
•
•

1

1

1

•
•

•

•
•

•

•
•
•

2

1
•

•
•

•

•

•
•
•

1

2
•

•
•
•

•

•
•

3
•

•
•

•

•
•
•

•
1

1

1

•
•

• •
•

•

•
• •
2 1

•
• •

•

•

•
• •
1 2

•
• •

•

•

•
•

•
• 1

11 •
•

•

•
•

•

•
• • •
1 1 1

•

•
•

•

•
•

•
•

• •

1

11
•

•

•
•

•

•

Table 2. First row is a multi-edge tree with 3 edges, second row the
corresponding binary tree, according to the classical rotation correspondence,
ignoring the unary branches. Third row is inserting extra horizontal edges
when the multiplicities are higher than 1.
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7. The combinatorics of skew Dyck paths

Let us come back to skew Dyck paths, which we introduced in Section 5 as objects
in bijection with marked ordered trees. As we saw, skew Dyck paths are a variation of
Dyck paths, where additionally to steps (1, 1) and (1,−1) a south-west step (−1,−1)
is also allowed, provided that the path does not intersect itself. Also, like for Dyck
paths, it must never go below the x-axis and end eventually (after 2n steps) on the
x-axis. These paths were considered in [6,12,26,44]. We extend here on our paper [46],
giving here additional results on the prefixes of these paths. The enumerating sequence is
1, 1, 3, 10, 36, 137, 543, 2219, 9285, 39587, 171369, . . . , which is A002212 in the OEIS [52].

Let us now give a more thorough analysis of skew Dyck paths, using generating functions
and the kernel method. Here is the list of the 10 skew Dyck paths consisting of 6 steps:

Figure 3. All 10 skew Dyck paths of length 6.

We prefer to work with the equivalent model (resembling more traditional Dyck paths)
where we replace each step (−1,−1) by (1,−1) but label it red (see Figure 4, and compare
with Figure 3):

Figure 4. The 10 paths of length 6 redrawn, with red south-east edges
instead of south-west edges.

The rules to generate such decorated Dyck paths are: each edge (1,−1) may be black
or red, but and are forbidden.

Our interest is in particular in partial decorated Dyck paths, ending at level j, for fixed
j ≥ 0; the instance j = 0 is the classical case. The analysis of partial skew Dyck paths was
recently started by Baril et al. in [6] (using the notion ‘prefix of a skew Dyck path’) using
Riordan arrays instead of our kernel method. The latter gives us bivariate generating
functions, from which it is easier to draw conclusions. Two variables, z and u, are used,
where z marks the length of the path and j marks the end-level. We briefly mention that
one can, using a third variable w, also count the number of red edges.

Again, once all generating functions are explicitly known, many corollaries can be
derived in a standard fashion. We only do this in a few instances. But we would like to
emphasize that the substitution z = v

1+3v+v2 , which was used in [24, 44] allows to write
explicit enumerations, using the notion of a (weighted) trinomial coefficient:

(
n; 1, 3, 1

k

)
:= [tk](1 + 3t+ t2)n.
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Generating functions and the kernel method. We catch the essence of a decorated
Dyck path using a state-diagram:

Figure 5. Three layers of states according to the type of steps leading to
them (up, down-black, down-red).

It has three types of states, with j ranging from 0 to infinity; in the drawing, only
j = 0..8 is shown. The first layer of states refers to an up-step leading to a state, the
second layer refers to a black down-step leading to a state and the third layer refers to
a red down-step leading to a state. We will work out generating functions describing
all paths leading to a particular state. We will use the notations fj, gj, hj for the three
respective layers, from top to bottom. Note that the syntactic rules of forbidden patterns

and can be clearly seen from the picture. The functions depend on the variable z
(marking the number of steps), but mostly we just write fj instead of fj(z), etc.

The following recursions can be read off immediately from the diagram:
f0 = 1, fi+1 = zfi + zgi, i ≥ 0,
gi = zfi+1 + zgi+1 + zhi+1, i ≥ 0,

hi = zgi+1 + zhi+1, i ≥ 0.
And now it is time to introduce the promised bivariate generating functions:

F (z, u) =
∑

i≥0
fi(z)ui, G(z, u) =

∑

i≥0
gi(z)ui, H(z, u) =

∑

i≥0
hi(z)ui.

Again, often we just write F (u) instead of F (z, u) and treat z as a ‘silent’ variable.
Summing the recursions leads to

∑

i≥0
uifi+1 =

∑

i≥0
uizfi +

∑

i≥0
uizgi,

∑

i≥0
uigi =

∑

i≥0
uizfi+1 +

∑

i≥0
uizgi+1 +

∑

i≥0
uizhi+1,

∑

i≥0
uihi =

∑

i≥0
uizhi+1 +

∑

i≥0
uizgi+1.

This can be rewritten as
1
u

(F (u) − 1) = zF (u) + zG(u),

G(u) = z

u
(F (u) − 1) + z

u
(G(u) −G(0)) + z

u
(H(u) −H(0)),

H(u) = z

u
(G(u) −G(0)) + z

u
(H(u) −H(0)).

Such systems of equations having more unknowns than equations can be solved with the
kernel method (see [37] for a gentle example-driven introduction to this method).
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We begin by rewriting our system as

F (u) = z2uG(0) + z2uH(0) + z2u− u− z3 + 2z
−z3 − u+ 2z + zu2 − z2u

, (7.1)

G(u) = z(H(0) − uzH(0) + z2 +G(0) − zuG(0) − zu)
−z3 − u+ 2z + zu2 − z2u

, (7.2)

H(u) = z(−uzH(0) − z2 − zuG(0) +G(0) − z2H(0) +H(0) − z2G(0))
−z3 − u+ 2z + zu2 − z2u

. (7.3)

The denominator is the same for each equation and it factors as z(u− r1)(u− r2), with

r1 = 1 + z2 +
√

1 − 6z2 + 5z4

2z , r2 = 1 + z2 −
√

1 − 6z2 + 5z4

2z .

Consider Equation (7.1), since F (u) is a power series in z, the factor u − r2 in the
denominator is “bad”2, thus this factor must also be a factor of the numerator (seen as a
polynomial of degree 1 in u). This implies

G(0) = −H(0) − 1 + 1
z2 + z − 2/z

r2
.

Applying the same principle to either (7.2) or (7.3), we get after simplification

H(0) = 1 − 4z2 + z4 + (z2 − 1)
√

1 − 6z2 + 5z4

2 − z2 .

Thus, with W =
√

1 − 6z2 + 5z4 =
√

(1 − z2)(1 − 5z2), one has

F (u) = −1 − z2 −W

2z(u− r1)
= 1 + z2 +W

2zr1(1 − u/r1)
,

G(u) = −1 + z2 +W

2z(u− r1)
= 1 − z2 −W

2zr1(1 − u/r1)
,

H(u) = −1 + 3z2 +W

2z(u− r1)
= 1 − 3z2 −W

2zr1(1 − u/r1)
.

The total generating function (summing the 3 cases that lead to the same level) is

S(u) = F (u) +G(u) +H(u) = 3 − 3z2 −W

2zr1(1 − u/r1)
.

The coefficient of ujzn in S(u) counts the partial paths of length n, ending at level j. We
will write sj = [uj]S(u). At this stage, we are only interested in

sj = fj + gj + hj = [uj] 3 − 3z2 −W

2zr1(1 − u/r1)
= 3 − 3z2 −W

2zrj+1
1

,

which is the generating function of all (partial) paths ending at level j. Parity considerations
give us that only coefficients [zn]sj are non-zero if n ≡ j mod 2. To make this more
transparent, we set

P (z) = zr1 = 1 + z2 +
√

1 − 6z2 + 5z4

2 .

2In an identity having the form A(z, u) = B(z, u)/(u− r(z)), we say that the factor (u− r(z)) is bad if
A(u, z) is a power series in z while 1/(u− r(z)) is not.
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We thus get

sj = fj + gj + hj = zj 3 − 3z2 −W

2P j+1 .

Now we read off coefficients. We do this using residues and contour integration. The path
of integration, in both variables x resp. v is a small circle or an equivalent contour. The
following computation is abbreviated.

[z2m+j]sj = 1
2πi

∮ dx

xm+1
(1 + v)(1 + 2v)
vj+1(v + 2)j+1 (1 + 3v + v2)j

= [vm+j+1] (1 + v)2(1 + 2v)(1 − v)
(v + 2)j+1 (1 + 3v + v2)m−1+j.

Note that

(1 + v)2(1 + 2v)(1 − v) = −9 + 27(v + 2) − 29(v + 2)2 + 13(v + 2)3 − 2(v + 2)4;

consequently

[vk] (1 + v)2(1 + 2v)(1 − v)
(v + 2)j+1 = −9 1

2j+1+k

(
−j − 1
k

)
+ 27 1

2j+k

(
−j
k

)
− 29 1

2j−1+k

(
−j + 1
k

)

+ 13 1
2j−2+k

(
−j + 2
k

)
− 2 1

2j−3+k

(
−j + 3
k

)
=: λj;k.

With this abbreviation λj;k we find

[vm+j+1] (1 + v)2(1 + 2v)(1 − v)
(v + 2)j+1 (1 + 3v + v2)m−1+j =

m+j+1∑

k=0
λj;k

(
m− 1 + j; 1, 3, 1
m+ j + 1 − k

)
.

This is not extremely pretty but it is explicit and as good as it gets. Here are the first few
generating functions:

• s0 = 1 + z2 + 3z4 + 10z6 + 36z8 + 137z10 + 543z12 + · · · ,
• s1 = z + 2z3 + 6z5 + 21z7 + 79z9 + 311z11 + 1265z13 + · · · .

We could also give such lists for the functions fj, gj, hj, if desired. We summarize the
essential findings of this section in the following theorem.

Theorem 7.1. The generating function of decorated (partial) Dyck paths, consisting of n
steps, ending on level j, is given by

S(z, u) = 3 − 3z2 −
√

1 − 6z2 + 5z4

2zr1(1 − u/r1)
,

with

r1 = 1 + z2 +
√

1 − 6z2 + 5z4

2z .

Furthermore

[uj]S(z, u) = 3 − 3z2 −
√

1 − 6z2 + 5z4

2zrj+1
1

.
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Open ended paths. If we do not specify the end of the paths, in other words we sum
over all j ≥ 0, then at the level of generating functions this is very easy, since we only
have to set u := 1. We find

S(1) = −(z + 1)(z2 + 3z − 2) + (z + 2)
√

1 − 6z2 + 5z4

2z(z2 + 2z − 1)
= 1 + z + 2z2 + 3z3 + 7z4 + 11z5 + 26z6 + 43z7 + 102z8 + 175z9 + 416z10 + · · · .

Counting red edges. We can use an extra variable, w, to count additionally the red
edges that occur in a path. We use the same letters for generating functions. Eventually,
the coefficient [znujwk]S is the number of (partial) paths consisting of n steps, leading to
level j, and having passed k red edges. The endpoint of the original skew path has then
coordinates (n− 2k, j). The computations are very similar, and we only sketch the key
steps.

f0 = 1, fi+1 = zfi + zgi, i ≥ 0,

gi = zfi+1 + zgi+1 + zhi+1, i ≥ 0,

hi = wzgi+1 + wzhi+1, i ≥ 0;

1
u

(F (u) − 1) = zF (u) + zG(u),

G(u) = z

u
(F (u) − 1) + z

u
(G(u) −G(0)) + z

u
(H(u) −H(0)),

H(u) = wz

u
(G(u) −G(0)) + wz

u
(H(u) −G(0));

F (u) = z2uG(0) + z2uH(0) + z2u− u− wz3 + z + wz

−wz3 − u+ z + wz + zu2 − wz2u
,

G(u) = z(H(0) − uzH(0) + wz2 +G(0) − zuG(0) − zu)
−wz3 − u+ z + wz + zu2 − wz2u

,

H(u) = wz(−uzH(0) − z2 − zuG(0) +G(0) − z2H(0) +H(0) − z2G(0))
−wz3 − u+ z + wz + zu2 − wz2u

.

The denominator factors as z(u− r1)(u− r2), with

r1 =
1 + wz2 +

√
1 − (4 + 2w)z2 + (4w + w2)z4

2z ,

r2 =
1 + wz2 −

√
1 − (4 + 2w)z2 + (4w + w2)z4

2z .

Note the factorization 1 − (4 + 2w)z2 + (4w+w2)z4 = (1 − z2w)(1 − (4 +w)z2). Since the
factor u− r2 in the denominator is “bad,” it must also cancel in the numerators. From
this we eventually find, with the abbreviation W =

√
1 − (4 + 2w)z2 + (4w + w2)z4 :

F (u) = −1 − wz2 −W

2z(u− r1)
, G(u) = −1 + wz2 +W

2z(u− r1)
, H(u) = −1 + (2 + w)z2 +W

2z(u− r1)
.
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The total generating function is

S(u) = F (u) +G(u) +H(u) = −2 − w + z2(w + w2) + wW

2z(u− r1)
.

The special case u = 0 (return to the x-axis) is to be noted:

S(0) = −2 − w + z2(w + w2) + wW

−2zr1
= 1 − wz2 −W

2z2 .

Since there are only even powers of z in this function, we replace x = z2 and get

S(0) =
1 − wx−

√
1 − (4 + 2w)x+ (4w + w2)x2

2x
= 1 + x+ (w + 2)x2 + (w2 + 4w + 5)x3 + (w3 + 6w2 + 15w + 14)x4 + · · · .

Compare the factor (w2 + 4w + 5) with the earlier drawing of the 10 paths.
There is again a substitution that allows for better results:

z = v

1 + (2 + w)v + v2 , then S(0) = 1 + v.

Reading off coefficients can now be done using modified trinomial coefficients:
(
n; 1, 2 + w, 1

k

)
= [tk]

(
1 + (2 + w)t+ t2

)n
.

Again, we use contour integration to extract coefficients:

[xn](1 + v) = 1
2πi

∮ dx

xn+1 (1 + v)

= 1
2πi

∮ dx

vn+1
1 − v2

(1 + (2 + w)v + v2)2 (1 + (2 + w)v + v2)n+1(1 + v)

= [vn](1 − v)(1 + v)2(1 + (2 + w)v + v2)n−1

=
(
n− 1; 1, 2 + w, 1

n

)
+
(
n− 1; 1, 2 + w, 1

n− 1

)

−
(
n− 1; 1, 2 + w, 1

n− 2

)
−
(
n− 1; 1, 2 + w, 1

n− 3

)
.

Now we want to count the average number of red edges. For that, we differentiate S(0)
with respect to w, and set w := 1. This leads to

−1 + 6x− 5x2 + (1 + 3x)
√

1 − 6x+ 5x2

2(1 − x)(1 − 5x) .

A simple application of singularity analysis leads to
1

2
√

5 [xn] 1√
1−5x

−
√

5[xn]
√

1 − 5x
∼ n

5 .

So, a random path consisting of 2n steps has about n/5 red steps, on average. For
readers who are not familiar with singularity analysis of generating functions [16,20], we
just mention that one determines the local expansion around the dominating singularity,
which is at z = 1

5 in our instance. In the denominator, we just have the total number of
skew Dyck paths, according to the sequence A002212 in the OEIS [52]. In the example of
Figure 2, the exact average is 6/10, which curiously is exactly the same as 3/5.
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We finish the discussion by considering fixed powers of w in S(0), counting skew Dyck
paths consisting of zero, one, two, three, . . . red edges. We find

[w0]S(0) = 1 − √
1 − 4x

2x , [w1]S(0) = 1 − 2x− √
1 − 4x

2
√

1 − 4x
,

[w2]S(0) = x3

(1 − 4x)3/2 , [w3]S(0) = x4(1 − 2x)
(1 − 4x)5/2 , &c.

The generating function [w0]S(0) is of course the generating function of Catalan numbers,
since no red edges just means: ordinary Dyck paths. We can also conclude that the
asymptotic behaviour is of the form nk−3/24n, where the polynomial contribution gets
higher, but the exponential growth stays the same: 4n. This is compared to the scenario
of an arbitrary number of red edges, when we get an exponential growth of the form 5n.

Dual skew Dyck paths. The mirrored version of skew Dyck paths with two types of
up-steps, (1, 1) and (−1, 1) are also cited among the objects in A002212 in the OEIS [52].
We call them dual skew paths and drop the ‘dual’ when it isn’t necessary. When the paths
come back to the x-axis, no new enumeration is necessary, but this is no longer true for
paths ending at level j.

Here is a list of the 10 skew paths consisting of 6 steps:

Figure 6. All 10 dual skew Dyck paths of length 6 (consisting of 6 steps).

We prefer to work with the equivalent model (resembling more traditional Dyck paths)
where we replace each step (−1,−1) by (1,−1) but label it blue. Here is the list of the 10
paths again (Figure 2):

Figure 7. All 10 dual skew Dyck paths of length 6 (consisting of 6 steps).

The rules to generate such decorated Dyck paths are: Each edge (1,−1) may be black
or blue, but and are forbidden.

Our interest is in particular in partial decorated Dyck paths, ending at level j, for fixed
j ≥ 0; the instance j = 0 is the classical case.

As before, two variables, z and u, are used, where z marks the length of the path and
j marks the end-level. We briefly mention that one can, using a third variable w, also
count the number of blue edges. The substitution x = v

1 + 3v + v2 is again the key to the
success.
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Generating functions and the kernel method. We catch the essence of a decorated
(dual skew) Dyck path using a state-diagram:

Figure 8. Three layers of states according to the type of steps leading to
them (down, up-black, up-blue).

It has three types of states, with j ranging from 0 to infinity; in the drawing, only
j = 0..8 is shown. The first layer of states refers to an up-step leading to a state, the
second layer refers to a black down-step leading to a state and the third layer refers to
a blue down-step leading to a state. We will work out generating functions describing
all paths leading to a particular state. We will use the notations cj, aj, bj for the three
respective layers, from top to bottom. Note that the syntactic rules of forbidden patterns

and can be clearly seen from the picture. The functions depend on the variable z
(marking the number of steps), but mostly we just write aj instead of aj(z), etc.

The following recursions can be read off immediately from the diagram:
a0 = 1, ai+1 = zai + zbi + zci, i ≥ 0,

bi = zai+1 + zbi+1, i ≥ 0,
ci+1 = zai + zci, i ≥ 0.

And now it is time to introduce the bivariate generating functions:
A(z, u) =

∑

i≥0
ai(z)ui, B(z, u) =

∑

i≥0
bi(z)ui, C(z, u) =

∑

i≥0
ci(z)ui.

Summing the recursions leads to
∑

i≥0
uiai = 1 + u

∑

i≥0
ui(zai + zbi + zci) = 1 + uzA(u) + uzB(u) + uzC(u),

∑

i≥0
uibi =

∑

i≥0
ui(zai+1 + zbi+1) = z

u

∑

i≥1
uiai + z

u

∑

i≥1
uibi,

∑

i≥1
uici = uz

∑

i≥0
uiai + uz

∑

i≥0
uici.

This can be rewritten as
A(u) = 1 + uzA(u) + uzB(u) + uzC(u),

B(u) = z

u
(A(u) − a0) + z

u
(B(u) − b0),

C(u) = c0 + uzA(u) + uzC(u).
Note that a0 = 1, c0 = 0. Simplification leads to

C(u) = uzA(u)
1 − uz

and B(u) = z(A(u) − 1 −B(0))
u− z

.
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This leaves us with just one equation

A(u) = (z − u+ uz2 + uz2B(0)) (uz − 1)
u2z3 + uz2 − 2u2z − z + u

.

This is again a typical application of the kernel method: One writes
u2z3 + uz2 − 2u2z − z + u = z(z2 − 2)(u− s1)(u− s2).

The denominator thus factors as 2z(z2 − 2)(u− s1)(u− s2), with

s1 = 1 + z2 +
√

1 − 6z2 + 5z4

2z(2 − z2) , s2 = 1 + z2 −
√

1 − 6z2 + 5z4

2z(2 − z2) .

Note that s1s2 = 1
2−z2 . Since the factor u − s2 in the denominator is “bad,” it must

also cancel in the numerators. We get B(0) = zs2
1−2zs2

and, again with the abbreviation
W =

√
1 − 6z2 + 5z4,

A(u) = (1 − uz)(1 + z2 +W )
2z(z2 − 2)(u− s1)

, B(u) = 1 − 2z2 −W

z(2 − z2)(u− s1)
, C(u) = 1 + z2 +W

2(z2 − 2)
u

u− s1
,

and for the function of main interest

G(u) = A(u) +B(u) + C(u) = 3z2 − 3 +W

2z(2 − z2)(u− s1)
.

Since one has
1
s1

= 1 + z2 −
√

1 − 6z2 + 5z4

2z = zS and 1
s2

= 1 + z2 +
√

1 − 6z2 + 5z4

2z ,

we then get

[uj]G(u) = [uj] 3z2 − 3 +W

2z(z2 − 2)s1(1 − u/s1)
= 3z2 − 3 +W

2z(z2 − 2)sj+1
1

= 3z2 − 3 +W

2(z2 − 2) zjSj+1.

So [uj]G(u) contains only powers of the form zj+2N . Now we continue

[zj+2Nuj]G(u) = [z2N ]3z
2 − 3 +W

2(z2 − 2) Sj+1

= [xN ]3x− 3 +
√

1 − 6x+ 5x2

2(x− 2)

(
1 + x−

√
1 − 6x+ 5x2

2x

)j+1

= [xN ](v + 1)(v + 2)j

which is the generating function of all (partial) paths ending at level j.
Now we read off coefficients as before:

[zj+2Nuj]G(u) = [xN ](v + 1)(v + 2)j

= 1
2πi

∮ dx

xN+1 (v + 1)(v + 2)j

= 1
2πi

∮ dv

vN+1 (1 + 3v + v2)N+1 (1 − v2)
(1 + 3v + v2)2 (v + 1)(v + 2)j

= [vN ](1 + 3v + v2)N−1(1 − v)(1 + v)2(v + 2)j.
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Note that
(1 − v)(1 + v)2 = 3 − 7(v + 2) + 5(v + 2)2 − (v + 2)3;

consequently

[zj+2Nuj]G(u) = [vN ](1 + 3v + v2)N−1
[
3 − 7(v + 2) + 5(v + 2)2 − (v + 2)3

]
(v + 2)j.

We abbreviate:

µj;k = [vk]
[
3(v + 2)j − 7(v + 2)j+1 + 5(v + 2)j+2 − (v + 2)j+3

]

= 3
(
j

k

)
2j−k − 7

(
j + 1
k

)
2j+1−k + 5

(
j + 2
k

)
2j+2−k −

(
j + 3
k

)
2j+3−k.

With this notation we get

[zj+2Nuj]G(u) =
∑

0≤k≤N−1
µj;k

(
N − 1; 1, 3, 1

N − k

)
.

Here are the first few generating functions:
• G0 = 1 + z2 + 3z4 + 10z6 + 36z8 + 137z10 + 543z12 + 2219z14 + · · · ,
• G1 = 2z + 3z3 + 10z5 + 36z7 + 137z9 + 543z11 + 2219z13 + 9285z15 + · · · ,
• G2 = 4z2 + 8z4 + 29z6 + 111z8 + 442z10 + 1813z12 + 7609z14 + 32521z16 + · · · ,
• G3 = 8z3 + 20z5 + 78z7 + 315z9 + 1306z11 + 5527z13 + 23779z15 + 103699z17 + · · · .

We could also give such lists for the functions aj, bj, cj, if desired. We summarize the
essential findings of the rest of this section:

Theorem 7.2. The generating function of decorated (partial) dual skew Dyck paths,
consisting of n steps, ending on level j, is given by

G(z, u) = 3z2 − 3 +
√

1 − 6z2 + 5z4

2z(2 − z2)(u− s1)
,

with
s1 = 2z

1 + z2 −
√

1 − 6z2 + 5z4
.

Furthermore
[uj]G(z, u) = 3z2 − 3 +

√
1 − 6z2 + 5z4

2(z2 − 2) zjSj+1,

with
S = 1 + z2 −

√
1 − 6z2 + 5z4

2z2 .

Open ended paths. If we do not specify the end of the paths, in other words we sum
over all j ≥ 0, then at the level of generating functions this is very easy, since we only
have to set u := 1. We find

G(1) = (1 + z)(1 − 3z)
2z(z2 + 2z − 1) −

√
1 − 6z2 + 5z4

= 1 + 2z + 5z2 + 11z3 + 27z4 + 62z5 + 151z6 + 354z7 + 859z8 + 2036z9 + · · · .
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Counting blue edges. We use an extra variable w as before to count additionally the
blue edges that occur in a path. Eventually, the coefficient [znujwk]S is the number of
(partial) paths consisting of n steps, leading to level j, and having passed k blue edges.
The endpoint of the original skew path has then coordinates (n− 2k, j). The computations
are very similar, and we only sketch the key steps.

a0 = 1, ai+1 = zai + zbi + zci, i ≥ 0,
bi = zai+1 + zbi+1, i ≥ 0,
ci+1 = wzai + wzci, i ≥ 0.

This leads to

A(u) = 1 + uzA(u) + uzB(u) + uzC(u),

B(u) = z

u
(A(u) − a0) + z

u
(B(u) − b0),

C(u) = c0 + wuzA(u) + wuzC(u).

Solving,

S(u) = A(u) +B(u) + C(u) = u− wuz2 − zA(0) − zB(0) + uwz2A(0) + uwz2B(0)
u2z3w + u− wu2z − u2z − z + wuz2 .

The denominator factors as −z(1 + w − z2w)(u− s1)(u− s2), with

s1 = 1 + z2w +
√

1 − 2 z2w + z4w2 − 4 z2 + 4z4w

2z (1 + w − z2w) ,

s2 = 1 + z2w −
√

1 − 2 z2w + z4w2 − 4 z2 + 4z4w

2z (1 + w − z2w) .

Note the factorization 1 − (4 + 2w)z2 + (4w+w2)z4 = (1 − z2w)(1 − (4 +w)z2). Since the
factor u− r2 in the denominator is “bad,” it must also cancel in the numerators. From
this we eventually find, with the abbreviation W =

√
1 − (4 + 2w)z2 + (4w + w2)z4 )

G(0) = 1 − z2w −W

2z2 ,

and further

G(u) = w − z2w2 − wW + 2 − 2z2w

2z (−w − 1 + z2w) (u− s1)
.

The special case u = 0 (return to the x-axis) is to be noted:

G(0) = 1 + z2 + (w + 2) z4 +
(
w2 + 4w + 5

)
z6 + (w + 2)

(
w2 + 4w + 7

)
z8 + · · · .

Compare the factor (w2 + 4w+ 5) with the earlier drawing of the 10 paths. There is again
a substitution that allows for better results:

z = v

1 + (2 + w)v + v2 , then G(0) = 1 + v.

Since S(u) = G(u) with S(u) from the first part of the paper, as it means the same objects,
read from left to right resp. from right to left, no new analysis is required.
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8. More about Motzkin paths

Several other interesting problems related to Motzkin paths were considered in the
literature. To wet the readers appetite, we briefly mention below the Retakh paths, the
amplitude of paths, and then analyze in more detail skew Motzkin paths.

Retakh’s Motzkin paths. V. Retakh [15] introduced a restricted class of Dyck paths:
Peaks are only allowed on level 1 and on even-numbered levels. For the analysis of this
class using generating functions, including also the average height and the number of
leaves; see [43].

The amplitude of Motzkin paths. Another interesting parameter is the amplitude of
Motzkin paths that was recently analyzed in [45]. Here, we want to give a few introductory
remarks. The average height of a random Motzkin path of length n was considered in an
early paper [35], it is asymptotically given by

√
πn
3 .

In the recent paper [8] an interesting new concept was introduced: the amplitude. It is
basically twice the height, but with a twist. If there exists a horizontal step on level h,
which is the height, the amplitude is 2h+ 1, otherwise it is 2h. To clarify the concept, we
created a list of all 9 Motzkin paths of length 4 with height and amplitude given.

Motzkin path horizontal on maximal level height amplitude
Yes 0 1
No 1 2
No 1 2
Yes 1 3
Yes 1 3
Yes 1 3
No 1 2
No 1 2

No 2 4

The goal of an extended analysis is to investigate this new parameter, using trinomial
coefficients

(
n,3
k

)
= [tk](1 + t+ t2)n (notation following Comtet’s book [7]). The intuitive

result that the average amplitude is about twice the average height, can be confirmed.

Skew Motzkin paths. This section was written to provide a more complete analysis
related to [30]. The methods are of course by now familiar to the readers.

As seen before, Motzkin paths allow additional flat (horizontal) steps of unit length. A
skew path allows ‘left’ step (−1,−1) as well, but the path is not allowed to intersect itself.
We prefer ‘red’ steps (1,−1); see our analysis in [46]. For Motzkin paths, some analysis
was provided in [30]. Here, we provide further analysis that allows to consider partial
paths as well, so we do not need to land at the x-axis. It uses the kernel method [37].
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Apart from being not below the x-axis, the restrictions are that a left (red) step cannot
follow or precede an up-step. The situation is best described by a graph (state-diagram);
see Figure 9.

Figure 9. Four layers of states according to the type of steps leading to
them. Traditional up-steps and down-steps are black, level-steps are blue,
and left steps are red.

In further sections, the asymptotic equivalent for the number of skew Motzkin paths of
given size is derived, as well as the height, meaning that the generating function of paths
with a bounded height (bounded by H) is given, as well as the average height, which is
approximately const · √

n, which is typical for families of paths.

Generating functions for skew Motzkin paths. We translate the state diagram accordingly;
fj, gj, hj, kj are generating functions in the variable z (marking the length of the path),
ending at level j. The four families are related to the four layers of states.

fj+1 = zfj + zgj + zhj, f0 = 1,
gj = zfj+1 + zgj+1 + zhj+1 + zkj+1,

hj = zfj + zgj + zhj + zkj,

kj = zgj+1 + zhj+1 + zkj+1.

Now we introduce bivariate generating functions, namely

F (u) :=
∑

j≥0
fju

j, G(u) :=
∑

j≥0
gju

j, H(u) :=
∑

j≥0
hju

j, K(u) :=
∑

j≥0
kju

j.

The recursions then take this form:

F (u) = 1 + zuF (u) + zuG(u) + zuH(u),
uG(u) = zF (u) + zG(u) + zH(u) + zK(u) − z − zg0 − zh0 − zk0,

H(u) = zF (u) + zG(u) + zH(u) + zK(u),
uK(u) = zG(u) + zH(u) +K(u) − zg0 + zh0 + zk0.
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Solving the system,

F (u) = F

2z − u+ zu− z2u+ zu2 − z3 − z3u
,

G(u) = G

2z − u+ zu− z2u+ zu2 − z3 − z3u
,

H(u) = H

2z − u+ zu− z2u+ zu2 − z3 − z3u
,

K(u) = K

2z − u+ zu− z2u+ zu2 − z3 − z3u
,

with
F = −z3 + 2z − u+ zu+ z2u+ z2ug0 + z2uh0 + z2uk0 + z3ug0 + z3uh0 + z3uk0,

G = −z2h0 + z4 + z4k0 − z2ug0 − z2u− z2k0 − z2 − z2uh0 − z2uk0 + z4h0 + z3 − z2g0 + zh0

+ zg0 + zk0 + z4g0,

H = −z4 + 2z2g0 + 2z2h0 + 2z2k0 + 2z2 − zu− z4g0 − z4h0 − z4k0 − z3ug0 − z3uh0 − z3uk0,

K = zg0 − z3 − z2g0 − z2h0 + zk0 − z2k0 − z3g0 − z3h0 − z3k0.

One cannot immediately insert u = 0 to identify the constants, but one can use the
kernel method. For that, one factorizes the denominator:

2z − u+ zu− z2u+ zu2 − z3 − z3u = z(u− u1)(u− u2)
with

u1 = 1 − z + z2 + z3 + (1 + z)W
2z , u2 = 1 − z + z2 + z3 − (1 + z)W

2z
and

W =
√

(1 − z)(1 − 3z − z2 − z3) =
√

1 − 4z + 2z2 + z4.

Since u2 ∼ 2z for small z, u− u2 is a ‘bad’ factor and must cancel from both, numerator
and denominator. This yields

F (u) = −1 + z + z2 + z2g0 + z2h0 + z2k0 + z3g0 + z3h0 + z3k0

z(u− u1)
,

G(u) = −z2 − z2g0 − z2h0 − z2k0

z(u− u1)
,

H(u) = −z − z3g0 − z3h0 − z3k0

z(u− u1)
,

K(u) = −z2g0 − z2h0 − z2k0

z(u− u1)
.

Now we can plug in u = 0 and identify the constants:

g0 = −z5 + z3W − z2 − zW + 3z − 1 +W

2z2 (−2 + z2) ,

h0 = −−z2 + 2z − 1 +W

2z ,

k0 = −−z4 + z3 + z2W + zW − 3z + 1 −W

2z2 (−2 + z2) .
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Adding these quantities yields

1 + g0 + h0 + k0 = −−z2 + 2z − 1 +W

2z2 ,

which is the generating function of the number of skew Motzkin paths (returning to the
x-axis); the series expansion is

1+z+2z2 +5z3 +13z4 +35z5 +97z6 +275z7 +794z8 +2327z9 +6905z10 +20705z11 + · · · ,

as already given in [30], the coefficients are the sequence A082582 in the OEIS [52].
We further get

F (u) = −1 + z − z2 − z3 + u2z

z(u− u1)
,

G(u) = (z − u2)
(u− u1)(1 + z) ,

H(u) = −1 − z + 2z2 + z3 − zu2

(u− u1)(1 + z) ,

K(u) = z2 + 2z − u2

(u− u1)(1 + z) .

Altogether,

F (z) +G(z) +H(z) +K(z) = −1 − z + 2z2 + z3 − zu2

z(u− u1)(1 + z)
and

[uj]
(
F (z) +G(z) +H(z) +K(z)

)
= 1 + z − 2z2 − z3 + zu2

z(1 + z)uj+1
1

,

which is the generating function of partial skew Motzkin paths, landing on level j. Here
are the examples for j = 1, 2, 3, 4 (leading terms only):

z + 2z2 + 5z3 + 13z4 + 36z5 + 102z6 + 295z7 + 866z8 + 2574z9 + 7730z10 + 23419z11,

z2 + 3z3 + 9z4 + 26z5 + 77z6 + 230z7 + 694z8 + 2110z9 + 6459z10 + 19890z11 + 61577z12,

z3 + 4z4 + 14z5 + 45z6 + 143z7 + 451z8 + 1421z9 + 4478z10 + 14129z11 + 44654z12,

z4 + 5z5 + 20z6 + 71z7 + 242z8 + 806z9 + 2653z10 + 8670z11 + 28213z12.

One can also substitute u = 1, which means that all partial skew Motzkin paths are
counted with respect to length, regardless on which level they end:

2 − 3z − 7z2 − z3 + z4 − (2 + z) (1 + z)W
2z (1 + z) (2z2 + 3z − 1) .

The series expansion is

1 + 2z + 5z2 + 14z3 + 40z4 + 117z5 + 348z6 + 1049z7 + 3196z8 + 9823z9 + 30413z10 + · · ·
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Counting flat and left (red) steps. Using two extra variables t and w, we can count the
number of flat resp. left steps in a skew Motzkin path. The recursions are self-explanatory.

fj+1 = zfj + zgj + zhj, f0 = 1,
gj = zfj+1 + zgj+1 + zhj+1 + zkj+1,

hj = ztfj + ztgj + zthj + ztkj,

kj = zwgj+1 + zwhj+1 + zwkj+1.

Again, here is the system for the multi-variate generating functions;

F (u) = 1 + zuF (u) + zuG(u) + zuH(u),
uG(u) = zF (u) + zG(u) + zH(u) + zK(u) − z − zg0 − zh0 − zk0,

H(u) = ztF (u) + ztG(u) + ztH(u) + ztK(u),
uK(u) = zwG(u) + zwH(u) + zwK(u) − zwg0 + zwh0 + zwk0.

And following a similar procedure as before we get

1 + g0 + h0 + k0 = −zw + u2

z(1 + wt)
= 1 + tz + (t2 + 1)z2 + (tw + 3t+ t3)z3 + (2 + 6t2 + w + 3wt2 + t4)z4 + · · · ;

the quantity u2 is now

u2 =
1 − tz + wz2 + twz3 −

√
(1 − z2w)(1 − 2 tz + (t2 − 4 − w) z2 − 2twz3 − wt2z4)

2z .

Quantities like F (u), G(u), H(u), K(u) can also be computed easily, following the approach
from the previous section.

Asymptotics for the number of skew Motzkin paths. We must analyze the generating
function

S M =
(1 − z)2 −

√
(1 − z)(1 − 3z − z2 − z3)

2z2

which is of the sqrt-type [16,20] around the singularity ρ closest to the origin, which we
call ρ. It is a solution of 1 − 3z − z2 − z3 = 0 and can be expressed as

ρ =
3
√

26 + 6
√

33
3 − 8

3 3
√

26 + 6
√

33
− 1

3 ≈ 0.295597.

Expanding the generating function around z = ρ, we get

S M ∼
(1 − ρ)2 + 2

√
(1 − ρ− ρ3)(z − ρ)
2ρ2 .

Singularity analysis of generating function [16,20] gives the estimate

[zn]S M ∼
√

1 − ρ− ρ3

2
√
πρ3 ρ−nn−3/2. (8.1)

The error at n = 100 is about 3%. This is to be expected by this type of approximation.
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Skew Motzkin paths of bounded height. Now we introduce a parameter h and do not allow
the path to reach any level higher than h. We can still work with the system

fj+1 = zfj + zgj + zhj, 0 ≤ j ≤ h− 1, f0 = 1,
gj = zfj+1 + zgj+1 + zhj+1 + zkj+1, 0 ≤ j < h,

hj = zfj + zgj + zhj + zkj, 0 ≤ j ≤ h,

kj = zgj+1 + zhj+1 + zkj+1, 0 ≤ j < h.

This is now a finite linear system, and we are only interested in paths that return to the
x-axis. For a given h, we write s[h] = f0 + g0 + h0 + k0 for the generating function of path
of height ≤ h. It can be proved that both the numerator and the denominator of s[h]
satisfy the recursion

Xh+2 + (−1 + z − z2 − z3)Xh+1 + (2z2 − z4)Xh = 0.

Thus, adjusting this to the initial conditions, we get

s[h] = Ao(1 + z3 + z2 − z + ω)h +Bo(1 + z3 + z2 − z − ω)h

Au(1 + z3 + z2 − z + ω)h +Bu(1 + z3 + z2 − z − ω)h

with

ω =
√
z6 + 2z5 + 3z4 − 5z2 − 2z + 1,

Ao = (z3 + z2 + 3z − 1)(z + 1) + (z − 1)ω,
Bo = (z3 + z2 + 3z − 1)(z + 1) − (z − 1)ω,

Au = (1 − z2)(z3 + z2 + 3z − 1) + z3 − z2 + 3z − 1
1 − z

ω,

Bu = (1 − z2)(z3 + z2 + 3z − 1) − z3 − z2 + 3z − 1
1 − z

ω.

When h goes to infinity, the second terms go away, and we are left with

s[∞] = Ao

Au

=
(1 − z)2 −

√
(1 − z)(1 − 3z − z2 − z3)

2z2 = S M ,

as expected. Now we consider s[> h], the generating function of skew Motzkin paths of
height > h. Taking differences, we find

s[> h] = s[∞] − s[h] = AoBu −AuBo

Au

(1 + z3 + z2 − z−ω)h

Au(1 + z3 + z2 − z+ω)h +Bu(1 + z3 + z2 − z−ω)h

∼ AoBu − AuBo

A2
u

(
1 + z3 + z2 − z − ω

1 + z3 + z2 − z + ω

)h

1 −
(

1 + z3 + z2 − z − ω

1 + z3 + z2 − z + ω

)h .

A computer computation leads to (always in the neighbourhood of z = ρ)
AoBu − AuBo

A2
u

∼ 18.854986275200314363
√
ρ− z.
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Now we approximate and write for convenience:
1 + z3 + z2 − z − ω

1 + z3 + z2 − z + ω
∼ 1 − 5.2213516788791457598

√
ρ− z

∼ exp
(
−5.2213516788791457598

√
ρ− z

)
= e−t.

For the average height, we need apart from the leading factor,
∑

h≥0
s[> h] ∼

∑

h≥0

e−th

1 − e−th
.

Since we only compute the leading term of the asymptotics of the average height, we might
start the sum at h ≥ 1, and expand the geometric series:

∑

h≥1
s[> h] ∼

∑

h,k≥1
e−thk =

∑

k≥1
d(k)e−kt ∼ − log t

t
,

with d(k) being the number of divisors of k. This type of analysis, although having been
done often before, has been described in much detail in [24]. Together with the factor in
front, we are at

− 18.854986275200314363
√
ρ− z

log √
ρ− z

5.2213516788791457598√
ρ− z

∼ −1.8055656307800996608 log(1 − z/ρ).
Singularity analysis [16] gives the following estimate for the coefficient of zn:

1.8055656307800996608ρ
−n

n
.

For the average height we need to normalize, that is, we divide by the total number of
skew Motzkin numbers of size n given by (8.1):

1.8055656307800996608ρ−n

n

5.1256244361431546460 1
2
√

π
ρ−nn−3/2 = 0.70452513767814089508

√
πn.

9. Oscillations in Dyck paths revisited

This section in honour of Rainer Kemp was written for this personal survey.
Rainer Kemp’s paper [25] was unfortunately largely overlooked. An extension was

published quickly [28], and then it fell into oblivion. We want to come back to this gem,
with modern methods, in particular, the kernel method and singularity analysis. Kemp was
interested in peaks and valleys of Dyck paths, which he called max-turns and min-turns,
probably motivated by computer science applications. The peaks/valleys are enumerated
from left to right, and the height of the j-th one is analyzed. In the corresponding ordered
(plane) tree, the peaks correspond to the leaves.

Very precise information is available for leaves of binary trees [22,27,33,34] but the situa-
tion is a bit different for Dyck paths since the number of peaks/valleys isn’t directly related
to the length of the Dyck path. (Narayana numbers enumerate them.) Kemp’s results in a
nutshell are: The average height of the m-th peak/valley is ∼ 4

√
2m/π (it is asymptotically

independent of the length n of the path), and the difference between the height of the
peak and the next valley is about 2, with more terms being available in principle.
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A trivariate generating function for heights of valleys. The goal is to derive an
expression for Φ(u) = Φ(u; z, w), where z is used for the length of the path, w for the
enumeration of the valleys (wm corresponds to the m-th valley), and u is used to record
the height of the m-th (and last) valley of a partial Dyck path (the path does not need to
return to the x-axis). We could think about it continued in any possible fashion, as in the
following figure. We will figure out the generating function of partial Dyck paths with m
valleys, and the generating function of the ‘rest’, which (if it is not empty) is a partial
Dyck path starting with an up-step and ends on the x-axis, where the number of valleys
is immaterial. The enumeration of the rest is easy, when one thinks about it from right
to left, since then it is just a Dyck path ending on a prescribed level j with a down-step.
This can be obtained from the first part by setting w = 1, i.e., not counting the valleys.

Figure 10. The third valley at level j.

Our goal is, as often, to use the adding-a-new-slice technique, namely adding another
‘mountain’ (a maximal sequence of up-steps, followed by a maximal sequence of down-
steps), or going from the m-th valley to the (m+ 1)-st valley. We investigate what can
happen to uj:

∑

l≥1

j+l∑

i=1
zluj+lziu−i.

Working this out, the following substitution is essential for our problem:

uj −→ z2uk

(u− z)(1 − zuk)u
j − zk+2

(u− z)(1 − zk+1)z
j.

Working this into a generating function of the type
Φ(u) =

∑

m≥0
wmφm(u),

where the variable w keeps track of the number of mountains, we find from the substitution

Φ(u) = 1 + wz2u

(u− z)(1 − zu)Φ(u) − wz3

(u− z)(1 − z2)Φ(z),

where 1 stands for the empty path having no mountains. Rearranging,

Φ(u)z(u− s1)(u− s2)
(u− z)(zu− 1) = 1 − wz3

(u− z)(1 − z2)Φ(z),

and
Φ(u) = (zu− 1)

z(u− s1)(u− s2)

[
u− z − wz3

(1 − z2)Φ(z)
]
.
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Here,

s2 = z2 + 1 − wz2 −
√
z4 − 2z2 − 2z4w + 1 − 2wz2 + w2z4

2z and s1 = 1
s2
.

In the spirit of the kernel method, the factor u− s2 is ‘bad’ and must cancel out. That
leads first to

Φ(z) = (1 − z2)(s2 − z)
wz3

and further to

Φ(u) = (zu− 1)
z(u− s1)

= s2(1 − zu)
z(1 − us2)

= 1 + wz2 + wuz3 + (w2 + w + wu2)z4 + (2w2u+ wu+ wu3)z5 + · · · .

From this it is easy to read off coefficients in general:

[uj]Φ(u) = [uj]s2(1 − zu)
z(1 − us2)

= 1
z
sj+1

2 − sj
2.

Note that setting w = 1 ignores the number of mountains, and the generating function
would then be enumerating partial Dyck paths ending on level j with a down-step. The
answer could then be derived by combinatorial means as well.

For Kemp’s problem, we need

S =
∑

j≥0
j
(1
z
sj+1

2 − sj
2

)
·
(1
z
sj+1

2 − sj
2

)∣∣∣∣∣
w=1

.

Recall that the two parts of the Dyck path, according to our decomposition, are glued
together, which just means multiplication of generating functions. The factor j comes
in because of the average value of the height of the valley, the first factor is what we
just worked out, and the third factor is the rest, which, when read from right to left, is
just what we discussed, since the number of valleys or mountains in the rest is irrelevant.
Thanks to computer algebra (not available when Kemp worked on the oscillations), we get

S = 4(−3z +W1z −W1 + 1) (−W2 + wzW2 + 1 + z2w2 − wz2 − 2wz − z)
z (−3z −W1z + 1 −W1 − wz + wzW1 −W2 +W2W1)2

with

W1 =
√

1 − 4z and W2 =
√
z2 − 2z − 2z2w + 1 − 2wz + w2z2.

Note carefully that z2 was replaced by z, since Dyck paths (returning to the x-axis) must
have an even number of steps. Their enumeration is classical:

D(z) = 1 − √
1 − 4z

2z ∼ 2 − 2
√

1 − 4z,

for z close to the (dominant) singularity z = 1
4 . We are in the regime of the subcritical

case; see [20, Section IX-3].
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The function S has a similar local expansion:
S ∼ C1(w) − C2(w)

√
1 − 4z,

and the function C2(w)
2 is the resulting generating function. Working out the details,

S ∼
w +

√
(1 − w) (9 − w) − 3

−1 + w

−
√

1 − 4z
(
w2 + 2w − 3 + (1 + w)

√
(1 − w) (9 − w)

(1 − w)2

)
+ · · · .

Eventually we are led to

Valley(w) :=
w2 + 2w − 3 + (1 + w)

√
(1 − w) (9 − w)

2(1 − w)2 .

To say it again, the coefficient of wm in this is the average value of the m-th valley in a
‘very long’ Dyck path. To say more about it, we can use singularity analysis again and
expand (this time around w = 1, which is dominant):

Valley(w) ∼ 2
√

2
(1 − w)3/2 − 2

1 − w
− 7

8

√
2√

1 − w
.

The traditional translation theorems [16, 20] lead to the average value of the height of the
m-th valley:

4
√

2
√
m

π
− 2 + 5

√
2

8
√
πm

+ · · · .

From valleys to peaks. We do not need too many new computations, as we can modify
the previous results. If one adds an arbitrary non-empty number of up-steps after the
m-th valley, one has reached the (m+ 1)-st peak! This is basically a substitution!

Figure 11. The third peak at level j.

Start from
Φ(u) = s2(1 − zu)

z(1 − us2)
and attach a sequence of up-steps: uj → zu

1−zu
uj. A factor w is also important, since the

m-th valley corresponds to the (m+ 1)-st peak. Now
zuw

1 − zu

s2(1 − zu)
z(1 − us2)

= us2w

1 − us2
= w

∑

j≥1
ujsj

2.
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The computation
w
∑

j≥0
jsj

2 · sj
2

∣∣∣∣
w=1

was basically done before, and the local expansion leads to

2w
1 − w

−
2w
√

(1 − w)(9 − w)
(1 − w)2

√
1 − 4z,

and the generating function of the average values of the m-th peak is

Peak(w) =
w
√

(1 − w)(9 − w)
(1 − w)2 .

A local expansion of this results in

Peak(w) ∼ 2
√

2
(1 − w)3/2 − 15

8

√
2√

1 − w
.

Taking differences:

Peak(w) − Valley(w) ∼ 2
1 − w

−
√

2√
1 − w

,

and translating into asymptotics:

2 −
√

2√
πm

.

The formula 2+O(m−1/2) was already known to Kemp [25]. As Kemp stated in [25], which
was confirmed in [28], the generating functions Peak(w) and Valley(w) can be expressed by
Legendre polynomials at special values. This is a bit artificial and not too useful in itself.

10. Deutsch-paths in a strip

Emeric Deutsch [11] had the idea to consider a variation of ordinary Dyck paths, by
augmenting the usual up-steps and down-steps by one unit each, by down-steps of size
3, 5, 7, . . . ; the set of down-steps is {(1,−1), (1,−3), (1,−5), . . . }. This leads to ternary
equations, as can be seen for instance in [41].

The present author started to investigate a related but simpler model of down-steps
1, 2, 3, 4, . . . and investigated it (named Deutsch paths in honour of Emeric Deutsch) in
a series of papers [39, 40, 42]. This simpler model can also be seen in the context of
Łukasiewicz paths, except that horizontal steps are not allowed; see [5]. Another relevant
paper that deals with infinite step sets is [3].

This section is a further member of this series (and extends our unpublished preprint
arXiv:2108.12797): The condition that (as with Dyck paths) the paths cannot enter
negative territory is relaxed by introducing a negative boundary −t. Here are two recent
publications about such a negative boundary: [51] and [49].

Instead of allowing negative altitudes, we think about the whole system shifted up by t
units, and start at the point (0, t) instead. This is much better for the generating functions
that we are going to investigate. Eventually, the results can be re-interpreted as results
about enumerations with respect to a negative boundary.
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The setting with flexible initial level t and final level j allows us to consider the Deutsch
paths also from right to left (they are not symmetric!), without any new computations.

The next sections achieves this, using the celebrated kernel method. An additional upper
bound is introduced, so that the Deutsch paths live now in a strip. The way to attack this
is linear algebra. Once everything has been computed, one can relax the conditions and
let lower/upper boundary go to ∓∞.

Generating functions and the kernel method. As discussed, we consider Deutsch
paths starting at (0, t) and ending at (n, j), for n, t, j ≥ 0. First we consider univariate
generating functions fj(z), where zn stays for n steps done, and j is the final destination.
The recursion is immediate:

fj(z) = [[t = j]] + zfj−1(z) + z
∑

k>j

fk(z),

where f−1(z) = 0. Next, we consider F (z, u) := ∑
j≥0 fj(z)uj, and get

F (z, u) = ut + zuF (z, u) + z
∑

j≥0
uj
∑

k>j

fk(z) = ut + zuF (z, u) + z
∑

k>0
fk(z)

∑

0≤j<k

uj

= ut + zuF (z, u) + z
∑

k≥0
fk(z)1 − uk

1 − u
= ut + zuF (z, u) + z

1 − u
[F (z, 1) − F (z, u)]

= ut(1 − u) + zF (z, 1)
z − zu+ zu2 + 1 − u

.

Since the critical value is around u = 1, we write the denominator as

z(u− 1)2 + (u− 1)(z − 1) + z = z(u− 1 − r1)(u− 1 − r2),

with

r1 = 1 − z +
√

1 − 2z − 3z2

2z , r2 = 1 − z −
√

1 − 2z − 3z2

2z .

The factor (u−1−r2) is bad, so the numerator must vanish for [ut(1−u)+zF (z, 1)]|u=1+r2 ,
therefore zF (z, 1) = (1 + r2)tr2. Furthermore

F (z, u) =
ut(1−u)+zF (z,1)

u−r2

z(u− r1)
.

The expressions become prettier using the substitution z = v
1+v+v2 ; then r1 = 1

v
, r2 = v. It

can be proved by induction (or computer algebra) that

ut(1 − u) + v(1 + v)t

u− 1 − v
= −v

t−1∑

k=0
(1 + v)t−1−k − ut.

Furthermore
1

z(u− 1 − r1)
= − 1

z(1 + r1)(1 − u
1+r1

) ,

and so

fj(z) = [uj]F (z, u) = [uj]
[
v

t−1∑

k=0
(1 + v)t−1−kuk + ut

]∑

ℓ≥0

uℓ

z(1 + r1)ℓ+1 .
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Les us mention two interesting special cases: the case t = 0 (which was also studied
before [39])

fj = (1 + v + v2)vj

(1 + v)j+1 ,

and the case j = 0 for general t, as it may be interpreted as Deutsch paths read from
right to left, starting at level 0 and ending at level t ≥ 1 (for t = 0, the previous formula
applies). It gives

f0(z) = [u0]
[
v

t−1∑

k=0
(1 + v)t−1−kuk + ut

]∑

ℓ≥0

uℓ

z(1 + r1)ℓ+1

= v(1 + v)t−1 1
z(1 + r1)

= v(1 + v + v2)(1 + v)t−2.

The next section will present a simplification of the expression for fj(z), which could be
obtained directly by distinguishing cases and summing some geometric series.

Refined analysis: lower and upper boundary. Now we consider Deutsch paths
bounded from below by zero and bounded from above by m− 1; they start at level t and
end at level j after n steps. For that, we use generating functions φj(z) (the quantity t is
a silent parameter here). The recursions that are straight-forwarded are best organized in
a matrix, as the following example shows.




1 −z −z −z −z −z −z −z
−z 1 −z −z −z −z −z −z
0 −z 1 −z −z −z −z −z
0 0 −z 1 −z −z −z −z
0 0 0 −z 1 −z −z −z
0 0 0 0 −z 1 −z −z
0 0 0 0 0 −z 1 −z
0 0 0 0 0 0 −z 1







φ0
φ1
φ2
φ3
φ4
φ5
φ6
φ7




=




0
0
0
1
0
0
0
0






t

The goal is now to solve this system. For that the substitution z = v
1+v+v2 is used

throughout. The method is to use Cramer’s rule, which means that the right-hand side
has to replace various columns of the matrix, and determinants have to be computed. At
the end, one has to divide by the determinant of the system.

Let Dm be the determinant of the matrix with m rows and columns. The recursion

(1 + v + v2)2mn+2 − (1 + v + v2)(1 + v)2Dm+1 + v(1 + v)2Dm = 0

appeared already in [39] and is not difficult to derive and to solve:

Dm = (1 + v)m−1

(1 + v + v2)m

1 − vm+2

1 − v
.
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To solve the system with Cramer’s rule, we must compute a determinant of shape
j

t

1

m

m

0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

where the various rows are replaced by the right-hand side. While it is not impossible to
solve this recursion by hand, it is very easy to make mistakes, so it is best to employ a
computer. Let D(m; t, j) the determinant according to the drawing.

It is not unexpected that the results are different for j < t resp. j ≥ t. Here is what we
found:

D(m; t, j) = (1 + v)t−j−3+m(1 − vj+1)v(1 − vm−t)
(1 − v)2(1 + v + v2)m−1 , for j < t,

D(m; t, j) = vj−t(1 − vt+2)(1 − v1−j+m)
(1 − v)2(1 + v + v2)m−1(1 + v)j−t+3−m

, for j ≥ t.

To solve the system, we have to divide by the determinant Dm, with the result

φj = D(m; t, j)
Dm

= (1 + v)t−j−2(1 − vj+1)v(1 − vm−t)(1 + v + v2)
(1 − v)(1 − vm+2) , for j < t,

φj = D(m; t, j)
Dm

= vj−t(1 − vt+2)(1 − v1−j+m)(1 + v + v2)
(1 − v)(1 + v)j−t+2(1 − vm+2) , for j ≥ t.

We found all this using computer algebra. Some critical minds may argue that this is only
experimental. One way of rectifying this would be to show that indeed the functions φj

solve the system, which consists of summing various geometric series; again, a computer
could be helpful for such an enterprise.

Of interest are also the limits for m → ∞, i.e., no upper boundary:

φj = lim
m→∞

D(m; t, j)
Dm

= (1 + v)t−j−2(1 − vj+1)v(1 + v + v2)
(1 − v) , for j < t,

φj = vj−t(1 − vt+2)(1 + v + v2)
(1 − v)(1 + v)j−t+2 , for j ≥ t.

The special case t = 0 appeared already in the previous section:

φj = vj(1 + v + v2)
(1 + v)j+1 .

Likewise, for t ≥ 1,
φ0 = v(1 + v + v2)(1 + v)t−2.

In particular, the formulæ show that the expression from the previous section can be
simplified in general, which could have been seen directly, of course.
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Theorem 10.1. The generating function of Deutsch path with lower boundary 0 and upper
boundary m− 1, starting at (0, t) and ending at (n, j) is given by

(1 + v)t−j−2(1 − vj+1)v(1 − vm−t)(1 + v + v2)
(1 − v)(1 − vm+2) , for j < t,

vj−t(1 − vt+2)(1 − v1−j+m)(1 + v + v2)
(1 − v)(1 + v)j−t+2(1 − vm+2) , for j ≥ t,

with the substitution z = v

1 + v + v2 .

By shifting everything down, we can interpret the results as Deutsch walks between
boundaries −t and m− 1 − t, starting at the origin (0, 0) and ending at (n, j − t).

Theorem 10.2. The generating function of Deutsch path with lower boundary −t and
upper boundary h, starting at (0, 0) and ending at (n, i) with −t ≤ i ≤ h is given by

(1 + v)i−2(1 − vi+t+1)v(1 − vh+1)(1 + v + v2)
(1 − v)(1 − vh+t+3) , for i < 0,

vi(1 − vt+2)(1 − v2−i+h)(1 + v + v2)
(1 − v)(1 + v)i+2(1 − vh+t+3) , for i ≥ 0.

It is possible to consider the limits t → ∞ and/or h → ∞ resulting in simplified formulæ.

Theorem 10.3. The generating function of Deutsch path with lower boundary −t and
upper boundary ∞, starting at (0, 0) and ending at (n, i) with −t ≤ i is given by

(1 + v)i−2(1 − vi+t+1)v(1 + v + v2)
(1 − v) , for i < 0,

vi(1 − vt+2)(1 + v + v2)
(1 − v)(1 + v)i+2 , for i ≥ 0.

Theorem 10.4. The generating function of Deutsch path with lower boundary −∞ and
upper boundary h, starting at (0, 0) and ending at (n, i) with ≤ i ≤ h is given by

(1 + v)i−2v(1 − vh+1)(1 + v + v2)
(1 − v) , for i < 0, vi(1 − v2−i+h)(1 + v + v2)

(1 − v)(1 + v)i+2 , for i ≥ 0.

Theorem 10.5. The generating function of unbounded Deutsch path starting at (0, 0) and
ending at (n, i) is given by

(1 + v)i−2v(1 + v + v2)
(1 − v) , for i < 0, vi(1 + v + v2)

(1 − v)(1 + v)i+2 , for i ≥ 0.

11. Conclusion

After this personal survey was completed (it will never be complete!) a few more
papers about skew Dyck path papers were written; see, e.g., Baril, Kirgizov, Maréchal,
Vajnovszki [4] and [47].
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Abstract. For L-convex polyominoes we give the conjectured asymptotics of the
generating function coefficients, obtained by analysis of the coefficients derived from
the functional equation given by Castiglione et al.

For 201-avoiding ascent sequences, we conjecture the solution, obtained from the first
twenty-three coefficients of the generating function. This solution is D-finite, indeed
algebraic. The conjectured solution then correctly generates all subsequent coefficients.
We also obtain the asymptotics, both from direct analysis of the coefficients, and from
the conjectured solution.

As well as presenting these new results, our purpose is to illustrate the methods
used, so that they may be more widely applied.
Keywords: L-convex polyominoes, ascent sequences.

1. Introduction

In [4], Castiglione et al. gave a functional equation for the number of L-convex poly-
ominoes. These are defined as polyominoes with the property that any two cells may be
joined by an L-shaped path, that is to say, a path with at most one right-angle bend.
An example is shown in Figure 1. It can be seen that such polygons can be described as
a stack polyomino placed atop an upside-down stack polyomino. A stack polyomino is
just a row-convex bargraph polyomino. The perimeter generating function of L-convex
polyominoes has a simple, rational expression,

P (x) = (1 − x)2

2(1 − x)2 − 1 = 1 + 2x + 7x2 + 24x3 + · · · ,

and is the sequence A003480 in the On-line Encyclopaedia of Integer Sequences (OEIS), [9].
Accordingly, one has

[xn]P (x) = (2 +
√

2)n+1 − (2 −
√

2)n+1

4
√

2
∼ 1 +

√
2

4 (2 +
√

2)n.

The area generating function is given by Castiglione et al. [4]

A(q) = 1 +
∑

k≥0

qk+1fk(q)
(1 − q)2(1 − q2)2 · · · (1 − qk)2(1 − qk+1) = 1 + q + 2q2 + 6q3 + 15q4 + · · · ,

(1.1)
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where

fk(q) = 2fk−1(q) − (1 − qk)2fk−2,

with initial conditions f0(q) = 1, and f1(q) = 1 + 2q − q2. We used this expression to
generate 2000 terms of the sequence, and these are given in the OEIS as sequence A126764.
Analysis of this sequence allowed us to derive the conjectured asymptotics as

[qn]A(q) ∼ 13
√

2
768 · n3/2 exp(π

√
13n/6).

In the next section we will describe how this estimate was obtained.

Figure 1. An L-convex polyomino.

The second problem we are considering is that of 201-avoiding ascent sequences, defined
below. Given a sequence of non-negative integers, n1n2n3 . . . nk, the number of ascents in
this sequence is

asc(n1n2n3 . . . nk) = |{1 ≤ j < i : nj ≤ nj+1}|.

The given sequence is an ascent sequence of length k if it satisfies n1 = 0 and

ni ∈ [0, 1 + asc(n1n2n3 . . . nk−1)] for all 2 ≤ i ≤ k.

For example, (0, 1, 0, 2, 3, 1, 0, 2) is an ascent sequence, but (0, 1, 2, 1, 4, 3) is not, as 4 >
asc(0121) + 1 = 3.

Ascent sequences came to prominence when Bousquet-Mélou et al. [2] related them to
(2 + 2)-free posets. They have subsequently been linked to other combinatorial structures.
See [10] for a number of examples. Later, Duncan and Steingrímsson [6] studied pattern-
avoiding ascent sequences.
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A pattern is simply a word on non-negative integers (repetitions allowed). Given an
ascent sequence (n1n2n3 . . . nk), a pattern p is a subsequence ni1ni2 . . . nij

, where j is just
the length of p, and where the letters appear in the same relative order of size as those in
p. For example, the ascent sequence (0, 1, 0, 2, 3, 1) has three occurrences of the sequence
001, namely 002, 003 and 001. If an ascent sequence does not contain a given pattern, it
is said to be pattern avoiding.

The connection between pattern-avoiding ascent sequences and other combinatorial
objects, such as set partitions, is the subject of [6], while the connection between pattern-
avoiding ascent sequences and a number of stack sorting problems is explored in [5].

Considering patterns of length three, the number of ascent sequences of length n avoiding
the patterns 001, 010, 011, and 012 is 2n−1 (the sequence A000079 in the OEIS). For the
pattern 102 the number is (3n + 1)/2 (OEIS A007051), while for 101 and 021 the number is
just given by the nth Catalan number (OEIS A000108).

For the pattern 201, the first twenty-eight terms of the generating function are given in
the OEIS as sequence A202062, and it is this sequence that we have used in our investigation.
First, we found, experimentally, that the coefficients given in the OEIS satisfied a recurrence
relation, given in Section 3 below. This recurrence can be converted to a second-order
inhomogeneous ODE, or, as we prefer, a third-order homogeneous ODE. The smallest root
of the polynomial multiplying the third derivative in the ODE is x = 0.1370633395 . . . and
is the radius of convergence of the generating function, and of course the reciprocal of the
growth constant µ = 7.295896946 . . .

This ODE, readily converted into differential operator form, can be factored into the
direct sum of two differential operators, one of first order and one of second order. The
solution of the first order ODE is a rational function while the solution of the second turns
out to satisfy a cubic algebraic equation. This can be solved by one’s favourite computer
algebra package (we give the solution below), and expanding this solution, and adding it
to the expansion of the solution of the first-order ODE, gives the required expansion.

This analysis required only the first 24 terms given in OEIS, so the correct prediction of
the next four terms gives us confidence that this is indeed the exact solution. Expanding this
solution and analysing the coefficients, as described in Section 3, leads to us conjecturing
the following asymptotic behaviour for these coefficients:

u(n) ∼ C
µn

n9/2 ,

where

µ = 14
3 cos

(
arccos(13

14)
3

)
+ 8

3

and

C = 35
16

(
4107

π
− 84

π

√
9289 cos

(
π

3 + 1
3 arccos

[
255709

√
9289

24653006

]))1/2

.

In the next two sections we give the derivation of the results given above.
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2. L-convex polyominoes

As mentioned above, a typical L-convex polyomino can be considered as a stack poly-
omino placed atop an upside-down stack polyomino. Stack polyominoes counted by area
have generating function

S(q) =
∑

snqn =
∑

n≥1

qn

(q)n−1(q)n

,

where (q)n := ∏n
k=1(1 − qk), and, as first shown by Auluck [1], one has

sn ∼
exp(2π

√
n/3)

8 · 33/4 · n5/4 .

Thus putting two such objects together, one would expect a similar expression for the
asymptotic form of the coefficients of the generating function (1.1), that is to say, an
expression of the form

ln ∼ exp(aπnβ)
cnδ

, (2.1)

where we write L(x) = ∑
lnxn for the ordinary generating function of L-convex polyominoes.

We expect both exponents β and δ to be simple rationals, as for stack polyominoes, and
the constants a and c to be products of integers and small fractional powers.

The analysis of series with asymptotics of this type is described in detail in [8] and we
will not repeat that discussion here, but simply apply the methods described there.

First, we consider the ratios of successive coefficients, rn = ln/ln−1. For a power-law
singularity, one expects the sequence of ratios to approach the growth constant linearly
when plotted against 1/n. In our case the growth constant is 1. That is to say, there is
no exponential growth. From the asymptotic behaviour (2.1), which is called of stretched
exponential type, it follows that the ratio of coefficients behaves as

rn = ln
ln−1

= 1 + aβπ

n1−β
+ O

( 1
n

)
, (2.2)

so we expect the ratios to approach a limit of 1 linearly when plotted against 1/n1−β, and
to display curvature when plotted against 1/n. We show the ratios plotted against 1/n
and 1/

√
n in Figure 2.

Figure 2. L-convex ratios rn plotted against 1/n (left) and against 1/
√

n (right).
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These plots are behaving as expected, with the plot against 1/n displaying considerable
curvature, while the plot against 1/

√
n is visually linear. This is strong evidence that

β = 1/2, just as is the case for stack polyominoes.
In fact we can easily refine this estimate. From Equation (2.2), one sees that

rn − 1 = aβπ · nβ−1 + O
( 1

n

)
.

Accordingly, a plot of log(rn − 1) versus log n should be linear, with gradient β − 1. We
would expect an estimate of β close to that which linearised the ratio plot. In Figure 3 we
show the log-log plot, and in Figure 4 we show the local gradient plotted against 1/

√
n.

The linearity of the first plot is obvious, while the second is convincingly going to a limit
of −0.5 as n → ∞.

Figure 3. Log-log plot
of rn − 1 against n.

Figure 4. Gradient of
log-log plot.

Having convincingly established that β = 1/2, just as for stack polyominoes, it remains
to determine the other parameters. There are several ways one might proceed, but here is
one that works quite well. From the conjectured asymptotic form, we write

λn := log(ln)
π

√
n

∼ a − δ log n

π
√

n
− log c

π
√

n
,

so one can readily fit successive triple of coefficients λk−1, λk, λk+1, to the linear equation

λn = e1 + e2
log n

π
√

n
+ e3

1
π

√
n

,

with k increasing until one runs out of known coefficients. Then e1 should give an estimator
of a, e2 should give an estimator of −δ and e3 should give an estimator of − log(c). The
result of doing this is shown for e1 and e2 in Figures 5 and 6 respectively.
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Figure 5. Plot of e1 against 1/
√

n. Figure 6. Plot of e2 against 1/
√

n.

We estimate the limits as n → ∞ of e1 as approximately 1.472, and e2 as −1.5. From
the asymptotic expression for sn, we expect a to likely involve a square root. So we look at
e2

1 = 2.16678, which we conjecture to be 13/6. The exponent δ is expected to be a simple
rational, and 3/2 is indeed a simple rational! We don’t show the plot for e3, as it does not
give a precise enough estimate to conjecture the value of log(c) with any precision.

So at this stage we can reasonably conjecture that

ln ∼
exp(π

√
13n/6)

c · n3/2 . (2.3)

We reached this stage based on only 100 terms in the expansion. In order to both gain
more confidence in the conjectured form, and to calculate the constant, we needed more
terms, and eventually generated 2000 terms from Equation (1.1).

With hindsight, an arguably more elegant way to analyse this series is to consider
only the coefficients ln2 . Denote ℓn := ln2 . The conjectured form (2.3) then becomes
ℓn ∼ exp(nπ

√
13/6)

c·n3 . We have 44 coefficients of the series ℓn available, and these grow in the
usual power-law manner, that is, ℓn ∼ D · µn · ng.

We now analyse this sequence assuming its asymptotic form to be

ℓn ∼ exp(nπ
√

a)
c · nb

, (2.4)

with a, b, and c to be determined. Then we form the ratios,

r(sq)
n = ℓn/ℓn−1 = µ(1 − b/n + o(1/n)),

where µ = exp(π
√

a) and where the superscript (sq) is a mnemonic recalling that we here
consider sequences derived from the subsequence ℓn = ln2 of square indices. Plotting the
ratios r(sq)

n against 1/n should give a linear plot with gradient −bµ and ordinate µ. For
a pure power-law the term o(1/n) is O(1/n2), and the estimate of µ can thus be refined
by plotting the linear intercepts ℓ(sq)

n = n · rn − (n − 1) · rn−1 against 1/n2. The results of
doing this are shown in Figures 7 and 8 for the ratios and linear intercepts respectively.
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Figure 7. Plot of ratios r(sq)
n

against 1/n.
Figure 8. Plot of linear in-
tercepts ℓ(sq)

n against 1/n2.

It can be seen that the linear intercepts have a faster convergence. We can go further and
eliminate the O(1/n2) term by forming the sequence tn = (n2 ·ℓ(sq)

n −(n−1)2 ·ℓ(sq)
n−1)/(2n−1),

and these are shown in Figure 9. From this we estimate that the intercept of the plot with
the ordinate is about 101.931. This is the growth constant µ = exp(π

√
a), from which we

find a ≈ 2.16666, which strongly suggests that a = 13/6 exactly.
To estimate the exponent b in the asymptotic form (2.4), we introduce

gn = (r(sq)
n /µ − 1) · n,

noting that limn gn = g = −b. Then, using the estimate of µ just given, we obtain the
plot shown in Figure 10. This is rather convincingly approaching g = −3.

Figure 9. Plot of sequence
tn against 1/n3.

Figure 10. Plot of exponent
estimates gn against 1/n.
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We can do better by calculating the linear intercepts g2n := n · gn − (n − 1) · gn−1. A plot
of g2n against 1/n2 is shown in Figure 11. The result g = −3 is totally convincing.

Figure 11. Plot of sequence g2n against 1/n3.

In order to calculate the constant c in the asymptotic form (2.4), we introduce the
sequence

cn :=
exp(π

√
13n/6)

ln · n3/2 ,

and extrapolate the sequence cn using any of a variety of standard methods.
For this extrapolation, we used the Bulirsch–Stoer method (see [12, Chapter 3.5] or [3]

for more details), applied to the coefficient sequence {ℓn}, with parameter 1/2, and 44
terms in the sequence (corresponding to 442 = 1936 terms in the original series). This
gave the estimate c ≈ 0.023938510821419. This unknown number is likely to involve a
square root, cube root or fourth root of a small integer, just as did sn.

We investigated this by dividing by various powers of small integers, and tried to
identify the result. Fortuitously, dividing the approximate value by

√
2 gave a result

that the Maple command identify reported as 13/768. This implies c = 13
√

2/768 =
0.023938510821419577 . . . , agreeing to all quoted digits with the approximate value. The
occurrence of 13 in this fraction, as well as in the exponent square-root, is a reassuring
feature, as is the factorisation of 768 as 3 · 28.

Thus we conclude with the confident conjecture that the asymptotic form of the
coefficients of L-convex polyominoes is

ln ∼
3 · 28 · exp(π

√
13n/6)

13
√

2 · n3/2
.
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3. 201-avoiding ascent sequence

From the coefficients u(n) for n = 0, . . . , 27 (this is the sequence A202062 in the OEIS),
we used the gfun package of Maple [11] and immediately found that the coefficients satisfy
the recurrence relation

(2n2 + n)u(n) + (6n2 + 45n + 60)u(n + 1) + (−34n2 − 263n − 480)u(n + 2)
+ (44n2 + 421n + 984)u(n + 3) + (−20n2 − 235n − 684)u(n + 4)
+ (2n2 + 31n + 120)u(n + 5) = 0,

with u(0) = 1, u(1) = 1, u(2) = 2, u(3) = 5, u(4) = 15.

This recurrence can be converted to a second-order inhomogeneous ODE, or, as we prefer,
a third-order homogeneous ODE, using the gfun command diffeqtohomdiffeq, giving

P3(x)f ′′′(x) + P2(x)f ′′(x) + P1(x)f ′(x) + P0(x)f(x) = 0,

where
P3(x) = −2x2(x3 + 5x2 − 8x + 1)(4x4 − 30x3 + 48x2 − 36x + 15)(x − 1)2,

P2(x) = −3x(x − 1)(12x8 − 30x7 − 652x6 + 2734x5 − 4767x4 + 4758x3 − 2843x2 + 870x − 85),
P1(x) = −24x9 + 30x8 + 2754x7 − 13278x6 + 28884x5 − 38106x4 + 32436x3 − 16620x2 + 4350x − 420,

P0(x) = 30(3x − 2)(3x5 − 10x4 + 19x3 − 28x2 + 24x − 7).

The smallest root of the cubic factor in P3(x) is x = 0.1370633395 . . . and is the radius
of convergence of the solution. Accordingly, the growth constant µ thus satisfies

µ = 1
x

= 14
3 cos

(
arccos(13

14)
3

)
+ 8

3 = 7.295896946 . . .

This ODE can then be studied using the Maple package DEtools. We first convert the
ODE to differential operator form through the command de2diffop, then factor this into
the direct sum of two differential operators by the command DFactorLCLM. One of these
operators is first order and one is second order.

The solution of the first order ODE is immediately given by the dsolve command, and
is the rational function

y1(x) = x4 + 26x3 − 45x2 + 18x + 1
12(x − 1)x3 .

To solve the second-order ODE, we obtain a series solution, the first term of which is
O(x−3). We multiply the solution by x3 to obtain a regular power series, then use the gfun
command seriestoalgeq to discover the cubic equation,

4(x − 1)3y2(x)3

− 3(x − 1)(x2 − x + 1)(x6 − 235x5 + 1430x4 − 1695x3 + 270x2 + 229x + 1)y2(x)
+ x12 + 510x11 − 14631x10 + 80090x9 − 218058x8 + 316290x7 − 253239x6

+ 131562x5 − 70998x4 + 37950x3 − 8955x2 − 522x + 1 = 0. (3.1)
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This can be solved by Maple’s, solve command, giving three solutions. Inspection of
their expansion reveals the appropriate one, and simplifying this gives the following rather
cumbersome solution: Let
P1 = x12 + 510x11 − 14631x10 + 80090x9 − 218058x8 + 316290x7 − 253239x6 + 131562x5

− 70998x4 + 37950x3 − 8955x2 − 522x + 1 − 24
√

3x(x − 1)(x3 + 5x2 − 8x + 1)7,

P2 = (x2 − x + 1)(x − 1)4(x6 − 235x5 + 1430x4 − 1695x3 + 270x2 + 229x + 1),
P3 = (35/6i + 31/3), and P4 = (−35/6i + 31/3). Then, one has

y2(x) =
−32/3

(
P4 (−P1 · (x − 1)6)2/3 + P2 · P3

)

12 (−P1 · (x − 1)6)1/3 (x − 1)3
.

The solution to the original ODE is then

y(x) = y2(x)
12x3 − y1(x) = 1 + x + 2x2 + 5x3 + 15x4 + · · ·

This analysis required only the first 24 terms given in the OEIS, so the correct prediction
of the next four terms gives us confidence that this is indeed the exact solution.

We next obtained the first 5000 terms in only a few minutes of computer time by
expanding this solution. We used these terms to calculate the amplitude. That is to say,
we now know that the coefficients behave asymptotically as u(n) ∼ Cµnn−9/2. Equivalently,
the generating function behaves as

U(x) =
∑

u(n)xn = A(1 − µ · x)7/2,

where C = A/Γ(−7/2) = 105A/(16
√

π). We estimate C by assuming a pure power law,
so that

u(n) · n9/2

µn
= C(1 +

∑

k≥1
ak/nk).

We calculated the first twenty coefficients of this expansion, which allowed us to estimate
C = 13.4299960869 . . . with 74-digit accuracy (as checked later). Unless one is very
fortunate (for example, when the Maple command identify determines an expression
for this constant, which it doesn’t in our case), to identify this constant requires some
experience-based guesswork.

Such constants in favourable cases are a product of rational numbers and square roots
of small integers, sometimes with integer or half-integer powers of π. These powers of π
usually arise from the conversion factor in going from the generating function amplitude A
to the coefficient amplitude C. That is to say, we might expect the amplitude A to be
simpler than C. And, to eliminate square-roots, we will try and identify A2 rather than A.

We do this by seeking the minimal polynomial with root A2, using the command
MinimalPolynomial in either Maple or Mathematica. In fact, one only requires 20 digit
accuracy in the estimate of A2 to establish the minimal polynomial, A6 − 1369A4 +
17839A2 + 1, which can be solved to give

C = 35
16

(
4107

π
− 84

π

√
9289 cos

(
π

3 + 1
3 arccos

[
255709

√
9289

24653006

]))1/2

.
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This derivation includes a degree of hindsight. In fact we searched for the minimal
polynomial for the amplitude C, by including various powers of π, and then choose the
polynomial of minimal degree. This required a much greater degree of precision in our
estimate of C to ensure we found the correct minimal polynomial.

It has been pointed out to us by Jean-Marie Maillard that the amplitude A can be
obtained directly from the solution of the cubic equation (3.1), by extracting the coefficient
of (1 − µ · x)7/2, as explained in [7, Chapter VII.7.1]. This gives the minimal polynomial
that we obtained by numerical experimentation. This alternative way to derive asymptotic
expansions is a more elegant method, as it is automatic, but it only works for algebraic
functions. There are thus many sequences for which it is not applicable, as in the case of
L-convex polyominoes (for which the generating function is not algebraic, as its radius of
convergence is not algebraic), while our numerical approach can still yield conjecturally
exact results.

4. Conclusion

We have shown how experimental mathematics can be used to conjecture exact asymp-
totics, in the case of L-convex polyominoes, and to conjecture an exact solution, in the case
of 201-avoiding ascent sequences. We hope that the results will be of interest, and that
the methods will be more widely applied, as there are many outstanding combinatorial
problems that lend themselves to such an approach.

We recognise that these results are conjectural. We leave proofs to those more capable,
and in the hope that the maxim of the late lamented J. M. Hammersley to the effect that
“it is much easier to prove something when you know that it is true” will aid that endeavour.

Acknowledgements. AJG wishes to acknowledge helpful discussions with Jean-Marie
Maillard, and with Paolo Massazza on the topic of L-convex polyominoes, and to thank the
ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) for support.
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Abstract. Research in combinatorics has often explored the asymmetric simple
exclusion process (ASEP). The ASEP, inspired by examples from statistical mechanics,
involves particles of various species moving around a lattice. With the traditional
ASEP particles of a given species can move but do not change species. In this paper
a new combinatorial formalism, the DASEP (doubly asymmetric simple exclusion
process), is explored. The DASEP is inspired by biological processes where, unlike the
ASEP, the particles can change from one species to another. The combinatorics of the
DASEP on a one dimensional lattice are explored, including the associated generating
function. The stationary probabilities of the DASEP are explored, and results are
proven relating these stationary probabilities to those of the simpler ASEP.
Keywords: ASEP, DASEP, lattice, algebraic combinatorics, steady state probabilities,
species, lattice paths.

1. Introduction

The ASEP (asymmetric simple exclusion process) is a structure that has frequently been
referred to in the combinatorics literature. In its simplest form, the ASEP consists of a one
dimensional infinite lattice, with each point on the lattice being populated with either a
particle or a hole. At random intervals, each particle attempts to move either to the left or
the right with different but fixed probabilities (hence the term ‘asymmetric’). The ASEP
can be thought of as a form of Markov process as noted in [4] by Corteel et al. Multiline
queues [5] were introduced by Ferrari et al. as a combinatorial approach to the analysis of
the ASEP. Originally the ASEP particles were thought of as all belonging to a single species.
More recent work by Cantini et al. [3] generalized the concept to multiple species and
uncovered a link with Macdonald polynomials. Although we focus on the homogeneous
ASEP (transition probabilities do not depend on position in the lattice), several researchers
(Lam et al. [7], Ayyer et al. [1], Cantini [2], Mandelshtam [9], and Kim et al. [6]) have
explored the inhomogeneous ASEP in which transition probabilities do depend on lattice
position.

2. Definitions

Following [4], a partition can be defined as follows:

Definition 2.1. A partition λ is a nonincreasing sequence of n nonnegative integers
λ = (λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0).
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We will start by working through a simple example of the ASEP before introducing the
new concept of the DASEP. We will ordinarily write a partition as defined above as an
n-tuple: λ = (λ1, λ2, ..., λn).

Definition 2.2. We write Sn(λ) to mean the set of all permutations of λ.

Example 2.3. So, for λ = (2, 2, 1), S3(λ) = {(2, 2, 1), (2, 1, 2), (1, 2, 2)}.

The multispecies asymmetric simple exclusion process ASEP(λ) is then defined to be a
Markov process on Sn(λ) with certain specific transition probabilities:

Definition 2.4. For all partitions λ as defined in Definition 2.1, ASEP(λ) is a Markov
process on Sn(λ). We let t be a constant with 0 ≤ t ≤ 1. The transition probability Pµ,ν

between two permutations µ ∈ Sn(λ) and ν ∈ Sn(λ) is given by:
• If µ = (µ1, . . . , µk, i, j, µk+2, . . . , µn) and ν = (µ1, . . . , µk, j, i, µk+2, . . . , µn), with

i ̸= j, then Pµ,ν = t
n

if i > j and Pµ,ν = 1
n

if j > i.
• If µ = (i, µ2, µ3, . . . , µn−1, j) and ν = (j, µ2, µ3, . . . , µn−1, i) with i ̸= j, then

Pµ,ν = t
n

if j > i and Pµ,ν = 1
n

if i > j.
• If neither of the above conditions apply but ν ̸= µ then Pµ,ν = 0. If ν = µ then

Pµ,µ = 1 − ∑
ν ̸=µ Pµ,ν .

It is possible to compute steady state probabilities for ASEP(λ). For the purposes of
the example that we will develop as we introduce DASEP, we are primarily interested in
ASEP(λ) for λ = (2, 2, 0), λ = (2, 1, 0), and λ = (1, 1, 0), so we will focus mostly on these
three processes as we work through the computation of the steady state probabilities.
Continuing to follow [4] as we develop this example, to compute these probabilities we
need to define the concept of a multiline queue.

Definition 2.5. A ball system B is an L × n matrix each element of which is either 0
or 1. Moreover for all i the number of 1’s in row i + 1 is less than or equal to the number
of 1’s in row i.

Definition 2.6. Given a ball system B a multiline queue Q is obtained by augmenting B
with a labeling and matching system. Each cell in B will be labelled with a number from 0
to L inclusive, and each cell with a 1 element in row i + 1, for i ≥ 1, will be matched to a
cell with a 1 element in row i. Such a matching must be obtained through an application
of the following algorithm:

• Step 1: Find the highest numbered row with unlabelled 1 elements. Label each
of those elements with the number of the row. If this is row 1, or there are no
remaining unlabelled 1 elements in the matrix, exit.

• Step 2: Find the row with labelled but unmatched elements. If this is row 1,
go back to step 1. If it is row i + 1, for i ≥ 1, first match each labelled but
unmatched element that can be matched to an unlabelled element directly below
it to that element. This is considered a trivial match. Then proceed from right
to left (highest to lowest numbered columns) matching each remaining labelled
but unmatched element to an unlabelled element in the row below–these are the
nontrivial matches. Give all newly matched elements in row i the same label as
the element it has just been matched to. Repeat step 2.
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A multiline queue is often visualized as a ball system with an element with a 1 value
being shown as a ball and a 0 value by the absence of a ball. Matches between elements
(balls) are drawn by lines between the matched balls. The following shows a multiline
queue associated with ASEP(λ) where λ = (2, 2, 0). Note that the line matching the ball
at upper right to the one at the lower middle wraps around to the right.

2

2

2

2

The labels in the bottom row determine the partition of the associated ASEP. The
above multiline queue has λ = (2, 2, 0) since the bottom row includes two 2’s and a 0–by
convention an element without a ball is assumed to be labeled with a 0. Likewise the
following would be a multiline queue with λ = (2, 1, 0):

1 2

2

Each multiline queue is also associated with a permutation α ∈ Sn(λ) corresponding
to the labels of its bottom row in unsorted order. For example, for the above multiline
queue, λ = (2, 1, 0) but α = (0, 1, 2). We will write λ(Q) = λ and α(Q) = α.

3. Steady state probabilities with example

To determine steady state probabilities–and continue with the example started in the
introduction–we next assign to each nontrivial matching p in Q two values f(p) and s(p).
f(p) is the number of choices that were available for the match when the match was
made. s(p) is the number of legal matches that were skipped, if we imagine ourselves
considering possible matches from left to right and wrapping around the end if needed,
before the actual choice was made. We can then define a weight on p as wt(p) = (1−t)ts(p)

1−tf(p) .
Here we are proceeding from [4] but with the simplifying assumption that q = 1, since
in the sequel we will rely on a theorem that requires q = 1. Next we can define a weight
on the entire multiline queue wt(Q) = ∏

p∈Q wt(p) where the product is taken over all
nontrivial matches p in Q. A theorem due to Martin [10] then gives the required steady
state probabilities:

Pr(α) =
∑

α(Q)=α wt(Q)
∑

λ(Q)=λ wt(Q) .

Before moving on to the DASEP, we need to evaluate the steady state probabilities for
the examples that we will ultimately use to develop the DASEP. For the above multiline
queue, there is exactly one nontrivial pair p. When this pair is matched, there are two
available options so f(p) = 2. As we picked the second available option, s(p) = 1. So
wt(Q) = (1−t)t

1−t2 . As noted above, α = (0, 1, 2) and the only other multiline queue with
α = (0, 1, 2) is as follows:

1 2

2
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Here there is no nontrivial matching pair, so wt(Q) = 1. Hence:
∑

α(Q)=(0,1,2)
wt(Q) = 1 + (1 − t)t

1 − t2 = 1 + 2t

1 + t
.

For reasons of symmetry:
∑

α(Q)=(0,1,2)
wt(Q) =

∑

α(Q)=(1,2,0)
wt(Q) =

∑

α(Q)=(2,0,1)
wt(Q) = 1 + 2t

1 + t
.

Next we look at α = (0, 1, 2), for which there are also two multiline queues. The first of
these is as follows:

12

2

Here there is one nontrivial matching pair p. When this pair is matched, there are
two available options so f(p) = 2. As we picked the first available option, s(p) = 0. So
wt(Q) = 1−t

1−t2 . The other multiline queue with α = (2, 1, 0) is as follows:

12

2

Again there is no nontrivial matching pair, so wt(Q) = 1. Hence:
∑

α(Q)=(2,1,0)
wt(Q) = 1 + 1 − t

1 − t2 = 2 + t

1 + t
.

For reasons of symmetry, one has
∑

α(Q)=(2,1,0)
wt(Q) =

∑

α(Q)=(1,0,2)
wt(Q) =

∑

α(Q)=(0,2,1)
wt(Q) = 2 + t

1 + t
.

So we get
∑

λ(Q)=(2,1,0)
wt(Q) = 3(1 + 2t

1 + t
) + 3(2 + t

1 + t
) = 9.

We are now ready to give the steady state probabilities

Pr(0, 1, 2) = Pr(1, 2, 0) = Pr(2, 0, 1) = 1 + 2t

9(1 + t)
and

Pr(2, 1, 0) = Pr(1, 0, 2) = Pr(0, 2, 1) = 2 + t

9(1 + t) .

Trivial computations also give

Pr(0, 1, 1) = Pr(1, 1, 0) = Pr(1, 0, 1) = 1
3

and
Pr(0, 2, 2) = Pr(2, 2, 0) = Pr(2, 0, 2) = 1

3 .

This concludes our computation for the steady state probabilities of this model; in the
next section we introduce the DASEP model.



Introducing DASEP: the doubly asymmetric simple exclusion process 85

ASEP(2, 1, 0)

ASEP(1, 1, 0)

ASEP(2, 2, 0)
0 2

2

2 0

2

2 2

0

01

1

10

1

11

0

01

2
02

1

10

2

20

1

12

0
21

0

Figure 1. An example of DASEP(n, p, q): DASEP(3,2,2).
Each of the 12 small triangles represents a state of the DASEP in the circular lattice

with n = 3 sites with q = 2 balls (i.e., the nonzero labels), each nonzero label is ≤ p = 2
(i.e., one has p = 2 species). Each state corresponds to a permutation of the partition
(2, 2, 0), (2, 1, 0), or (1, 1, 0). The transitions are explained in Definition 4.1 hereafter.
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4. Doubly asymmetric simple exclusion process

We are now ready to introduce the DASEP (doubly asymmetric simple exclusion process).
While the ASEP is inspired by statistical mechanics where particles do not change species,
the DASEP, by contrast, is inspired by biological processes where particles can change
species, which we denote by DASEP(n, p, q) where n is the number of positions on the
lattice, p is the number of types of species, and q is the number of particles.

Definition 4.1. For all positive integers n, p, and q with n > q, DASEP(n, p, q) is a
Markov process on the set

⋃

λ1≤p, λ′
1=q

Sn(λ), where one uses the notation of Definition 2.2,

and where λ′
1 = q refers to the dual partition [8] of λ, namely λ′, and uses the fact that λ′

1
gives the number of nonzero terms in the original partition λ. The transition probability
Pµ,ν on two permutations µ and ν is as follows:

• If µ = (µ1, . . . , µk, i, j, µk+2, . . . , µn) and ν = (µ1, µ2, ..., µk, j, i, µk+2, . . . , µn) with
i ̸= j, then Pµ,ν = t

3n
if i > j and Pµ,ν = 1

3n
if j > i.

• If µ = (i, µ2, . . . , µn−1, j) and ν = (j, µ2, µ3, ..., µn−1, i) with i ̸= j, then Pµ,ν = t
3n

if j > i and Pµ,ν = 1
3n

if i > j.
• If µ = (µ1, . . . , µk, i, µk+2, . . . , µn) and ν = (µ1, . . . , µk, i + 1, µk+2, . . . , µn) with

i ≥ 1, then Pµ,ν = u
3n

.
• If µ = (µ1, . . . , µk, i + 1, µk+2, . . . , µn) and ν = (µ1, . . . , µk, i, µk+2, . . . , µn) with

i ≥ 1, then Pµ,ν = 1
3n

.
• If none of the above conditions apply but ν ̸= µ then Pµ,ν = 0. If ν = µ then

Pµ,µ = 1 − ∑
ν ̸=µ Pµ,ν .

Figure 1 shows the simple example of the DASEP that we are working through. All
possible transitions within a single ASEP (the first and second bullet points in the definition
above) are shown with blue arrows on this diagram. To keep the diagram relatively clean in
appearance, only selected transitions between different ASEPs (the third and fourth bullet
points) are shown (with red arrows). Other ASEPs such as ASEP(1, 0, 0) or ASEP(2, 0, 0) are
not shown since these are not part of DASEP(3, 2, 2). This is because, per Definition 4.1,
for DASEP(3, 2, 2) we always have λ′

1 = 2, whereas for ASEP(1, 0, 0) and ASEP(2, 0, 0), we
would have λ′

1 = 1.
Similar to with the ASEP, with the DASEP we wish to compute steady state probabilities

for permutations α which we will call Pd(α). We will focus on continuing to develop the
example we have been working on which turns out to be DASEP(3, 2, 2). Here n = 3 means
that the particles move on the circular lattice with 3 sites, p = 2 means that each particle
is allowed to take on the value 0, 1, or 2, and q = 2 means that each permutation α has
exactly 2 nonzero values. We therefore find ourselves interested in the following 12 steady
state probabilities:

Pd(0, 1, 1), Pd(0, 1, 2), Pd(0, 2, 1), Pd(0, 2, 2), Pd(1, 0, 1), Pd(1, 0, 2),
Pd(1, 1, 0), Pd(1, 2, 0), Pd(2, 0, 1), Pd(2, 0, 2), Pd(2, 1, 0), Pd(2, 2, 0).



Introducing DASEP: the doubly asymmetric simple exclusion process 87

Note here that particles in the DASEP are allowed to switch back and forth between
species 1 and 2, but not back and forth from 0 to anything else. That is because a value
of 0 is understood to not so much be a species but the absence of a species. Due to
symmetries we can now focus on solving for the following four probabilities:

w = Pd(0, 1, 1), x = Pd(0, 1, 2), y = Pd(0, 2, 1), z = Pd(0, 2, 2).
From the above transition probabilities, this reduces to solving the system





2uw = x + y

(2 + t)x + x + ux = (1 + 2t)y + z + uw

(1 + 2t)y + y + uy = (2 + t)x + uw + z

2z = u(x + y)
which in turn implies the relation

(5 + 2t + u)x = (3 + 4t + u)y.

We can then ask ourselves the question of when the proportions of steady state probabil-
ities for the DASEP are the same as for the previous ASEP. Noting that Pr(0, 1, 2) = 1+2t

9(1+t)
and Pr(2, 1, 0) = 2+t

9(1+t) such equality will happen if (5+2t+u)(1+2t) = (3+4t+u)(2 + t),
or 5 + 2t + u + 10t + 4t2 + 2tu = 6 + 8t + 2u + 3t + 4t2 + tu, or t(1 + u) = 1 + u. So this
will happen if and only if t = 1. We have therefore proven the following proposition.

Proposition 4.2. If D = DASEP(3, 2, 2) is parameterized as described above by t and u,
then the following two statements are equivalent:

• t = 1.
• For all partitions λ with Sn(λ) ⊆ D and all permutations µ, ν ∈ Sn(λ), the

following equality holds: Pr(µ)
Pr(ν) = Pd(µ)

Pd(ν) . That is, the ratio between steady state
probabilities does not change in moving from the ASEP to the DASEP.

In fact, we conjecture the following more general statement.

Conjecture 4.3. If D = DASEP(n, p, q) is parameterized as described above by t and u,
then the following two statements are equivalent:

• t = 1.
• For all partitions λ with Sn(λ) ⊆ D and all permutations µ, ν ∈ Sn(λ), the

following equality holds: Pr(µ)
Pr(ν) = Pd(µ)

Pd(ν) . That is, the ratio between steady state
probabilities does not change in moving from the ASEP to the DASEP.

Partial proof. We will prove this only in the =⇒ direction. If t = 1 we can replace λ with
a similar partition but with species of the same type being replaced by similar distinct
species. For example, if λ = (3, 3, 3, 2, 1, 0, ...) we would map this to λ̂ = (31, 32, 33, 2, 1, 0, ...)
and allow adjacent species originally of the same type to be exchanged with the same
transition probability. This will create a completely symmetric situation, so all steady
state probabilities are equal. As an equal number of λ̂’s can be derived from each λ this
means all original steady state probabilities are equal as well, so Pr(µ)

Pr(ν) = Pd(µ)
Pd(ν) = 1. This

completes the proof in the =⇒ direction. □
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Let us motivate Conjecture 4.3 by showing that it holds on one example. Following
are the nine values (of the nine steady state probabilities) we must solve for to prove this
conjecture for DASEP(3, 3, 2):

a1 = Pd(0, 1, 1), a2 = Pd(0, 2, 2), a3 = Pd(0, 3, 3),
b1 = Pd(0, 2, 3), b2 = Pd(0, 1, 3), b3 = Pd(0, 1, 2),
c1 = Pd(0, 3, 2), c2 = Pd(0, 3, 1), c3 = Pd(0, 2, 1).

These values can be obtained by solving the following set of nine equations:




2ua1 = b3 + c3

(2 + t)b3 + ub3 + ub3 + b3 = (1 + 2t)c3 + b2 + a2 + ua1

(1 + 2t)c3 + uc3 + uc3 + c3 = (2 + t)b3 + c2 + a2 + ua1

a2 + a2 + ua2 + ua2 = b1 + c1 + ub3 + uc3

(2 + t)b2 + ub2 + b2 = (1 + 2t)c2 + b1 + ub3

(1 + 2t)c2 + uc2 + c2 = (2 + t)b2 + c1 + uc3

2a3 = ub1 + uc1

(2 + t)b1 + ub1 + b1 + b1 = (1 + 2t)c1 + a3 + ub2 + ua2

(1 + 2t)c1 + uc1 + c1 + c1 = (2 + t)b1 + a3 + ua2 + uc2.

Without working through all the details, this can be solved to give
(4u3 + 36u2t + 90ut2 + 72t3 + 32u2 + 206ut + 270t2 + 108u + 322t + 120)c3

= (4u3 + 24u2t + 54ut2 + 36t3 + 44u2 + 190ut + 198t2 + 160u + 350t + 200)b3.

As previously discussed, Pr(0, 1, 2) = 1+2t
9(1+t) and Pr(2, 1, 0) = 2+t

9(1+t) , so for b3 = Pd(0, 1, 2)
and c3 = Pd(2, 1, 0) to be in the same ratio we would require b3 = k(1+2t) and c3 = k(2+t)
for some k. It follows, after also dividing through by 2, that

(2u3 + 18u2t + 45ut2 + 36t3 + 16u2 + 103ut + 135t2 + 54u + 161t + 60)(t + 2)
= (2u3 + 12u2t + 27ut2 + 18t3 + 22u2 + 95ut + 99t2 + 80u + 175t + 100)(2t + 1).

This can be expanded to
2u3t + 18u2t2 + 45ut3 + 36t4 + 4u3 + 52u2t + 193ut2

+ 207t3 + 32u2 + 260ut + 431t2 + 108u + 382t + 120
= 4u3t + 24u2t2 + 54ut3 + 36t4 + 2u3 + 56u2t+

217ut2 + 216t3 + 22u2 + 255ut + 449t2 + 80u + 375t + 100.

This can be reduced to
2u3t + 6u2t2 + 9ut3 − 2u3 + 4u2t + 24ut2 + 9t3 − 10u2 − 5ut + 18t2 − 28u − 7t − 20 = 0.

This can be factored as

(t − 1)(2u3 + 6u2t + 9ut2 + 10u2 + 33ut + 9t2 + 28u + 27t + 20) = 0.

Since u ≥ 0 and t ≥ 0, it follows that t = 1. This completes the proof in the ⇐=
direction for the DASEP(3, 3, 2) case.



Introducing DASEP: the doubly asymmetric simple exclusion process 89

5. Proof of the conjecture for DASEP(3, p, 2)

It would be an endless game to prove the conjecture “case by case”, with more and
more cumbersome computations, so let us now prove it for an infinite family of models.
More precisely, we now prove Conjecture 4.3 for DASEP(3, p, 2) (our previous examples
covered the cases p = 2 and p = 3). To solve this case we essentially need to solve for each
of p2 prior probabilities pi,j = Pd(0, i, j) for 1 ≤ i, j ≤ p. The steady state probabilities
can be obtained by solving a set of p2 linear equations each of which essentially demands
equilibrium for each of the possible states of the process. The generic form of such an
equation, for i < j, is given by

(4 + t + 2u)pi,j = (1 + 2t)pj,i + pi+1,j + pi,j+1 + upi−1,j + upi,j−1. (5.1)

For i > j the equation is

(3 + 2t + 2u)pi,j = (2 + t)pj,i + pi+1,j + pi,j+1 + upi−1,j + upi,j−1

For i = j the equation simplifies to

(2 + 2u)pi,i = pi+1,i + pi,i+1 + upi−1,i + upi,i−1.

The equation may be similarly simplified for other edge cases such as i = 1 < j,
i < j = p, i = 1 < j = p, i > j = 1, i = p > j, i = p > j = 1, i = j = 1, and i = j = p.
For the sake of brevity we do not list all such cases in detail.

From the first above equation we can define a polynomial Ai,j by gathering all terms on
the left:

Ai,j := (4 + t + 2u)pi,j − (1 + 2t)pj,i − pi+1,j − pi,j+1 − upi−1,j − upi,j−1.

We can similarly define Ai,j under the conditions stated for the various edge cases. We
next define a p2 × p2 matrix B as follows:

Bp(i1−1)+j1,p(i2−1)+j2 = [pi1,j1 ]Ai2,j2 .

The next step is to prove that the rank of B is p2 − 1. To see this, we first observe
that the sum of all rows of B is identically zero, meaning that the rank cannot be p2.
For the rank to then be p2 − 1, we would then need to show that no nontrivial linear
combination of a proper subset of the rows can be zero. If we let row i, j be Ri,j and for
some coefficients ci,j we have ∑

i,j ci,jRi,j = 0, then we need to show that if any ci,j = 0,
then all ci,j = 0. The only rows with a t term in column i, j will be Ri,j and Rj,i. Hence if
ci,j = 0, it follows that cj,i=0.

We next show that if ci,j = 0 it follows that ci−1,j−1 = 0. We can do this by first showing
that ci−1,j and ci,j−1 must be negations of one another. The only rows with a u term in
column i, j will be Ri,j, Ri−1,j, and Ri,j−1, with the latter two having the same coefficient.
Hence the following two statements are equivalent: ci,j = 0 and ci−1,j + ci,j−1 = 0. We can
similarly show that ci,j = 0 and ci+1,j + ci,j+1 = 0 are equivalent. So from ci,j = 0 we can
derive ci−1,j−1 = 0. By repeated application of the same argument we will get ck,1 = 0 or
c1,k = 0 for some k.
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Likewise, using the equations for the edge cases i = 1 < j and i > j = 1, the only rows
with a u term in column 1, k will be R1,k and R1,k−1 and the only rows with a u term in
column k, 1 will be Rk,1 and Rk−1,1. So from ck,1 = 0 we can derive ck−1,1 = 0 and from
c1,k = 0 we can derive c1,k−1 = 0. By repeated application of this we will get to c1,1 = 0.
By reversing the above arguments it follows that ci,j = 0 for any i, j and we have proven:

Lemma 5.1. The rank of the matrix B as defined above is p2 − 1.

We next prove a result about the values of the pi,j.

Proposition 5.2. One has

pi,j + pj,i = 2ui+j−2
(∑n−1

k=0 uk
)2 and pi,i = u2i−2

(∑n−1
k=0 uk

)2 .

Proof. This can be proven by eliminating the variable t from the set of linear equations
above. For example, if we add the equations for i < j and j < i we get the following:

(4 + t + 2u)pi,j + (3 + 2t + 2u)pj,i

= (2 + t)pi,j + (1 + 2t)pj,i + pi+1,j + pj,i+1 + pi,j+1 + pj+1,i

+ upi−1,j + upj,i−1 + upi,j−1 + upj−1,i.

If we let qi,j = pi,j + pj,i the above can be simplified to

(2 + 2u)qi,j = qi+1,j + qi,j+1 + uqi−1,j + uqi,j−1.

If we substitute in the values for qi,j from the theorem we are attempting to prove
to the above equation, we see that it does satisfy the above equation. Therefore the
values of qi,j given in the theorem represent one possible feasible solution to the set of
equations. Moreover, via Lemma 5.1 about the rank of B, the solution must be unique.
This completes the proof. □

To continue with the proof of Conjecture 4.3 in the ⇐= direction, we note that
from Pr(µ)

Pr(ν) = Pd(µ)
Pd(ν) it follows that Pr(0,2,1)

Pr(0,1,2) = Pd(0,2,1)
Pd(0,1,2) or 2+t

1+2t
= p2,1

p1,2
. This expands as

(2 + t)p1,2 = (1 + 2t)p2,1. From the above theorem we know that

p1,2 + p2,1 = 2u
(∑n−1

k=0 uk
)2 .

We can then solve for p1,2 giving

p1,2 = 2(1 + 2t)u
3(1 + t)

(∑n−1
k=0 uk

)2 .

From the equation (5.1) for i = 1 < j we get
(3 + t + 2u)p1,2 = (1 + 2t)p2,1 + p2,2 + p1,3 + up1,1.

Substitute in to get
2(3 + t + 2u)(1 + 2t)u

3(1 + t)
(∑n−1

k=0 uk
)2 = 2(2 + t)(1 + 2t)u

3(1 + t)
(∑n−1

k=0 uk
)2 + 3(1 + t)(1 + u)u

3(1 + t)
(∑n−1

k=0 uk
)2 + p1,3.
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This simplifies to
p1,3 = (5ut + u + t − 1)u

3(1 + t)
(∑n−1

k=0 uk
)2 .

A similar argument to that used to produce the above equation for p1,2 will give us

p1,3 = 2(1 + 2t)u2

3(1 + t)
(∑n−1

k=0 uk
)2 .

Equating the last two equations and solving gives us t = 1. This completes the proof of
Theorem 5.3. Conjecture 4.3 holds for D = DASEP(3, p, 2).

6. Future work

Three main potential directions for future work are indicated. One is that further results
should be obtained with a view to eventually proving Conjecture 4.3. We proved it for
DASEP(3, p, 2) and the suggestion would be to prove it for DASEP(n, 2, 2) and DASEP(n, 2, q)
before eventually proceeding to DASEP(n, p, q). Similarly considering the case where 0
represents a ball with species 0 rather than the absence of a species is a variant that
should be explored. The other, and more ambitious, possible goal for future research
would be to come up with a complete combinatorial characterization of the steady state
probabilities for the DASEP. For the ASEP, this has been done in [4] and [10] leading to a
deep relationship being discovered between the ASEP and Macdonald polynomials.
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Abstract. We give a summary of recent progress on the signed area enumeration of
closed walks on planar lattices. Several connections are made with quantum mechanics
and statistical mechanics. Explicit combinatorial formulae are proposed which rely on
sums labelled by the multicompositions of the length of the walks.
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1. Introduction

The seminal problem of the signed area enumeration of walks on planar lattices of
various kinds has been around for a long time. It is well known that this purely combina-
torial problem can be equivalently reformulated in the realm of Hofstadter-like quantum
mechanics models (note that, in physics, the “signed area” is often called the “algebraic
area”). Recently, in [16], this problem has been given a boost in the form of an explicit
enumeration formula which in turn could be reinterpreted [5, 14, 15] in terms of statistical
mechanics models with exclusion statistics, again a purely quantum concept. It is a striking
fact that an enumeration quest regarding classical random walks should be in the end so
intimately connected to quantum physics.

In this note we give a summary of this recent progress starting with the original signed
area enumeration problem for closed walks on a square lattice and then enlarging the
perspective to other kinds of lattices and walks via the statistical mechanics reinterpretation.
The first question we address is: Among the

(
N

N/2

)2
closed N -step walks that one can

draw on a square lattice starting from and returning to a given point (note that N is then
necessarily even), how many of them enclose a given signed area A?

The signed area enclosed by a directed walk is weighted by its winding number : If the
walk moves around a region in a counterclockwise direction, its area counts as positive,
otherwise it counts as negative; if the walk winds around more than once, the area is
counted with multiplicity. These regions inside the walk are called winding sectors.
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Figure 1. A closed walk of lengthN = 36 starting from and returning to the
same bullet red point with its various winding sectors m = +2,+1, 0,−1,−1
(containing respectively 2, 14, 1, 1, 1 unit lattice cells). Note the double arrow
on the horizontal link (above the +2 sector) which indicates that the walk
has moved twice on this link, here in the same left direction.

In Figure 1, the 0-winding sector inside the walk arises from a superposition of a +1 and
a −1 winding. Summing the areas of each sector, with the corresponding multiplicative
weight, gives the signed area A = (−1) × 2 + (+0) × 1 + (+1) × 14 + (+2) × 2 = 16.

More formally, if γ : [0, 1] → R2 is a closed path that begins and ends at the origin, the
signed area of this path is

A =
∫

R2
η(γ,x)dx =

∞∑

m=−∞
mSm,

where η(γ,x) is the winding number of γ around the point x ∈ R2, and where Sm denotes
the classical area of the m-winding sectors inside the path (i.e. the number of unit lattice
cells it encloses with winding number m, where m can be positive or negative).

Winding sectors for continuous Brownian curves as well as for discrete lattice walks
have been the subject of study for a long time. In this respect, we note in the last few
years some advances in [2] where1 an explicit formula for the expected area ⟨Sm⟩ of the
m-winding sectors inside square-lattice walks is proposed, to the exception of the 0-winding
sector, for the simple reason that the latter is difficult to distinguish from the outside
(i.e. 0-winding again) sector, which is of infinite size. Taking the continuous limit allows us
to recover the results previously obtained in [4] for Brownian curves. One notes that for
Brownian curves the expected area ⟨S0⟩ of the 0-winding sectors is also known by other
means thanks to the SLE machinery [7]. However, it remains an open problem for discrete
lattice walks.

1Note that Timothy Budd gave a talk on his article [2] at the conference Lattice Paths, Combinatorics
and Interactions, at CIRM, in 2021. A video of his talk is available on the website of this conference.
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Counting the number of closed walks of length N on the square lattice enclosing a
signed area A can be achieved in a most straightforward way by introducing two lattice
hopping operators (symbols) u and v respectively in the right and up directions, as well as
operators u−1 and v−1 corresponding to hops in the left and down direction. A directed
walk on the square lattice starting at the origin is then represented by the ordered product
of the hopping operators corresponding to its individual steps. By convention we order
the operators from right to left as we trace the steps of the walk: vu corresponds to a up
step u, followed by a right step v. Clearly the set of all walks of length N on the lattice is
reproduced by the 4N terms in the expansion of

(
u+ u−1 + v + v−1

)N
(1.1)

into monomials of products of symbols, each with N factors. The operator u+u−1 +v+v−1

can be considered as the generator of walks.
We are interested in closed walks, and in counting their multiplicity according to their

signed area. To this end, we endow the above operators with the relations
uu−1 = u−1u = vv−1 = v−1v = 1,

to which we add a non-commutativity relation (which expresses the fact that the elementary
walk circling one lattice cell in the counterclockwise direction has signed area 1):

v−1 u−1 v u = Q,
where Q is a central element (that is, Q commutes with all operators). This entails

vu = Quv, vu−1 = Q−1u−1v, v−1u = Q−1uv−1, v−1u−1 = Qu−1v−1, (1.2)
which allows us to reduce all terms in (1.1) into monomials of the form umvn, (m,n) ∈ Z2

being the lattice coordinates of the end of the walk, with coefficients which are powers of Q.
In particular, closed walks correspond to the monomial u0v0 in (1.1).

The non-commutativity relation vu = Q uv has the effect of flipping a right-up two-step
segment into an up-right one, producing a factor of Q, and similarly for each relation in (1.2).
In each case, the coefficient is Q to the power of the signed area of the unit lattice cells
left behind by the exchange. Repeated application of these relations reduces each walk to
hook-shape walk umvn with an overall coefficient QA, with A the signed area of the original
walk prolonged into a closed walk by joining its end to the origin with a vertical and a
horizontal straight walk. In particular, closed walks correspond to monomials QAu0v0,
with A the signed area of the walk. This area is maximal if the walk forms a square of
width N/4, and then the signed area is ±N2/16. Therefore, using the notation [u0v0] for
the extraction of the constant term in a Laurent polynomial in u and v, the distribution
of the signed area of closed walks of length N is given by

[u0v0]
(
u+ u−1 + v + v−1

)N
=

⌊N2/16⌋∑

A=−⌊N2/16⌋
CN(A) QA, (1.3)

where CN (A) counts the closed walks of length N enclosing a signed area A. For example,
one easily checks that [u0v0]

(
u+u−1 + v+ v−1

)4
= 28 + 4Q + 4Q−1, indicating that among

the
(

4
2

)2
= 36 closed walks making 4 steps C4(0) = 28 enclose a signed area A = 0 and

C4(1) = C4(−1) = 4 enclose a signed area A = ±1.
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2. The Hofstadter model

In any irreducible representation of the operator relation vu = Quv, the central element Q
will be represented by a number. Restricting to unitary representations, for which u† = u−1,
v† = v−1, Q will necessarily be a complex number of norm unity, i.e., a phase. This provides
a mapping between the u, v representation for walks and quantum mechanics, interpreting
u and v as unitary operators acting on a quantum Hilbert space, and the operator
u+ u−1 + v + v−1 as the Hamiltonian of a quantum system.

In fact, such a quantum system exists and corresponds to a well-known model in physics.
Interpreting u and v as operators that generate hops of a quantum particle by one link on
the square lattice, the non-commutativity relation vu = Quv indicates that translations
of the particle in the horizontal and vertical directions do not commute. This can be
interpreted as that the particle is charged and coupled to a homogeneous magnetic field
perpendicular to the lattice. The magnetic flux associated to this (constant) vector field is
Φa2 for any surface of area a2.

Let us now take Q = ei2πΦ/Φo , where Φ is the magnetic flux through any unit lattice cell
(i.e. for the surface of the square of width a = 1) and where Φo = h/c is the flux quantum
(h is the Planck constant and c the particle’s charge). The Hermitian operator

H = u+ u−1 + v + v−1 (2.1)

then becomes a Hamiltonian modelling a quantum particle hopping on a square lattice and
coupled to a perpendicular magnetic field. This model is known as the Hofstadter model [8].

To make the physics connection completely explicit, we note that in quantum mechanics
the hopping operators u and v are written as

u = ei(px−cAx)/ℏ and v = ei(py−cAy)/ℏ,

where Ax = −Φy and Ay = 0 are the two components of the vector potential of the
magnetic field in the Landau gauge and px = −iℏ∂x and py = −iℏ∂y those of the momentum
operator (where we use the standard notation ℏ = h/(2π)). Thus, assuming (1), the relation
vu = Quv follows from the Baker–Campbell–Hausdorff formula, using the Heisenberg
commutators [x, px] = [y, py] = iℏ (this identity is often called the “canonical commutation
relation”).

One now introduces the quantum state Ψm,n representing the probability amplitude of
the particle being at lattice site (m,n), on which hopping operators act as

uΨm,n = eicnΦ/ℏΨm+1,n , vΨm,n = Ψm,n+1.

As cΦ/ℏ = 2πΦ/(h/c) = 2πΦ/Φo, the factor appearing in the action of u on ψm,n is Qn.
Using translation invariance in the horizontal direction we can further choose Ψm,n to be
an eigenstate of px, that is, Ψm,n = eimkxΦn. The action of u, v on Φn becomes

uΦn = eikxQnΦn , vΦn = Φn+1.

For the Hofstadter model, the Schrödinger equation HΨ = EΨ (which determines the
eigenvalue E of the spectrum) can be rewritten as

(u+ u−1 + v + v−1)Ψm,n = EΨm,n ⇒ Φn+1 + Φn−1 + (Qneikx + Q−ne−ikx)Φn = EΦn.
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Going a step further, a simplification arises when the flux is rational (i.e. when one has
Q = ei2πp/q with p, q two coprime integers): It induces a q-periodicity of the Schrödinger
equation in the vertical direction. Then, as Bloch’s theorem states that solutions to the
Schrödinger equation in a periodic potential take the form of a plane wave modulated by
a periodic function Φ̃n, we can write

Φn = einkyΦ̃n , Φ̃n+q = Φ̃n. (2.2)
Indeed, for this rational flux Qq = 1, thus uq, vq become Casimirs (a physicist’s term for
central elements), and the choice of Bloch states (2.2) can be interpreted mathematically
as choosing an irreducible representation of the u, v algebra. Acting on such states, uq and
vq become uq = eiqkx and vq = eiqky . One ends up with u and v, acting on Φ̃n, becoming
the q × q matrices

u = eikx




Q 0 0 · · · 0 0
0 Q2 0 · · · 0 0
0 0 Q3 · · · 0 0

... ... ... . . . ... ...
0 0 0 · · · Qq−1 0
0 0 0 · · · 0 1




and v = eiky




0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0

... ... ... . . . ... ...
0 0 0 · · · 0 1
1 0 0 · · · 0 0




involving two real quantities kx and ky. Finding the energy spectrum (which depends on kx

and ky) reduces to computing the eigenvalues E1, . . . , Eq of the q × q Hamiltonian matrix
Hq := u+ u−1 + v + v−1, i.e.

Hq =




Qeikx + Q−1e−ikx eiky 0 · · · 0 e−iky

e−iky Q2eikx + Q−2e−ikx eiky · · · 0 0
0 e−iky () · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · () eiky

eiky 0 0 · · · e−iky Qqeikx + Q−qe−ikx




.

All the machinery of quantum mechanics is now at our disposal. Selecting as in (1.3)
the u0v0 monomial of

(
u+ u−1 + v+ v−1

)N
translates in the quantum world to computing

the trace of HN
q . The quantum trace is defined as

TrHN
q := 1

q

∫ π

−π

∫ π

−π

dkx

2π
dky

2π trHN
q = 1

q

∫ π

−π

∫ π

−π

dkx

2π
dky

2π

q∑

i=1
EN

i , (2.3)

that is, one sums over the q eigenvalues Ei of Hq (yielding the standard matrix trace trHN
q )

and integrates over kx and ky while enforcing a continuous normalization in kx, ky and one
rescales by a factor 1/q (thus, if one considers for example the q × q identity matrix Iq,
one has tr Iq = q, while Tr Iq = 1). Under this definition of the trace, Trumvn = δm,0δn,0
(integration over kx, ky eliminates the traces of terms involving uqm and vqn). We thus get
a first noteworthy result (also obtained via another approach by Bellisard et al. in [1]):

Theorem 2.1. Assuming q > N2

8 , the signed area enumeration of closed paths is given by
∑

A

CN(A) QA = Tr HN
q . (2.4)
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3. The signed area enumeration

It is known (see e.g. William Chambers’ book [3]) that the determinant of the matrix
Iq − zHq satisfies

det(Iq − zHq) =



⌊q/2⌋∑

n=0
(−1)nZ(n)z2n


− 2

(
cos(qkx) + cos(qky)

)
zq,

where the Z(n)’s are independent of kx and ky and Z(0) = 1. Christian Kreft [12] was
able to rewrite Z(n) in a closed form as trigonometric multiple nested sums

Z(n) =
q−2n+2∑

k1=1

k1∑

k2=1
· · ·

kn−1∑

kn=1

n∏

j=1
skj+2n−2j, (3.1)

where
sk = 4 sin2(πkp/q) = 2 −Qk −Q−k. (3.2)

We call sk the spectral function of the model. This is the starting point for the signed
area enumeration. We give here a summary of the procedure, more details can be found
in [14,16]. First introduce the coefficients b(n) via

− log



⌊q/2⌋∑

n=0
(−1)nZ(n)z2n


 =

∞∑

n=1
b(n)z2n. (3.3)

The b(n) are related to the desired traces. Start by noting that

Tr H2n
q = 1

q
trH2n

q for n < q.

Indeed, one has truivj = q δi,0δj,0 for i, j < q and so the values of the Casimirs kx, ky do
not appear, making the integration over them in (2.3) trivial. Then the identity

− log det(Iq − zHq) = −tr log(Iq − zHq) =
∞∑

n=1

zn

n
trHn

q =
⌊q/2⌋∑

n=1
b(n)z2n +O(zq)

implies that the quantum trace (2.3) is proportional to b(n) for n < q

TrH2n
q = 2n

q
b(n).

Now, by keeping q as a free parameter and extending it to arbitrarily big values, the
quantum trace can be calculated for all n.

Note that the term of order zn in det(Iq − zHq) is −(zn/n)trHn
q plus terms involving

products of traces, trHn1
q trHn2

q · · · with n1+n2+· · · = n. As each trace trHni
q contributes

an overall factor q, b(n) can also be obtained as the order q term in Z(n), ignoring terms
of higher order q2, . . . , qn. Since each sum in Formula (3.1) contributes a factor of q, we
get the following explicit expression for b(n):

b(n) =
n∑

j=1

∑

l1,l2,...,lj
composition of n

c(l1, l2, . . . , lj)
q−j+1∑

k=1
s

lj
k+j−1 · · · sl2

k+1s
l1
k , (3.4)

where c(l1, l2, . . . , lj) :=

(
l1+l2

l1

)

l1 + l2
l2

(
l2+l3

l2

)

l2 + l3
· · · lj−1

(
lj−1+lj

lj−1

)

lj−1 + lj
.
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Here, the coefficients c(l1, l2, . . . , lj) are labelled by the compositions l1, l2, . . . , lj of n,
i.e. the ordered partitions of n (thus, there are 2n−1 compositions of n, for example
3 = 3, 2 + 1, 1 + 2, 1 + 1 + 1). Note that the expression for c(l1, l2, . . . , lj) is closely
related to the enumeration of Dyck paths (up to a factor l1); see Christian Krattenthaler’s
article [11, p. 516]. We have further elaborated on this relation in [6].

Putting everything together, we get

Tr H2n
q =

n∑

j=1

∑

l1,l2,...,lj
composition of n

c(l1, l2, . . . , lj)
2n
q

q−j+1∑

k=1
s

lj
k+j−1 · · · sl2

k+1s
l1
k .

What is more, the trigonometric sums involved in this formula can be computed, keeping q
as a free parameter. Finally, returning to (2.4) (with N = 2n) the desired number of
closed walks of given area is given by the following theorem.

Theorem 3.1. The number of closed walks of length 2n enclosing a given signed area A is

C2n(A) = 2n×
n∑

j=1

∑

l1,l2,...,lj
composition of n

(
l1+l2

l1

)

l1 + l2
l2

(
l2+l3

l2

)

l2 + l3
· · · lj−1

(
lj−1+lj

lj−1

)

lj−1 + lj
×

2l3∑

k3=0

2l4∑

k4=0
. . .

2lj∑

kj=0

j∏

i=3

(
2li
ki

)(
2l1

l1 + A+∑j
i=3(i− 2)(ki − li)

)(
2l2

l2 − A−∑j
i=3(i− 1)(ki − li)

)
.

This formula grows quickly in complexity since one has to sum over 2n − 1 compositions.
Its complexity is analysed in more detail in the following proposition.

Proposition 3.2. The formula for C2n(A) in Theorem 3.1 involves asymptotically, up to
some polynomial factor, (4/(5 −

√
17))n ≈ 4.56n summands.

Proof. This number of summands is given by

r(n) :=
n∑

j=1

∑

l1,l2,...,lj
composition of n

(2l3 + 1)(2l4 + 1) · · · (2lj + 1).

The sequence starts like (r(n))n≥1 = (1, 2, 6, 24, 106, 480, 2186, 9968, 45466, . . . ). Thus,
r(n) counts compositions of n where each summand li (for i ≥ 3) can have 2li + 1 colours.
Let us consider first compositions of n where each summand li (for i ≥ 1) can have 2li + 1
colours; their generating function is

S(z) = 1
1 −∑

i≥1(2i+ 1)zi
= (z − 1)2

2z2 − 5z + 1 .

This corresponds to the sequence A060801 in the On-line Encyclopedia of Integer Sequences.
In our case, the i ≥ 3 constraint modifies a little bit the generating function and one has
to sum the compositions having 1 or 2 parts and those having 3 parts or more; one gets
the following generating function

R(z) =
∑

n≥1
rnz

n = z

1 − z
+
(

z

1 − z

)2
+
(

z

1 − z

)2
(S(z) − 1)

= z2 − 4z + 1
2z2 − 5z + 1

z

1 − z
.
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It entails r(n) = 5r(n − 1) − 2r(n − 2) − 2 (with r(1) = 1 and r(2) = 2); accordingly,
r(n) grows like ϕn with ϕ = 4/(5 −

√
17), which is coherent with the fact that 1/ϕ

is the dominant pole of R(z). In conclusion, our formula for C2n(A) involves in total
asymptotically ϕn ≈ 4.56n summands (each leading additionally to a polynomial cost in n
for the product of all the binomials), which is still much less2 than the naive generation of
all

(
2n
n

)2
closed walks of length 2n, which would be of cost > 16n/(πn). □

Note that it is in fact possible to compute C2n in polynomial time: Using the non-
commutative relations (1.2), the expansion of (u+ v + u−1 + v−1)2n simplifies a lot and
in fact has O(n4) monomials uivjQk. This gives an algorithm of complexity O(n6) to
compute C2n(A). Thus, our formula (of exponential cost) in Theorem 3.1 is not the fastest
way to compute C2n(A), but it has the benefit of being the first explicit formula (as far as
we are aware of!).

Let us end this section with a probabilistic remark. In the limit of the elementary lattice
size a → 0 and the walk length 2n → ∞ with the scaling na2 = t, walks converge to
Brownian motion curves and we recover the continuum limit of a particle moving on the
plane in a constant magnetic field. To implement this limit, we rescale the lattice cell area
to a2, which amounts to setting A → A/a2 in C2n(A). Numerical simulations then suggest
the following conjecture.
Conjecture 3.3. The signed area of closed walks of length 2n converges, after rescaling,
to the following distribution (for any α > 0)

2n C2n(αn)
(

2n
n

)2 → π

cosh2(απ)
.

Figure 2. We conjecture that the distribution of the signed area asymp-
totically follows. . . not a Gaussian limit law (as it may be thought at first
glance), but the 1/ cosh2 distribution of Paul Lévy. For small values of A,
and n up to 70, we checked numerically that the convergence gets better
when n increases.

This conjecture is consistent with the law for the distribution of the signed area enclosed
by a Brownian curve after a time t (obtained by Paul Lévy in 1950; see [10,13]). It can
also be obtained directly in the continuum limit by considering the partition function of a
quantum particle in a magnetic field with a Landau level energy spectrum.

2We thank one of the referees for drawing our attention to this point.
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4. Exclusion statistics

The quantities Z(n) and b(n) introduced previously admit a statistical mechanical
interpretation. Let us write the spectral function sk in (3.2) as sk = e−βϵk (β is the inverse
temperature) and interpret is as the Boltzmann factor for a quantum 1-body spectrum ϵk

labelled by an integer k. The structure of Z(n) in (3.1) then precisely corresponds to an
n-body partition function for a gas of particles with 1-body spectrum ϵk and exclusion
statistics g = 2: The +2 shifts in the spectral function arguments ensure that no two
particles can occupy adjacent quantum states. Exclusion statistics is, again, a purely
quantum concept which describes the statistical mechanical properties of identical particles.
Ordinary particles are either bosons (g = 0), which can occupy the same quantum state, or
fermions (g = 1), which cannot occupy the same quantum state. We see that square-lattice
walks map to systems with statistics beyond Fermi exclusion, in which particles can occupy
neither the same state nor adjacent states. In a sense, each particle excludes two quantum
states, thus g = 2. In general, for g-exclusion particles the n-body partition function (3.1)
would become

Z(n) =
q−gn+g∑

k1=1

k1∑

k2=1
· · ·

kn−1∑

kn=1
sk1+gn−gsk2+gn−2g · · · skn−1+gskn , (4.1)

where one observes a shift g instead of 2 in the arguments of the spectral function. In line
with (3.3), (3.4) the associated n-th cluster coefficient can be shown to take the form

b(n) =
n∑

j=1

∑

l1,l2,...,lj
g−composition of n

cg(l1, l2, . . . , lj)
q−j+1∑

k=1
s

lj
k+j−1 · · · sl2

k+1s
l1
k , (4.2)

where

cg(l1, l2, . . . , lj) := (l1 + · · · + lg−1 − 1)!
l1! · · · lg−1!

j−g+1∏

i=1

(
li + · · · + li+g−1 − 1

li+g−1

)
.

In (4.2) one sums over all g-compositions of the integer n, obtained by inserting at will
inside the usual compositions (i.e., the 2-compositions) no more than g − 2 zeroes in
succession. For example, for n = 3 and g = 3 one has 9 such 3-compositions:

3, 2 + 1, 1 + 2, 1 + 1 + 1, 2 + 0 + 1, 1 + 0 + 2, 1 + 0 + 1 + 1, 1 + 1 + 0 + 1, 1 + 0 + 1 + 0 + 1.

For general g there are gn−1 such g-compositions of the integer n (see [9] for an analysis of
these extended compositions, also called multicompositions).

One has reached the conclusion that the signed area enumeration for walks on the square
lattice is described by a quantum gas of particles with statistical exclusion g = 2. To
relate this explicitly to properties of the Hofstadter Hamiltonian itself, let us perform on
the hopping lattice operators u and v the transformation

u → −u v, v → v,

which leave their own commutation relation invariant to get the new Hamiltonian

H = −u v − v−1u−1 + v + v−1 (4.3)

still describing the same walks but on a deformed lattice.
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This new Hamiltonian (if one compares it with the initial Hamiltonian operator (2.1) of
the Hofstadter model) has the advantage to lead to simpler matrix

Iq −zHq =




1 −(1 − Q)z 0 · · · 0 0
−(1 − 1

Q)z 1 −(1 − Q2)z · · · 0 0
0 −(1 − 1

Q2 )z 1 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 1 −(1 − Qq−1)z
0 0 0 · · · −(1 − 1

Qq−1 )z 1




,

(4.4)
where we set kx = ky = 0 for simplicity (since, as we explained in Section 3, kx and ky do
not appear in the counting formula). The Hofstadter spectral function (3.2) becomes

sk = (1 − Qk)(1 − 1
Qk

).

The matrix (4.4) is a particular case of the more general class of matrices having the
following shape3

Iq − zHq =




1 −f(1)z 0 · · · 0 −g(q)z
−g(1)z 1 −f(2)z · · · 0 0

0 −g(2)z 1 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 1 −f(q − 1)z

−f(q)z 0 0 · · · −g(q − 1)z 1




(4.5)

and associated spectral functions

sk = f(k)g(k),

which become the building blocks of the Z(n)’s in (3.1) (up to spurious “umklapp” terms,
a name deriving from momentum periodicity effects on lattice quantum models, which
disappear if f(q) and g(q) both vanish).

For statistics g = 3, the matrix (4.5) generalizes in a natural way to

Iq − zHq =




1 −f(1)z 0 0 · · · 0 −g(q − 1)z 0
0 1 −f(2)z 0 · · · 0 0 −g(q)z

−g(1)z 0 1 −f(3)z · · · 0 0 0
0 −g(2)z 0 1 · · · 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 · · · 1 −f(q − 2)z 0
0 0 0 0 · · · 0 1 −f(q − 1)z

−f(q)z 0 0 0 · · · −g(q − 2)z 0 1




,

(4.6)
that is, with an extra vanishing paradiagonal below the unity main diagonal, which is the
manifestation of the stronger g = 3 exclusion.

3We hope that the reader will easily distinguish between too similar (but unrelated!) notations: the
function g(k) for the entries of the matrix Iq − zHq, and the integer g (the parameter of the exclusion
model, a standard notation in the literature).
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The spectral function corresponding to this matrix is

sk = g(k)f(k)f(k + 1)

and the determinant det(Iq − zHq) assumes the form (4.1) with g = 3. For g-exclusion
the generalization of (4.6) amounts to a Hamiltonian of the form

H = F (u)v + v1−gG(u), (4.7)

and I − zH is then a matrix with g − 2 vanishing paradiagonals below the main diagonal
(here q is left arbitrary but always understood to be larger than g). The spectral parameters
of this matrix are

F (Qk) = f(k), G(Qk) = g(k),
and the spectral function is

sk = g(k)f(k)f(k + 1) . . . f(k + g − 2).

Clearly the Hofstadter Hamiltonian (4.3), which rewrites as H = (1 − u)v + v1−2(1 − u−1),
is a particular case of (4.7) with g = 2 and F (u) = 1 − u, G(u) = 1 − u−1.

5. Chiral walks on the triangular lattice

Let us illustrate this mechanism in the case of g = 3 exclusion with the specific example of
chiral walks on a triangular lattice. The three hopping operators U, V and W = QU−1V −1

described in Figure 3 are such that V U = Q2UV .

•

•

W V

U

V W

U

Figure 3. The three hopping operators U, V and W on the triangular lattice.

The triangular lattice Hamiltonian is

H = U + V +W.

It generates walks composed of triangles either pointing up and winding in the coun-
terclockwise direction, or pointing down and winding in the negative direction. In this
sense, the walks are chiral. The factor Q in the definition of W and the factor Q2 in the
commutation of U, V are chosen so that up-pointing (positive) triangles are assigned area
+1. Figure 4 depicts some examples of chiral walks on the triangular lattice.
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•
UWUWV 2

•
U2W 2V 2

Figure 4. Examples of closed chiral walks on the triangular lattice.

To bring H to the exclusion form (4.7) one chooses the representation U = −iu v and
V = iu−1 v, with u and v as before, in which case H rewrites as

H = i(−u+ u−1)v + v−2.

In this form, H is indeed a Hamiltonian of the type (4.7) for g = 3 exclusion, with
F (u) = i(−u+ u−1), G(u) = 1, spectral parameters

f(k) = −i(Qk − 1
Qk

), g(k) = 1,

spectral function

sk = g(k)f(k)f(k + 1) = 4 sin(2πpk/q) sin
(
2πp(k + 1)/q

)
, (5.1)

and matrix

Iq − zHq =




1 i(Q − 1
Q)z 0 0 · · · 0 −z 0

0 1 i(Q2 − 1
Q2 )z 0 · · · 0 0 −z

−z 0 1 i(Q3 − 1
Q3 )z · · · 0 0 0

0 −z 0 1 · · · 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 · · · 1 i(Qq−2 − 1

Qq−2 )z 0
0 0 0 0 · · · 0 1 i(Qq−1 − 1

Qq−1 )z
0 0 0 0 · · · −z 0 1




,

which is of the type (4.6) with a vanishing bottom-left entry. The non-Hermiticity of the
triangular Hamiltonian, and thus of Iq − zHq, is a consequence of the chiral nature of the
walks.

The triangular signed area enumeration follows [14], yielding an expression similar to
Theorem 3.1 with the trigonometric single sums appearing in (4.2) involving the triangular
spectral function (5.1) and the sum done over all 3-compositions of the length of the
triangular walks.
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6. Conclusion

In conclusion, we have shown how tools from quantum and statistical physics allow for
an explicit enumeration of closed walks of fixed length and signed area on planar lattices.

The enumeration formulae rely on an explicit sum over compositions, and their number
of terms grows quickly with the length of the walk (although much less quickly than a
brute-force counting formula). It would certainly be rewarding to rewrite it as a sum with
a smaller number of terms. The use of symmetry on the lattice or alternative ways to write
the generator of walks (Hamiltonian) may offer promise towards this goal. We leave this
issue as well as other questions of interest to the lattice walk combinatorics community.
Acknowledgments. We thank the referees for their useful comments and suggestions,
and Li Gan for a careful reading of the manuscript.
Funding. A.P. thanks the National Science Foundation for its support under grant NSF-
PHY-2112729 and PSC-CUNY for its support under grants 65109-00 53 and 6D136-00 03.
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Abstract. In a Dyck path a peak which is (weakly) higher than all the preceding
peaks is called a strict (weak) left-to-right maximum. We obtain explicit generating
functions for both weak and strict left-to-right maxima in Dyck paths. The proofs of
the associated asymptotics make use of analytic techniques such as Mellin transforms,
singularity analysis and formal residue calculus.
Keywords: Dyck paths, generating functions, asymptotics, left-to-right maxima.

1. General introduction

A Dyck path is a lattice path in the first quadrant, that starts at the origin (0,0) with an
up step (u = (1, 1)) and thereafter only up and down (d = (1, −1)) steps are allowed under
the conditions that it may not go below the x-axis and that it may terminate only if the
end point is on the x-axis. A Dyck path with n up steps must end at the point (2n, 0); see
the definition in [16]. Such a Dyck path is said to have length 2n. For a detailed study of
properties of Dyck paths see [7]. For further recent work on Dyck paths; see [1–4,6, 9, 15].

Given an arbitrary Dyck path, we mean by a strict left-to-right maximum, any peak
(successive pair of the form ud) in the Dyck path which is greater than the height all
peaks to its left. A weak left-to-right maximum is a peak which is greater than or equal to
the height of all peaks to its left. From here on, by left-to-right maxima we mean strict
left-to-right maxima unless otherwise stated.

A standard combinatorial problem is the accounting for the number of left-to-right
maxima in combinatorial structures such as permutations and words over a fixed alphabet.
In this paper we focus on obtaining a generating function for the number of left-to-right
maxima in Dyck paths. This is a bivariate generating function which tracks the number of
up steps by z and the number of left-to-right maxima by x. We also obtain a generating
function for the total number of left-to-right maxima in Dyck paths with n up steps.
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A B
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E B

P

2 4 6 12 2 5 11

Figure 1. Two Dyck paths of length 14 and height 3

As an introduction to the method we will use for the construction of the first generating
function above, here follows a sketch (Figure 1) of two Dyck paths of height 3. The left-to-
right maxima are marked in the left case by A and P and in the right case by E and P . P
also marks the first maximum height attained by the Dyck paths. We begin at the origin
with a u step tracked in the generating function by z which leaves us at the point E. This
single up step is followed by a possibly empty upside-down Dyck path of maximum height 1.

In the left example in Figure 1, this part is indeed empty (and therefore not requiring x)
but not in the right example where the path between E and B is an upside-down Dyck
path of height 1 which gives rise to a left-to-right maximum thus requiring an x tracker.
Then we have another single u step and we proceed recursively in this way leaving us
eventually at the next left-to-right maximum which is point A in the left example and P
in the right. In the left example, right of A is again a possibly empty upside-down Dyck
path, this time of maximum height 2 where the non empty case is tracked again by x.
We are referring to the path between A and B which is actually of height 1. Once P is
reached, it is followed by the rest of the path which is conceived as a right to left portion
of a Dyck path. In the section dealing with this, the generating function for these latter
Dyck paths ending at height r will be given and used, as will the generating function for
Dyck paths of a fixed height h, which is used as indicated above for the possibly empty
upside-down Dyck paths that occur sequentially before the point P is attained.

2. Left-to-right maxima in Dyck paths

We start this section by referring to the paper [14] by Prodinger on the first sojourn
in Dyck paths. Using the notation from [14], we let C(h) be the number of paths of
height ≤ h with steps which follow all rules of Dyck paths except that they terminate at
height h, and we let A(h) be the number of Dyck paths of height ≤ h (which by definition
end at height zero). It is shown in [14] that

C(h) := zh
√

1 − 4z2

λ1h+2 − λ2h+2

and
A(h) := λ1

h+1 − λ2
h+1

λ1h+2 − λ2h+2 , (2.1)

where λ1 and λ2, are given by

λ1 = 1 +
√

1 − 4z2

2 ; λ2 = 1 −
√

1 − 4z2

2 .
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As explained in the introductory section, we consider a sequence of possibly empty
Dyck paths of height ≤ h for h = 1, 2, . . . . At the end of each path in the sequence, we
have a single up step that leads to the next left-to-right maximum and eventually to the
first overall maximum of the entire Dyck path. We let x count the number of left-to-right
maxima attained by the Dyck path. This leads to our first theorem:

Theorem 2.1. The generating function for the number of left-to-right maxima tracked
by x, for Dyck paths of maximum height r and length tracked by z is

F (x, z, r) := zrxC(r)
r−1∏

h=1
(1 + x(A(h) − 1)).

So, the total number of left-to-right maxima for Dyck paths of fixed height r is found
by differentiating the above function with respect to x and setting x = 1. The derivative
at this point is given by

∂

∂x
F (x, z, r)

∣∣∣∣
x=1

= zr C(r)
r−1∏

h=1
A(h) + zrC(r)

r−1∏

h=1
A(h)

r−1∑

i=1

A(i) − 1
A(i)

= zr C(r)
r−1∏

h=1
A(h)

(
1 +

r−1∑

i=1

A(i) − 1
A(i)

)

= zrC(r)
r−1∏

h=1
A(h)

(
r −

r−1∑

i=1

1
A(i)

)
(2.2)

Note that zrC(r)∏r−1
h=1 A(h) telescopes to become

z2r (1 − 4z2)(
−λ1+r

2 + λ1+r
1

) (
−λ2+r

2 + λ2+r
1

)

but the full generating function becomes very complicated as a function of z.
To simplify this generating function, we substitute

z2 = u

(1 + u)2

in (2.2) which implies

λ1 = 1
1 + u

; λ2 = u

1 + u
; C(r) = (1 − u)(1 + u)1+rzr

1 − u2+r
; A(r) = (1 + u) (1 − u1+r)

1 − u2+r

and obtain

T (r) := ∂

∂x
F (x, z, r)

∣∣∣∣
x=1

= (1 − u)2ur(1 + u)
(1 − u1+r) (1 − u2+r)

(
r −

r−1∑

i=1

1 − u2+i

(1 + u) (1 − u1+i)

)
.

The full generating function for the total number of left-to-right maxima in all Dyck
paths of length n is

Tot(u) :=
∞∑

r=1
T (r).
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Consequently, we have the following proposition:

Proposition 2.2. The generating function Tot(u) for the total number of left-to-right
maxima in Dyck paths of length n tracked by z is given by (using z2 = u

(1+u)2 ):

Tot(u) =
∞∑

r=1

(1 − u)2ur(1 + u)
(1 − u1+r) (1 − u2+r)

(
r −

r−1∑

i=1

1 − u2+i

(1 + u) (1 − u1+i)

)
. (2.3)

In order to obtain the series expansion for this, we use the equivalent inverse substitution
for u, namely

u = 1 − 2z2 −
√

1 − 4z2

2z2 , (2.4)

and obtain in terms of z,

Tot(u) = z2 + 2z4 + 6z6 + 19z8 + 63z10 + 216z12 + 758z14 + 2705z16 + 9777z18

+ 35698z20 + O(z21).

We illustrate the bold term of the series by means of the black dots in Figure 2.

Figure 2. All 14 Dyck paths of length 8: they have 19 strict left-to-
right maxima (indicated by black dots) and 10 weak left-to-right maxima
(indicated by circles).
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The type of series expansion for Tot(u) in Proposition 2.2 involves what is called Lambert
series. There are currently no computer algebra packages that can automatically simplify
expressions like Equation (2.3). Instead, it is therefore necessary to make the following
lengthy calculations in order to derive Theorem 2.3.

To simplify Equation (2.3) we swap the order of the summations in the double sum,
and thereafter use partial fractions on the r-indexed sum (which then telescopes as in
line (2.5)) to obtain

∞∑

r=1

(1 − u)2ur(1 + u)
(1 − u1+r) (1 − u2+r)

r−1∑

i=1

1 − u2+i

(1 + u) (1 − u1+i)

= (1 − u)2
∞∑

i=1

1 − u2+i

(1 − u1+i)

∞∑

r=i+1

ur

(1 − u1+r) (1 − u2+r)

= (1 − u)2
∞∑

i=1

1 − u2+i

(1 − u1+i)
u1+i

(1 − u) (1 − u2+i) . (2.5)

Now changing the index of summation from i to r,

(1 − u)
∞∑

i=1

1 − u2+i

(1 − u1+i)
u1+i

(1 − u2+i) = (1 − u)
∞∑

r=1

u1+r

(1 − u1+r) .

Altogether,

Tot(u) =
∞∑

r=1

(1 − u)2ur(1 + u)r
(1 − u1+r) (1 − u2+r) − (1 − u)

∞∑

r=1

u1+r

(1 − u1+r)

=
∞∑

r=1

(1 − u)ur (r − u − ru2 + u3+r)
(1 − u1+r) (1 − u2+r)

=
∞∑

r=1

rur − u1+r − ru1+r + u2+r − ru2+r + ru3+r + u3+2r − u4+2r

(1 − u1+r) (1 − u2+r) .

Drop the first term rur in the numerator above and apply partial fractions to the rest of
the summand which simplifies to

1 − u + −1 − r + 2u − ru − u2 + ru2

(1 − u) (1 − u1+r) + r + ru − ru2

(1 − u) (1 − u2+r) .

The separated first term with numerator rur after partial fractions leads to
rur

(1 − u) (1 − u1+r) − rur+1

(1 − u) (1 − u2+r) .

Altogether,

Tot(u) =
∞∑

r=1

(
1 − u + −1 − r + 2u − ru − u2 + ru2

(1 − u) (1 − u1+r) + r + ru − ru2

(1 − u) (1 − u2+r)

)

+
∞∑

r=1

rur

(1 − u) (1 − u1+r) −
∞∑

r=1

rur+1

(1 − u) (1 − u2+r) .
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To facilitate the evaluation of the infinite sums, we define a new function (where ∞ is
replaced temporarily by finite M in Tot(u)), namely:

Tot2(u) :=
M∑

r=1

(
1 − u + −1 − r + 2u − ru − u2 + ru2

(1 − u) (1 − u1+r) + r + ru − ru2

(1 − u) (1 − u2+r)

)

+
M∑

r=1

rur

(1 − u) (1 − u1+r) −
M∑

r=1

rur+1

(1 − u) (1 − u2+r) .

We now separate this into disjoint sums and shift the index of summation in the third and
last sums:

Tot2(u) =
M∑

r=1
(1 − u) +

M∑

r=1

−1 − r + 2u − ru − u2 + ru2

(1 − u) (1 − u1+r) +
M+1∑

r=2

(r − 1) (1 + u − u2)
(1 − u)(1 − u1+r)

+
M∑

r=1

rur

(1 − u) (1 − u1+r) −
M+1∑

r=2

(r − 1)ur

(1 − u) (1 − u1+r)

=
M∑

r=1
(1 − u) + −2 + u

(1 − u) (1 − u2) +
M∑

r=2

−1 − r + 2u − ru − u2 + ru2

(1 − u) (1 − u1+r)

+
M∑

r=2

(r − 1) (1 + u − u2)
(1 − u) (1 − u1+r) + M (1 + u − u2)

(1 − u) (1 − u2+M) + u

(1 − u) (1 − u2)

+
M∑

r=2

rur

(1 − u) (1 − u1+r) −
M∑

r=2

(r − 1)ur

(1 − u) (1 − u1+r) − Mu1+M

(1 − u) (1 − u2+M) . (2.6)

We combine the terms in the sums from r equals 2 to M in (2.6) to get

−2 + u + ur

(1 − u) (1 − u1+r) .

Then we simplify the rest to get

Tot2(u) =
M∑

r=2

−2 + u + ur

(1 − u) (1 − u1+r) − 2
1 − u2

−
M
(
−2 + u + u1+M + u2+M − 2u3+M + u4+M

)

(1 − u) (1 − u2+M) .

Note that Tot2(u) and Tot(u) match at least for terms up to
[
uM

]
. Since for the present

we are only interested in the terms up to
[
uM

]
, we may set all higher power terms equal

to zero, to produce

Tot2b(u) =
M∑

r=2

−2 + u + ur

(1 − u) (1 − u1+r) − 2
1 − u2 + M

(2 − u)
(1 − u) .



Left-to-right maxima in Dyck paths 111

Noting that M = 1 +∑M
r=2 1,

Tot2b(u) =
M∑

r=2

−2 + u + ur

(1 − u) (1 − u1+r) − 2
1 − u2 + (2 − u)

(1 − u) +
M∑

r=2

(2 − u)
(1 − u)

=
M∑

r=2

−2 + u + ur

(1 − u) (1 − u1+r) + u

1 + u
+

M∑

r=2

(2 − u)
(1 − u) .

Combine the summands in ∑M
r=2. We may now allow M → ∞ to finally obtain the

simplified generating function as per the next theorem:

Theorem 2.3. The simplified generating function for the total number of left-to-right
maxima in Dyck paths is

Tot(u) =
∞∑

r=1

(1 − u)ur

1 − u1+r
. (2.7)

2.1. Formula for total number of left-to-right maxima. In this section, we will
obtain an exact formula for the total number of left-to-right maxima in terms of a well-
known arithmetic function, namely the divisor function d(r). Compare with [5]. Note
that

∞∑

r=1

ur

1 − ur
=

∞∑

r=1
d(r) ur.

To read off coefficients from equation (2.7), we observe that for any formal power
series f(z)

[z2n]f(z) = [un](1 − u)(1 + u)2n−1f(z(u)).

This can be justified by using formal residue calculus; see for example [12]. Therefore

[z2n] Tot(z) = [un](1 − u)(1 + u)2n−1
∞∑

r=1

(1 − u)ur

1 − u1+r

= [un](1 − u)(1 + u)2n−1
∞∑

r=1
(d(r + 1) − d(r))ur

=
n∑

r=1
(d(r + 1) − d(r))

((
2n − 1
n − r

)
−
(

2n − 1
n − r − 1

))
.

Thus we have shown:

Theorem 2.4. The total number of left-to-right maxima in Dyck paths of semi-length n is
given by

n∑

r=1
(d(r + 1) − d(r))

((
2n − 1
n − r

)
−
(

2n − 1
n − r − 1

))
.
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3. Asymptotics for strict left-to-right maxima

In this section we find the asymptotic expression for the total number of strict left-to-
right maxima in Dyck paths. We will follow the approach used to study the height of
planted plane trees by Prodinger in [12]. For related asymptotic calculations concerning
the height of trees and lattice paths; see [10,11,13] and the seminal article by de Bruijn,
Knuth and Rice [5].

First, we extract coefficients of zn in Tot(u). That is we find

[zn]1 − u

u

∞∑

r=2

ur

1 − ur
.

When u is in terms of z2, by (2.4) the function Tot(u) has its dominant singularity at
z = 1/2 which is mapped to u = 1. To study this further we set u = e−t and let t → 0.
Thus

1 − u

u
= et(1 − e−t) = t + t2

2 + t3

6 + · · · . (3.1)

To estimate the harmonic sum f1(t) := ∑∞
r=2

e−rt

1−e−rt as t → 0, we take the Mellin transform
of f1(t), see [8], which is f ∗

1 (s) :=
∫∞

0 f1(t)ts−1 dt. Thus

f ∗
1 (s) = Γ(s)ζ(s)(ζ(s) − 1), for ℜ(s) > 1.

By using the Mellin inversion formula, we have f1(t) = 1
2πi

∫ 2+i∞
2−i∞ f ∗

1 (s) t−s ds (again see [8]).
By computing residues this yields

f1(t) ∼ −1 + γ − log(t)
t

+ 3
4 − 13t

144 + · · · , (3.2)

where γ is Euler’s constant.
Let

g1(t) := et(1 − e−t) f1(t).
From (3.1) and (3.2)

g1(t) ∼ − log(t) − 1 + γ +
(3

4 + 1
2(−1 + γ − log(t))

)
t + · · · .

Let y =
√

1 − 4z2 and writing e−t = u = 1−y
1+y

, we find t = − log 1−y
1+y

= 2y + 2y3

3 + · · · .
In terms of the y variable, we therefore need to compute g1(2y + 2y3

3 + · · · ).

g1

(
2y + 2y3

3 + · · ·
)

∼ (−1 + γ − log(2) − log(y)) + 1
2(1 + 2γ − 2 log(2) − 2 log(y))y

− y2

3 + · · · .

Replacing y by
√

1 − 4z2 gives

− 1 + γ − log(2) − 1
2 log

(
1 − 4z2

)
+ 1

2
(
1 + 2γ − 2 log(2) − log

(
1 − 4z2

))√
1 − 4z2

+ · · · .
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To use singularity analysis, see [8], it is convenient to put z2 = x, then we find the
coefficient of xn in the above expression as n → ∞. It is asymptotically equal to

22n

(
1

2n
− log(n)

4
√

πn3/2 + 1 − 3γ

4n3/2√π
+ · · ·

)
. (3.3)

To obtain the mean value we must divide by the total number of Dyck paths of
semi-length n, i.e., as n → ∞

1
n + 1

(
2n

n

)
= 22n

(
1

n3/2√π
− 9

8 n5/2√π
+ 145

128 n7/2√π

)
+ · · · . (3.4)

Hence, dividing (3.3) by (3.4) yields

Theorem 3.1. The average number of strong left-to-right maxima in Dyck paths of
semi-length n, as n → ∞ is

√
πn

2 − log(n)
4 + 1

4(1 − 3γ) + O(n−1/2).

Remark 3.2. The asymptotic formula of Theorem 3.1 when n = 200 yields 11.0257 for the
average number of strong left-to-right maxima. Using the exact formula of Theorem 2.4
divided by the Catalan number for n = 200 yields 11.0503 which is indeed a very good
match.

Remark 3.3. The number of strong left-to-right maxima is bounded above by the height
of the path, which is known to be ∼ √

πn as n → ∞, (see, e.g., [12]). We see that
asymptotically the average number is half of the height.

4. Weak left-to-right maxima in Dyck paths

For this question we first need a generating function for Dyck paths of height ≤ h which
have only a single return to the x axis. So using the formula above from (2.1), we obtain
the generating function for these where h ≥ 1 as

D(h, z) = z2A(h − 1).
Now in order to construct the generating function E(h, x, z) for the number of times

a Dyck path of height ≤ h and length n tracked by z, returns to 0 where the latter is
tracked by a variable x in the generating function, we construct a sequence of such Dyck
paths where each term in the generating function for this sequence is multiplied by x.
Thus we obtain

E(h, x, z) = 1
1 − xD(h, z) .

We now reiterate the construction in Theorem 2.1 to obtain the following theorem.

Theorem 4.1. The generating function for the number of weak left-to-right maxima,
tracked by x, for Dyck paths of maximum height r and length tracked by z is

F (x, z, r) := zr+1xC(r − 1)
r∏

h=1
E(h, x, z). (4.1)

To obtain the generating function for the total number of weak left-to-right maxima, we
once again differentiate (4.1) with respect to x and evaluate this at x = 1. We obtain
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Theorem 4.2. The generating function for the total number of weak left-to-right maxima
for Dyck paths of length n tracked by z is

WTot(u) :=
∞∑

r=1

(1 − u)ur (1 − u2)
(1 − u1+r) (1 − u2+r)

(
1 − r + (1 + u)

r∑

i=1

1 − u1+i

1 − u2+i

)
,

where z2 = u
(1+u)2 .

Proof. The derivative of (4.1) is

∂

∂x
F (x, z, r)

∣∣∣∣
x=1

= zr+1C(r − 1)
r∏

h=1
E(h, 1, z)

(
1 +

r∑

i=1

D(i, z)
1 − D(i, z)

)
.

Putting z2 = u
(1+u)2 in the formula above we obtain

zr+1C(r − 1)
r∏

h=1

1
1 − z2A(h − 1) = (1 − u)ur (1 − u2)

(1 − u1+r) (1 − u2+r) ,

while the remaining bracketed part becomes

1 − r + (1 + u)
r∑

i=1

1 − u1+i

1 − u2+i
. □

Now, we simplify Theorem 4.2. The double sum becomes
(
1 − u2

)2 ∞∑

i=1

1 − u1+i

1 − u2+i

∞∑

r=i

ur

(1 − u1+r) (1 − u2+r) .

We use partial fractions on the r-sum and then the double sum telescopes to

(1 − u2)2

(1 − u)u

∞∑

i=1

ui+1

1 − ui+2 .

This is then combined with the single sum which simplifies to

∞∑

r=1

(
(1 − u)ur (1 − u2) (1 − r)

(1 − u1+r) (1 − u2+r) + (1 − u2)2
u1+r

(1 − u)u (1 − u2+r)

)
. (4.2)

In order to further simplify (4.2) we replace ∞ by finite M and then apply partial fractions
to the summand of the first term which splits up as

(−1 + r)(1 − u)(1 + u)
u (1 − u1+r) − (−1 + r + 1)(1 − u)(1 + u)

u (1 − u2+r) − (1 − u)(1 + u)
u (1 − u2+r) .

This is telescoping and simplifies to

−(−1 + M + 1)(1 − u)(1 + u)
u (1 − u2+M) +

M∑

r=1

(
(1 − u2)2

u1+r

(1 − u)u (1 − u2+r) − (1 − u)(1 + u)
u (1 − u2+r)

)
.

Now, replace M by ∑M
r=1 1. Then, letting M tend to ∞, and finally combining all

summands, we obtain
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Theorem 4.3. The simplified generating function for the total number of weak left-to-right
maxima for Dyck paths of length n tracked by z is

WTot(u) =
∞∑

r=1

(1 − u2) ur

1 − u2+r
.

This has series expansion

z2+3z4+9z6+29z8+98z10+341z12+1210z14+4356z16+15860z18+58276z20+O
(
z21
)

.

This is illustrated in Figure 2, where the dots and circles mark all 29 of the weak left-to-right
maxima in Dyck paths of length 8.

4.1. Formula for total number of weak left-to-right maxima. In this section, we
again obtain an exact formula for the total number of left-to-right maxima in terms of the
divisor function d(r). To read off coefficients from Theorem 4.3, as before

[z2n]f(z) = [un](1 − u)(1 + u)2n−1f(z(u)).

Therefore

[z2n] WTot(z) = [un](1 − u)(1 + u)2n−1
∞∑

r=1

(1 − u2)ur

1 − u2+r

= [un](1 − u)(1 + u)2n−1
∞∑

r=1
(d(r + 2) − d(r))ur.

We thus get the following theorem.

Theorem 4.4. The total number of weak left-to-right maxima in Dyck paths of semi-length
n is given by

n∑

r=1
(d(r + 2) − d(r))

((
2n − 1
n − r

)
−
(

2n − 1
n − r − 1

))
.

5. Asymptotics for weak left-to-right maxima

To find an asymptotic expression for WTot(u), we reiterate the approach in Section 3.
This yields

Theorem 5.1. The average number of weak left-to-right maxima in Dyck paths of semi-
length n, as n → ∞ is

√
πn − log(n) + 1

2(5 − 6γ) + O(n−1/2).

Remark 5.2. The asymptotic formula of Theorem 5.1 when n = 200 yields 20.536 for the
average number of weak left-to-right maxima. Using the exact formula of Theorem 4.4
divided by the Catalan number for n = 200 yields 20.368. Taking larger n improves the
accuracy.
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6. Open problems

Theorem 2.4 and Theorem 4.4 are very similar to each other with only a slight change in
their respective summands; this suggests that there is an underlying combinatorial proof.
Also from Theorems 2.3 and 4.3 we obtain

WTot(u) = 1 + u

u
Tot(u) − 1.

We think that accounting for these similarities may be an interesting combinatorial problem
which we leave to the reader. It might also be possible to derive Theorem 2.3 in a simpler
and more direct way instead of using Proposition 2.2.

The statistic left-to-right maximum, ‘lrmax’ is quite important in permutations due to
the fact that it is equidistributed with the ‘cycle’ statistic and is counted nicely by Stirling
numbers of the first kind. One of the main reasons for studying lrmax in permutations is
this equidistribution with the number of cycles. Hence in the current setting one should
anticipate a counterpart statistic in Dyck path to be equidistributed with lrmax.

With respect to permutations, there are other statistics equidistributed with lrmax. In
the Dyck path context one can also introduce such concepts. This may potentially lead to
further interesting research.
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Abstract. In this paper we study a subfamily of a classic lattice path, the Dyck paths,
called restricted d-Dyck paths, in short d-Dyck. A valley of a Dyck path P is a local
minimum of P ; if the difference between the heights of two consecutive valleys (from
left to right) is at least d, we say that P is a restricted d-Dyck path. The area of a
Dyck path is the sum of the absolute values of y-components of all points in the path.
We find the number of peaks and the area of all paths of a given length in the set of
d-Dyck paths. We give a bivariate generating function to count the number of the
d-Dyck paths with respect to the semi-length and number of peaks. After that, we
analyze in detail the case d = −1. Among other things, we give both the generating
function and a recursive relation for the total area.
Keywords: Dyck path, d-Dyck path, generating function.

1. Introduction

A classic concept, the Dyck paths, has been widely studied. Recently, a subfamily of
these paths, non-decreasing Dyck paths, has received a certain level of interest. It is
because of some statistics are given by linear combinations of Fibonacci numbers and
Lucas numbers. In this paper we keep studying a generalization of the non-decreasing
Dyck paths. Other generalizations of non-decreasing Dyck paths have been given for
Motzkin paths and for Łukasiewicz paths [14,15].

We now give some definitions that we use in this paper. A Dyck path is a lattice path in
the first quadrant of the xy-plane that starts at the origin, ends on the x-axis, and consists
of (the same number of) North-East steps U := (1, 1) and South-East steps D := (1, −1).
The semi-length of a path is the total number of U ’s that the path has.
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A valley (peak) is a subpath of the form DU (UD) and the valley vertex of DU is the
lowest point (a local minimum) of DU . The level of a valley is the y-component of its
valley vertex. Following [16,17] we define the valley vertices vector of a Dyck path P as
the vector ν = (ν1, ν2, . . . , νk) formed by all y-coordinates (listed from left to right) of all
valley vertices of P .

For a fixed d ∈ Z, a Dyck path P is called restricted d-Dyck or d-Dyck (for simplicity),
if either P has at most one valley, or if its valley vertex vector ν satisfies that νi+1 − νi ≥ d,
where 1 ≤ i < k. The set of all d-Dyck paths of semi-length n is denoted Dd(n), where
rd(n) denotes its cardinality, and the set of all d-Dyck paths is denoted by Dd.

The first well-known example of these paths is the set of 0-Dyck paths; in the literature,
see [4, 6, 7, 9, 10, 12], this family is known as non-decreasing Dyck paths. The whole family
of Dyck paths can be seen as a limit of d-Dyck and it occurs when d → −∞. Another
example, from Figure 1 we observe that ν = (0, 1, 0, 3, 4, 3, 2) and that νi+1 − νi ≥ −1, for
i = 1, . . . , 6, so the figure depicts a (−1)-Dyck path of length 28 (or semi-length 14).

ν1 = 0 ν2 = 1 ν3 = 0 ν4 = 3 ν5 = 4 ν6 = 3 ν7 = 2

Figure 1. A (−1)-Dyck path of length 28.

The recurrence relations and/or the generating functions for d-Dyck when d ≥ 0 have
different behavior than the case d < 0. For example, generating functions accounting for
the number of valleys, the number of peaks, and the area, for d-Dyck when d ≥ 0, are all
rational for all variables (see [4,6,7,10,12,16,17]). However, when we analyze in this paper
several aspects for d < 0 (the number of paths, the area of the paths, and the number of
peaks) we find that the generating functions are all algebraic (non-rational).

In this paper we give a bivariate generating function to count the number of paths
in Dd(n), for d ≤ 0, with respect to the number of peaks and semi-length. We also
give a relationship between the total number of d-Dyck paths and the Catalan numbers.
Additionally, we give an explicit symbolic expression for the generating function with
respect to the semi-length. For the particular case d = −1 we give a combinatorial
expression and a recursive relation for the total number of paths. We also analyze the
asymptotic behavior for the sequence r−1(n).

It is well known that there are many bijections between Dyck paths and other combi-
natorial objects, we are wondering if there are other bijections between d-Dyck paths for
d < −1 and other object of combinatorics.

The area of a Dyck path P is the sum of the values of y-components of all points in the
path. That is, the area of P , denoted by area(P ), corresponds to the surface area under
P and above of the x-axis. For example, if P is the path in Figure 1, then area(P ) = 70.
We use generating functions and recursive relations to analyze the distribution of the area
of all paths in D−1(n).
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The problem of enumerating the area in directed lattice paths, in a general setting, was
solved by Banderier and Gittenberger [3], building on the enumerative and asymptotics
results from [2], where Dyck, Motzkin, and Łukasiewicz paths are particular cases.

A summary of notation used throughout the paper appears in Table 1 in the appendix.

2. Number of d-Dyck paths and Peaks Statistic

Given a family of lattice paths, a classic question is how many lattice paths are there of
certain length, and a second classic question is how many peaks are there depending on
the length of the path. These questions have been completely answered, for instance, for
Dyck paths [8], d-Dyck paths for d ≥ 0 [4, 17], and Motzkin paths [20] among others. In
this section we give a bivariate generating function according to the semi-length and the
number of peaks of the d-Dyck paths with d < 0.

Given a d-Dyck path P , we denote the semi-length of P by ℓ(P ) and denote the number
of peaks of P by ρ(P ). So, the bivariate generating function to count the number of paths
and peaks of d-Dyck paths is defined by

Ld(x, y) :=
∑

P ∈Dd

xℓ(P )yρ(P ).

2.1. Some facts known when d ≥ 0. These results can be found in [17].
• If d ≥ 0, then the generating function Fd(x, y) is given by

Ld(x, y) = 1 + xy(1 − 2x + x2 + xy − xd+1y)
(1 − x)(1 − 2x + x2 − xd+1y) .

• If d ≥ 1,

rd(n) =
⌊ n+d−2

d
⌋∑

k=0

(
n − (d − 1)(k − 1)

2k

)
.

• If n > d, then we have the recursive relation

rd(n) = 2rd(n − 1) − rd(n − 2) + rd(n − d − 1),

with the initial values rd(n) =
(

n
2

)
+ 1, for 0 ≤ n ≤ d.

• Let pd(n, k) be the number of d-Dyck paths of semi-length n, having exactly k
peaks. If d ≥ 0, then

pd(n, k) =
(

n + k − d(k − 2) − 2
2(k − 1)

)
.

For the whole set of Dyck paths, the number p−∞(n, k), is given by the Narayana
numbers N(n, k) = 1

n

(
n
k

)(
n

k−1

)
.

2.2. Peaks statistic for d a negative integer. For the remaining part of the paper we
consider only the case d < 0 and use e to denote |d|. A pyramid of semi-length h ≥ 1 is a
subpath of the form XhY h; it is maximal, denote by ∆h, if it can not be extended to a
pyramid Xh+1Y h+1.
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Theorem 2.1. If d is a negative integer and e := |d|, then the generating function Le(x, y)
satisfies the functional equation

Le(x, y) = xy + xLe(x, y) + xSe(x, y)Le(x, y), (2.1)
where Se(x) satisfies the algebraic equation

(1 − xSe(x, y))e(y + (1 − y)xSe(x, y)) − Se(x, y)(1 − xSe(x, y))e+1 − xe+2y

1 − x
Se(x, y) = 0.

Proof. We start this proof by introducing some notation. The set Qd,i ⊆ Dd denotes the
family of non-empty paths where the last valley is at level i. We consider the generating
function

Q
(e)
i (x, y) :=

∑

P ∈Qd,i

xℓ(P )yρ(P ).

It is convenient to consider the sum over the Q
(e)
i (x, y). We also consider the generating

function, with respect to the lengths and peaks, that counts the d-Dyck paths that have
either no valleys or the last valley is at level less than e. That is,

Se(x, y) = y

1 − x
+

e−1∑

j=0
Q

(e)
j (x, y). (2.2)

A path P can be uniquely decomposed as either UD, UTD, or UQDT (by considering
the first return decomposition), where T ∈ Dd and Q is either a pyramid or is a path in
∪e−1

i=0 Qd,i (see Figure 2, for a graphical representation of this decomposition). Notice that
νi+1 − νi ≥ d and the decomposition UQDT ensures that Q holds as in the former line.

i < e

Figure 2. Decomposition of a d-Dyck path.

From the symbolic method we obtain the functional equation
Le(x, y) = xy + xLe(x, y) + xSe(x, y)Le(x, y).

Now we are going to obtain a system of equations for the generating functions Qi(x, y).
Let Q be a path in the set Qd,i. If i = 0, then the path Q can be decomposed uniquely as
either UQ′D∆ or UQ′DR, where ∆ is a pyramid, R is a path in Qd,0, and Q′ is either a
pyramid or Q′ ∈ ∪e−1

i=0 Qd,i. Therefore, we have the functional equation

Q
(e)
0 (x, y) = xSe(x, y) xy

1 − x
+ xSe(x, y)Q(e)

0 (x, y).

For i > 0, any path Q can be decomposed uniquely in one of these two forms UR1D or
UQDR2, where R1 ∈ Qd,i−1, R2 ∈ Qd,i, and Q is either a pyramid or Q ∈ ∪e−1

i=0 Qd,i. So,
we have the functional equation

Q
(e)
i (x, y) = xQ

(e)
i−1(x, y) + xSe(x, y)Q(e)

i (x, y). (2.3)
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Summarizing the discussion above, we obtain the system of equations:




Q
(e)
0 (x, y) = xSe(x, y) xy

1−x
+ xSe(x, y)Q(e)

0 (x, y)
Q

(e)
1 (x, y) = xQ

(e)
0 (x, y) + xSe(x, y)Q(e)

1 (x, y)
...

Q
(e)
i (x, y) = xQ

(e)
i−1(x, y) + xSe(x, y)Q(e)

i (x, y)
...

Q
(e)
e−1(x, y) = xQ

(e)
e−2(x, y) + xSe(x, y)Q(e)

e−1(x, y).

(2.4)

Summing up the equations in (2.4), we obtain that
e−1∑

j=0
Q

(e)
j (x, y) = xSe(x, y)




e−1∑

j=0
Q

(e)
j (x, y) + xy

1 − x


+ x

e−2∑

j=0
Q

(e)
j (x, y).

From this and (2.2) we have

Se(x, y) − y

1 − x
= x

(
Se(x, y) − y

1 − x
− Q

(e)
e−1(x, y)

)

+ xSe(x, y)
(

Se(x, y) − y

1 − x

)
+ x2y

1 − x
Se(x, y). (2.5)

Iterating (2.3), we have Q
(e)
i (x, y), with i ≥ 0, can be expressed as

Q
(e)
i (x, y) = xi+2ySe(x, y)

(1 − x)(1 − xSe(x, y))i+1 . (2.6)

Substituting (2.6) into (2.5) we obtain the desired functional equation. □

Solving (2.5) for Se(x, y) we have

Se(x, y) =
1 − x + xy −

√
1 − 2x + x2 − 2xy − 2x2y + x2y2 + 4x2Q

(e)
e−1(x, y)

2x
. (2.7)

We observe that substituting (2.7) into (2.1), we have

Le(x, y) = xy

1 − x − xSe(x, y)
= xy

1 − x − 1 − x + xy −
√

1 − 2x + x2 − 2xy − 2x2y + x2y2 + 4x2Q
(e)
e−1(x, y)

2

.

Since Se(x, y) is a power series and by (2.6), we obtain that Q
(e)
e−1(x, y) → 0 as e → ∞,

where here we assumed that |x| < 1 (for details on convergence of generating functions;
see [11, p. 731]). Therefore,

lim
e→∞ Le(x, y) = 1 − x − xy − √

1 − 2x + x2 − 2xy − 2x2y + x2y2

2x
.

This last generating function is the distribution of the Narayana sequence. This corroborates
with the fact that the restricted (−∞)-Dyck paths coincide with the non-empty Dyck
paths.
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Theorem 2.2. If 1 ≤ k ≤ |d| + 3, then the k-th coefficient of the generating function
Le(x, 1) coincides with the Catalan number Ck = 1

k+1

(
2k
k

)
.

Proof. We first observe that the shortest Dyck path that contains a forbidden sequence of
valleys is P = U e+2DUDe+2UD (clearly, ℓ(P ) = e + 4) with e = |d|. Therefore, if d < 0,
then rd(n) = Cn, for n = 1, 2, . . . , |d| + 3. □

The first few values for the sequence rd(n), for d ∈ {−1, −2, −3, −4} are

{r−1(n)}n≥1 = {1, 2, 5, 14, 41, 123, 375, 1157, 3603, . . . },

{r−2(n)}n≥1 = {1, 2, 5, 14, 42, 131, 419, 1365, 4511, . . . },

{r−3(n)}n≥1 = {1, 2, 5, 14, 42, 132, 428, 1419, 4785, . . . },

{r−4(n)}n≥1 = {1, 2, 5, 14, 42, 132, 429, 1429, 4850, . . . }.

For example, there are 41 (−1)-Dyck paths out of the 42 Dyck paths of length 10. Figure 3
depicts the only Dyck path of length 10 that is not a (−1)-Dyck path.

ν1 = 2 ν2 = 0

Figure 3. The only Dyck path of length 10 that is not a (−1)-Dyck path.

Recall that d is a negative integer and that e := |d|. Then by Theorem 2.1, we have

(Le(x, y) + y)e
(
xL2

e(x, y) + (xy + x − 1)Le(x, y) + xy
)

− x

1 − x
((1 − x)Le(x, y) − xy)(Le(x, y))e+1 = 0.

This implies that

e+1∑

j=2
x

(
e

j − 2

)
ye+2−j(Le(x, y))j +

e+1∑

j=1
(xy + x − 1)

(
e

j − 1

)
ye+1−j(Le(x, y))j

+
e∑

j=0
x

(
e

j

)
ye+1−j(Le(x, y))j + x2y

1 − x
(Le(x, y))e+1 = 0.

Hence, by taking y = 1 and collecting powers of Le(x, 1), we have

Le(x, 1) = Z


a0 +

e+1∑

j=2
aj(x)(Le(x, 1))j


 ,
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where Z = 1, and

a0 = x

1 − (e + 2)x,

aj = 1
1 − (e + 2)x

(
x

(
e + 2

j

)
−
(

e

j − 1

))
, j = 2, 3, . . . , e,

ae+1 = (e + 2)x(1 − x) − 1 + x(1 + x)
(1 − x)(1 − (e + 2)x) .

Hence, by the Lagrange inversion formula, we expand the generating function Le(x, 1) as
a power series in Z to obtain

Le(x, 1) =
∑

n≥1

[Zn−1]
n

∑

i0+i2+i3+···+ie+1=n

n!
i0!i2! · · · ie+1!

ai0
0 Z2i2+···+(e+1)ie+1

e+1∏

j=2
a

ij

j ,

that leads to the following result.

Theorem 2.3. We have

Le(x, 1) =
∑

n≥1

∑
2i2+···+(e+1)ie+1=n−1

(
n

i2,...,ie+1

)
xn−i2−···−ie+1tie+1

∏e
j=2

(
x
(

e+2
j

)
−
(

e
j−1

))ij

n(1 − (e + 2)x)n
,

where
(

n

i2, . . . , ie+1

)
= n!

i2! · · · ie+1!(n − i2 − · · · − ie+1)!
and t = (e + 2)x(1 − x) − 1 + x(1 + x)

1 − x
.

For example, Theorem 2.3 with e = 2 gives

L2(x, 1) =
∑

n≥1

∑
2i2+3i3=n−1

(
n

i2,i3

)
xn−i2−i3(6x − 2)i2(−3x2+5x−1

1−x
)i3

n(1 − 4x)n
.

Thus,

L2(x, 1) = x

1 − 4x
+ x2(6x − 2)

(1 − 4x)3 + x3t

(1 − 4x)4 + 2x3(6x − 2)2

(1 − 4x)5 + 5x4t(6x − 2)
(1 − 4x)6

+ 5x4(6x − 2)3 + 3x5t2

(1 − 4x)7 + 21x5(6x − 2)2t

(1 − 4x)8 + 28x6(−2 + 6x)t2 + 14x5(−2 + 6x)4

(1 − 4x)9 + · · · ,

where t = (−3x2 + 5x − 1)/(1 − x).

3. Some results for the case d = −1

In this section we keep analyzing the bivariate generating function given in the previous
section for the particular case d = −1. For this case, we provide more detailed results.
We denote by Q the set of all non-empty paths in D−1 having at least one valley, where
the last valley is at ground level. We denote by Qn the subset of Q formed by all paths
of semi-length n and denote by qn the cardinality of Qn. For simplicity, when d = −1
(or e = 1) we use L(x, y) instead of L1(x, y). As a consequence of Theorem 2.1, taking
d = −1, we obtain this theorem.



124 R. Flórez and T. Mansour and J.L. Ramírez and F.A. Velandia and D. Villamizar

Theorem 3.1. The bivariate generating function L(x, y) is given by

L(x, y) =
(x − 1)y

(
1 − x(2 + y) −

√
(1 − x − 2xy − 2x2y + x2y2 − x3y2)/(1 − x)

)

2(1 − 2x + x2 − 2xy + x2y) .

Notice that a path Q ∈ Q can be uniquely decomposed as either U∆DU∆′D, U∆DR,
UR1DR2, or URDU∆D, where ∆, ∆′ are pyramids, and R, R1, R2 ∈ Q (see Figure 4 for
a graphical representation of this decomposition).

Figure 4. Decomposition of a (−1)-Dyck path in Q.

Therefore, if
Q(x, y) :=

∑

Q∈Q
xℓ(Q)yρ(P ),

then

Q(x, y) = x2
(

y

1 − x

)2
+ x

(
y

1 − x

)
Q(x, y) + x(Q(x, y))2 + x2

(
y

1 − x

)
Q(x, y).

Solving the equation above for Q(x, y), we find that

Q(x, y) =
1 − x − xy − x2y −

√
(1 − x)(1 − x − 2xy − 2x2y + x2y2 − x3y2)

2(1 − x)x . (3.1)

Expressing L(x, y) as a series expansion we obtain these first few terms:

L(x, y) = xy + x2
(
y2 + y

)
+ x3

(
y3 + 3y2 + y

)
+ x4

(
y4 + 6y3 + 6y2 + y

)

+ x5
(
y5 + 10y4 + 19y3 + 10y2 + y

)
+ x6

(
y6 + 15y5 + 46y4 + 45y3 + 15y2 + y

)
+ · · · .

Figure 5 depicts all six paths in D−1(4) with exactly 3 peaks. Notice that this is the
coefficient of x4y3, in boldface type, in the above series.

The generating function for the (−1)-Dyck paths is given by

L(x) := L(x, 1) = −1 + 4x − 3x2 +
√

1 − 4x + 2x2 + x4

2(1 − 4x + 2x2) . (3.2)

Thus,

L(x) = x + 2x2 + 5x3 + 14x4 + 41x5 + 123x6 + 375x7 + 1157x8 + · · · .
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Figure 5. All six paths in D−1(4) with exactly 3 peaks.

For the sake of simplicity, if there is not ambiguity, for the remaining part of the paper
we use r(n) instead of r−1(n). Our interest here is to give a combinatorial formula for
this sequence. First of all, we give some preliminary results. Let b(n) be the number of
(−1)-Dyck paths of semi-length n that either have no valleys or the last valley is at ground
level. Note that b(n) − 1 is the n-th coefficient of the generating function Q(x, 1); see (3.1),
or equivalently

∑

n≥0
b(n)xn = Q(x, 1) + 1

1 − x
= 1 − x2 −

√
1 − 4x + 2x2 + x4

2(1 − x)x
= 1 + x + 2x2 + 4x3 + 9x4 + 22x5 + 57x6 + 154x7 + 429x8 + · · · .

This generating function coincides with the generating function of the number of Dyck
paths of semi-length n that avoid the subpath UUDU . From Proposition 5 of [19]
and [5, p. 10] we conclude the following proposition.

Proposition 3.2. For all n ≥ 0 we have

b(n) = 1 +
⌊ n−1

2 ⌋∑

j=0

(−1)j

n − j

(
n − j

j

)(
2n − 3j

n − j + 1

)
=

⌊ n
2 ⌋∑

k=0

n−k∑

j=0

(
n − k

j

)
N(j, k),

where N(n, k) = 1
n

(
n
k

)(
n

k−1

)
are the Narayana numbers, with N(0, 0) = 1.

We tried to find a combinatorial proof of the previous proposition. However, we were
not able to do it. This remark summarizes our observations toward a potential proof. It
will be interesting to see such a combinatorial proof.

Remark 3.3. Let B(n) = Qn ∪ {∆n} denote the set of (−1)-Dyck paths having either no
valleys or the last valley is at ground level. That is, b(n) = |B(n)|. A South-East step in
P ∈ B(n), satisfies one of these two conditions.

• The step belongs to a pyramid.
• The step is part of a valley, say for example, the m-th valley, such that νm −νm−1 =

−1. In this case, the valley with height νm is called (−1)-valley.
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We denote by Bj,k(n) the set of paths in B(n) with exactly j valleys, where k of them
are (−1)-valley. Now, a path P ∈ Bj,k(n) can be decomposed as

P = U s0∆t1U s1∆t2Dr1U s2 · · · ∆tj−1Drj−2U sj−1∆tj
Drj−1∆tj+1 ,

where ri ∈ {0, 1}, ti ≥ 1, si ≥ 0, and with the additional property that there are exactly k
indices i for which ri = 1.

There are n − k South-East steps that belong to one of the j + 1 pyramids in the path.
So, we can represent the possible choices of the ti as an integer composition of n − k into
j +1 parts in

(
n−k−1
j+1−1

)
=
(

n−k−1
j

)
ways. This means that setting ti = 1 for all i, in the spirit

of Proposition 3.2, the Narayana numbers N(j, k + 1) should correspond to the number
of (−1)-Dyck paths of semi-length j + 1 + k containing exactly j valleys and k ≤ j − 1
(−1)-valleys where the last valley is at ground level. That is |Bj,k(j + k + 1)| = N(j, k + 1)
for j > 0.

Theorem 3.4. The total number of paths in D−1(n) is given by

r(n) =
n∑

k=0

n−k−1∑

i=0

(
n − k − 1

i

)
q(i)(k),

where

q(i)(n) =
∑

n1+n2+···+ni=n

b(n1)b(n2) · · · b(ni).

Proof. Recall that ℓ(P ) denotes the semi-length of a path P . Let us denote by Q(i)(n) the
set of i-tuples (P1, . . . , Pi) of paths Pj ∈ B = ⋃

m≥0 B(m), such that ℓ (P1)+ · · ·+ℓ (Pi) = n.
It is clear that

∣∣∣Q(i)(n)
∣∣∣ = q(i)(n). Note that the empty path λ ∈ B. Let Ci(n) be the

set of integer compositions of n with i parts. The cardinality of this set is given by the
binomial coefficient

(
n−1
i−1

)
.

Let QC(n) be the set of (2i + 1)-tuples (c1, P1, . . . , ci, Pi, ci+1) such that the element
((P1, . . . , Pi), (c1, . . . , ci+1)) is in Q(i)(j) × Ci+1(n − j). (Note that QC(n) is isomorphic to⋃

i,j(Q(i)(j) × Ci+1(n − j)).) We now consider the function

φ : QC(n) −→ D−1(n),

defined by

φ ((c1, P1, c2, P2, . . . , ci, Pi, ci+1)) = U c1M1U
c2 · · · MiU

ci+1Dg,

where the integer g ≥ ci+1 is the number of necessary down-steps to reach the x-axis, and
Mj is given by

Mj =





Dcj , if Pj = λ;
Pj, if Pj = ∆;
PjD, otherwise.

Figure 6 depicts two examples on the application of the function φ.
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(c1,∆, c2,λ, c3)

∆

c 1

︷

︸
︸

︷

(c1, P1, c2)

P1

→

c 2

︷

︸
︸

︷

c 3

︷

︸
︸

︷

→

c 1

︷

︸
︸

︷
c 2

︷

︸
︸

︷

Figure 6. Function φ applied to the vectors (c1, ∆, c2, λ, c3) and (c1, P1, c2).

For the remaining part of this proof we use ∆0 = λ. We define ϕ from D−1(n) to QC(n)
via the Algorithm 1 below.

Algorithm 1 Function ϕ

(1) Let i = 1.
(2) If there are (−1)-valleys, go to step (3), else, the path is non-decreasing, and for some

integers sm ≥ 0, g ≥ 0, and tm > 0, it can be decomposed as
P = U s0∆t1U s1∆t2 · · · U sj−1∆tj

∆tj+1Dg.

• If no valleys, that is j = s0 = g = 0, then return the vector (t1).
• If there is just one valley, that is j = 1, set

(s′
0, t′

1) =




(s0, t1), if s0 > 0;
(t1, 0), otherwise;

and then return the vector (s′
0, ∆t′

1
, t2).

• In the general case, set

(s′
m, t′

m+1) =




(sm, tm+1), if sm > 0;
(tm+1, 0), otherwise;

for m < j and then return the vector (s′
0, ∆t′

1
, s′

1, . . . , ∆t′
j
, tj+1).

(3) Find the rightmost occurrence of an (−1)-valley, that is, a subpath of the form
D∆kDU , with k > 0. Denote the height of this valley as hi. Decompose the path P
as P = P̃0PiDP̃1, where Pi is the maximal subpath that is a Dyck path to the left of
the aforementioned (−1)-valley. Notice that Pi ends on D∆k and so, it belongs to B.
Let P̂0 = P̃0D

hi+1 and P̂1 = P̃1D
−hi , where D−r means deleting the last r South-East

steps of the path. By assumption, the path P̂1 is non-decreasing: go to step (2) using
P̂1 and call the returned tuple τ1. Increase the value of i by one and go to step (2)
with the path P̂0 and call the returning tuple τ0. Return (τ0, Pi, τ1).
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We now give an example of the application of the Algorithm 1. Consider, for instance,
the path given in Figure 7. First of all, search for the rightmost (−1)-valley (in the first
case, it is denoted by dashed circle after P1), they are decorated by a red circle around
them, the algorithm applied to P̂1 = UD (where P̃1 = UDD) gives τ1 = (1). We extract
the path P1 and we locate the next (−1)-valley, the right part on this instance, given
by UDUDU , corresponds to τ1 = (1, λ, 1, λ, 1), and the left part of P2 corresponds to
(1, ∆1, 1), and so the whole path is encoded by the vector (1, ∆1, 1, P2, 1, λ, 1, λ, 1, P1, 1).

P1

1

P2

1,∆1, 1 1,λ, 1,λ, 1

P

φ(P ) = (1,∆1, 1, P2, 1,λ, 1,λ, 1, P1, 1)

P̂0 P̂1

P̂0 P̂1

P1

P2

Figure 7. Example inverse function.

Using these decompositions, we show by induction that ϕ ◦ φ|QCk(n) = idQCk(n) and
φ ◦ ϕ|Bk(n) = idBk(n) for every k ≥ 0. These equalities and the functionality of ϕ, given by
choosing the paths Pi in a maximal way, imply that φ is a bijection and ϕ is its inverse.
Let S(k) be the statement

ϕ ◦ φ|QCk(n) = idQCk(n) and φ ◦ ϕ|Bk(n) = idBk(n).

For the basis step, S(0), first notice that if P ∈ B0(n), then the Algorithm 1 Part (2)
guarantees that ϕ(P ) contains only paths of the form ∆t for t ≥ 0. On the other hand,
φ returns a path without (−1)-valley when given a tuple τ ∈ QC0(n) by definition of
the Mj’s, and so the functions and their compositions are well defined when restricted
to B0(n) and QC0(n). Let P = U s0∆t1 · · · ∆ti

∆ti+1Dg ∈ B0(n), using Algorithm 1 we get
ϕ(P ) = (s′

0, ∆t′
1
, . . . , ∆t′

i
, ti+1).
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Now, we have
φ(ϕ(P )) = φ(s′

0, ∆t′
1
, . . . , ∆t′

i
, ti+1) = U s′

0M1 · · · MiU
ti+1Dg′

,

with Mm = Ds′
m−1 = Dtm if t′

m = 0 and s′
m−1 = tm, or Mm = ∆t′

m
= ∆tm if sm−1 > 0, for

1 ≤ m ≤ i. This gives φ(ϕ(P )) = P .
Let τ = (c1, ∆t1 , . . . , ci, ∆ti

, ci+1) with cm > 0 and tm ≥ 0, then
φ(τ) = U c1M1 · · · U ciMiU

ci+1Dg,

where

Mm =




Dcm , if tm = 0;
∆tm , otherwise;

and let 1 ≤ x1 < x2 < · · · < xq ≤ i be such that txm = 0, that is the paths ∆txm
in τ that

are of the form ∆0 = λ. Notice that cm > 0 and the definition of Mm imply that either
U cmMm = ∆cm exactly for tm = 0 or U cm∆tm for tm > 0, which allows us to decompose
φ(τ) as

φ(τ) =
(
U c1∆t1 · · · U cx1−1∆tx1−1

)
U0∆cx1

· · · U0∆cxq

(
U cxq+1∆txq+1 · · · ∆ti

)
∆ci+1Dg−ci+1 ,

where every pyramid in the decomposition is non-empty and so the decomposition is unique.
We now have that ϕ(φ(τ)) = (c1, ∆t1 , . . . , cx1−1, ∆txi−1 , cx1 , λ, . . . , cxq , λ, . . . , ci+1) = τ .
For the inductive step S(k), we assume that we have the desired equalities for ℓ < k.
Notice that any tuple τ ∈ QCk(n) can be decomposed as τ = (τ0, P1, τ1) with τ0 containing
ℓ < k paths that are not pyramids, P1 ̸= ∆t for any t ≥ 0, and τ1 ∈ QC0(n′). Notice,
further, that

φ((τ0, P1, τ1)) = φ(τ0)D−P1Dφ(τ1)Dg2 ,

where φ(τ0)D− means deleting the South-East steps suffix of φ(τ0). By the recursive
step in the Algorithm 1, we have that ϕ(φ(τ)) = τ by using the inductive hypothesis.
Analogously, we can decompose a path as in the recursive step of Algorithm 1, and the
inductive hypothesis give φ(ϕ(P )) = P . □

Proposition 3.5 is a direct consequence of the decomposition given in the proof of
Theorem 3.1. The first result follows from Figure 4 and the second result uses the first
part of this proposition and the decomposition UTD, U∆DT, or UQDT as given in the
proof of Theorem 3.1.

Proposition 3.5. If n > 1, then these hold
(1) If qn = |Qn|, then

qn = 2qn−1 + qn−2 + qn−3 +
n−4∑

i=2
qi(qn−i−1 − qn−i−2) + 1,

for n > 3, with the initial values q1 = 0, q2 = 1, and q3 = 3.
(2) If r(n) = |Dd(n)|, then

r(n) = 3r(n − 1) − r(n − 2) + qn−2 +
n−3∑

i=2
qi(r(n − i − 1) − r(n − i − 2)),

for n > 3, with the initial values r(1) = 1, r(2) = 2, and r(3) = 5.
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The generating function of the sequence r(n) is algebraic of order two, then r(n) satisfies
a recurrence relation with polynomial coefficients; see [1, Proposition 4]. This can be
automatically solved with implementation of Kauers in Mathematica [18]. In particular
we obtain that r(n) satisfies the recurrence relation:

2nr(n) − 4nr(n + 1) + (12 + 5n)r(n + 2) − 4(15 + 4n)r(n + 3)
+ 10(9 + 2n)r(n + 4) − 2(21 + 4n)r(n + 5) + (6 + n)r(n + 6) = 0, with n ≥ 6

and the initial values r(0) = 0, r(1) = 1, r(2) = 2, r(3) = 5, r(4) = 14, and r(5) = 41.
In Theorem 3.6 we give an asymptotic approximation for the sequence r(n). To

accomplish this goal, we use the singularity analysis method to find the asymptotes of the
coefficients of a generating function (see, for example, [11] for the details).

We recall that in literature fn ∼ gn means that fn and gn are asymptotic equivalent.
That is, fn/gn → 1 as n → ∞.

Theorem 3.6. If ρ is the smallest real positive root of 1 − 4x + 2x2 + x4, then the number
of (−1)-Dyck paths has this asymptotic approximation

r(n) ∼ ρ−n

√
n3π

·
√

ρ(4 − 4ρ − 4ρ3)
4(−1 + 4ρ − 2ρ2) ,

where ρ is called the dominant singularity of the generating function L(x).

Proof. From a symbolic computation we find that

ρ = 1
3


−1 − 4 22/3

3
√

13 + 3
√

33
+ 3
√

2
(
13 + 3

√
33
)

 ≈ 0.295598.

From the expression given in (3.2) for L(x) we have

L(x) = −1 + 4x − 3x2

2(1 − 4x + 2x2) +
√

1 − 4x + 2x2 + x4

2(1 − 4x + 2x2) ∼ (ρ−x)1/2

√
ρ(4 − 4ρ − 4ρ3)

2(1 − 4ρ + 2ρ2) as x → ρ−.

Therefore,

r(n) ∼ n−1/2−1

ρn(−2
√

π)

√
ρ(4 − 4ρ − 4ρ3)

2(1 − 4ρ + 2ρ2) = ρ−n

√
n3π

√
ρ(4 − 4ρ − 4ρ3)

4(−1 + 4ρ − 2ρ2) . □

4. The area of the (−1)-Dyck paths

In this section we use generating functions and recursive relations to analyze the
distribution of the area of the paths in the set of restricted (−1)-Dyck paths. We recall
that the area of a Dyck path is the sum of the absolute values of y-components of all
points in the path. We use area(P ) to denote the area of a path P . From Figure 1 on
Page 118, we can see that area(P ) = 70. We use a(n) to denote the total area of all paths
in D−1(n). In Theorem 4.1 we give a generating function for the sequence a(n). We now
introduce a bivariate generating function depending on this previous parameter and ℓ(P )
(the semi-length of P ). So,

A(x, q) :=
∑

P ∈D−1

xℓ(P )qarea(P ).



Restricted Dyck paths on valleys sequence 131

Let Q ⊂ D−1(n) be the set formed by all paths having at least one valley, where the last
valley is at ground level; let Qn ⊂ Q be the set formed by all paths of semi-length n, and
let qn = |Qn|.
Theorem 4.1. The generating function for the sequence a(n) is given by

V (x) =
∑

n≥0
a(n)xn = b(x) − c(x)

√
1 − 4x + 2x2 + x4

(1 − x)2(1 − 4x + 2x2)3(1 − 3x − x2 − x3) ,

where
b(x) = 2x − 23x2 + 107x3 − 262x4 + 359x5 − 256x6 + 82x7 − 5x8 − 10x9 + 6x10,

c(x) = x − 10x2 + 41x3 − 89x4 + 108x5 − 73x6 + 18x7 + 2x8.

Proof. From the decomposition UD, UTD, U∆DT, or UQDT given in the proof of Theo-
rem 3.1 we obtain the functional equation

A(x, q) = xq + xqA(xq2, q) + E(x, q)A(x, q) + xqB(xq2, q)A(x, q), (4.1)

where E(x, q) := ∑
j≥1 xjqj2 and B(x, q) := ∑

P ∈Q xℓ(P )qarea(P ). Note that E(x, q) corre-
sponds to the generating function that counts the total number of non-empty pyramids in
the given decomposition.
From the decomposition given in Figure 4, we obtain the functional equation

B(x, q) = E(x, q)2 + E(x, q)B(x, q) + xqB(q2x, q)B(x, q) + xqB(q2x, q)E(x, q). (4.2)
Let M(x) be the generating function of the total area of the (−1)-Dyck paths in Q. From
the definition of A(x, q) we have

V (x) = ∂A(x, q)
∂q

∣∣∣∣∣
q=1

.

Substituting x by xq2 in (4.2), and then differentiating with respect to q and taking q = 1,
we obtain

W (x) := ∂B(xq2, q)
∂q

∣∣∣∣∣
q=1

= 2(3 − x)x2

(1 − x)4 + (3 − x)x
(1 − x)3 Q(x) + x

1 − x

(
W (x) + 2x

∂Q(x)
∂x

)

+ 3xQ(x)2 + xQ(x)
(

W (x) + 4x
∂Q(x)

∂x

)
+ xQ(x)

(
W (x) + 2x

∂Q(x)
∂x

)

+ 3x2

1 − x
Q(x) + x2

1 − x

(
W (x) + 4x

∂Q(x)
∂x

)
+ x2(3 − x)

(1 − x)3 Q(x), (4.3)

where Q(x) := Q(x, 1) and Q(x, y) is the generating function given in (3.1) on Page 124.
Now, differentiating (4.1) with respect to q and then taking q = 1 we obtain,

V (x) = x + xL(x) + x

(
V (x) + 2x

∂L(x)
∂x

)
+ x(x + 1)

(1 − x)3 L(x)

+ x

1 − x
V (x) + xQ(x)L(x) + xW (x)L(x) + xQ(x)V (x). (4.4)

Solving (4.3) for W (x) and substituting into (4.4) and then solving the resulting expression
for V (x) we obtain the desired result. □
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The first few values of the series of V (x) are

V (x) =
∑

n≥1
a(n)xn = x + 6x2 + 29x3 + 130x4 + 547x5 + 2198x6 + 8551x7 + · · · .

We now give a recursive relation for a(n). Again for the sake of simplicity, the proof
here is based on a geometric decomposition of the paths. So, we avoid some details.
However, in [13] there are detailed proofs of Proposition 4.2 and Theorem 4.3. We recall
that qn = |Qn| and that for simplicity we use r(n) instead of r−1(n).

The following two results may follow as a direct application of (4.2). However, we
include here a different combinatorial proof.

Proposition 4.2. If An with n ≥ 1 is the total area of all paths in Qn, then

An = 2An−1 + An−2 + 2An−3 + qn − qn−1 + 2nqn−2 + 2(n − 5)qn−3 + 4n2 − 14n + 13+
n−4∑

i=2
2(Ai + iqi + i(i + 1))(qn−i−1 − qn−i−2), with n > 4,

and the initial values A1 = 0, A2 = 2, A3 = 13, and A4 = 58.

Proof. From Figure 4 we know that a path in Qn can be decomposed in one of these four
cases; ∆i∆n−i, ∆iQ, XQY ∆i, XQ′Y Q where Q, Q′ ∈ Q

Case 1. The area of ∆i∆n−i is i2 + (n − i)2. Since for a fixed i ∈ {1, 2, . . . , n − 1}, there
is exactly one path of the form ∆i∆n−i in Qn, we have that the total area of this type of
paths is ∑n−1

i=1 (i2 + (n − i)2) = n(n − 1)(2n − 1)/3.
Case 2. The area of Pi := ∆iQ is i2 + An−i. Since for every i ∈ {1, 2, . . . , n − 2} there

are qn−i paths of the form Pi, we have that the total area of all paths of the form Pi is given
by i2qn−i + Ai. Therefore, the total area of this type of paths is ∑n−2

i=1 i2qn−i +∑n−1
j=2 Aj.

Case 3. For a fixed i, the area of a path of the form XQ′Y Q′′ is given by 2i +
1 + Ai + An−i−1, where Q′ ∈ Qi, Q′′ ∈ Qn−i−1 and i ∈ {2, 3, . . . , n − 3}. Note that
for a fixed i and a fixed Q ∈ Qn−i−1 there qi paths of the form XQ′Y Q with Q ∈ Qi.
This implies that for a fixed i ∈ {2, 3, . . . , n − 3} the total area of this type of paths is
An−i−1qi + (2i + 1)qiqn−i−1 + Aiqn−i−1. We conclude for i varying from 2 to n − 3, we
obtain that the total area of this type of paths is

n−3∑

i=2
An−i−1qi +

n−3∑

i=2
((2i + 1)qiqn−i−1 + Aiqn−i−1).

Case 4. The area of Hi := XQℓY ∆i is given by area of ∆i (which is i2) plus the area
of XQℓY (this is given by Aℓ, the area of Qℓ, plus 2i + 1 which is the area of the trapezoid
generated by X and Y ). Since for every i ∈ {1, 2, . . . , n − 3} there are qn−i−1 paths of the
form Hi with Q ∈ Qn−i, we conclude that the total area of this type of paths is

n−3∑

i=1
i2qn−i−1 +

n−2∑

i=2
((2i + 1)qi + Ai).
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Adding the results from Cases 1-4, we obtain that the recursive relation for the area An is
given by

An =
n−1∑

i=1

(
i2 + (n − i)2

)
+

n−2∑

i=1
i2qn−i +

n−1∑

i=2
Ai +

n−3∑

i=2
(2i + 1)qiqn−(i+1) +

n−3∑

i=2
Aiqn−(i+1)+

n−3∑

i=2
Aiqn−(i+1) +

n−2∑

i=2
Ai +

n−3∑

i=1
i2qn−(i+1) +

n−2∑

i=2
(2i + 1)qi.

Subtracting An from An+1 and simplifying we have

An = 2An−1 + An−2 + 2An−3 + (2n − 5)qn−3 + (2n − 4)qn−2 + qn−1 + 4n2 − 14n + 15+
n−4∑

i=2
(2Ai + (2i + 1)qi)(qn−i−1 − qn−i−2) +

n−3∑

i=2

(
2i2 − 2i + 1

)
(qn−i − qn−i−1).

We now rearrange this expression to obtain qn (see the expression within brackets) given
in Proposition 3.5

An = 2An−1 + An−2 + 2An−3 + (2n − 6)qn−3 + (2n − 4)qn−2 − qn−1 + 4n2 − 14n + 13+
n−4∑

i=2
2(Ai + iqi)(qn−i−1 − qn−i−2) +

n−3∑

i=2
2
(
i2 − i

)
(qn−i − qn−i−1)

+ [2qn−1 + qn−2 + qn−3 +
n−4∑

i=2
qi(q−i+n−1 − q−i+n−2) + 1].

After some simplifications we obtain the desired recursive relation. □
The proof of the following theorem is similar to the proof of Proposition 4.2. We recall

that r(i) = |D−1(i)| and qj = |Qj|.
Theorem 4.3. If a(n) is the total area of all paths in D−1(n), for n ≥ 1, then a(n)
satisfies the recursive relation

a(n) = 3a(n − 1) − a(n − 2) + An−2 + 2(n − 1)qn−2 + 2nr(n − 1) + 2(3 − n)r(n − 2)

− 4r(n − 3) + (n − 1)2 +
n−2∑

i=3
qi−1(a(n − i) − a(n − i − 1))

+
n−2∑

i=3

(
Ai−1 + (2i − 1)qi−1 + i2

)
(r(n − i) − r(n − i − 1)).

Proof. First of all, we note that a path in D−1(n) can be decomposed as XQ1Y , ∆iQn−i,
and XQ′Y D, where Qj, D ∈ D−1, and Q′ ∈ Qj. This decomposition gives these three
cases to consider.

Case 1. The area of XQY is (2n − 1) + a(n − 1), where a(n − 1) is the area of
Q ∈ D−1(n−1) and 2n−1 is the are of the trapezoid generated by X and Y . This gives that
the total area of all paths of the form XQY with Q ∈ D−1(n−1) is (2n−1)r(n−1)+a(n−1).

Case 2. The area of Ki := X iY iQℓ is i2 + a(n − i), where Qℓ ∈ D−1(n − i). Since for a
fixed i ∈ {1, 2, . . . , n − 1} there are r(n − i) paths of form Ki, we conclude that the total
area of all these paths is ∑n−1

i=1 i2r(n − i) + a(n − i).
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Case 3. The area of Mi := XQ′Y D is ((2i + 1) + Ai + a(n − i − 1), where Q′ ∈ Qi and
D ∈ D−1(n−i−1). Note that for a given path D ∈ D−1(n−i−1), there are as many paths
of the form XQ′Y D as paths in Qi. It is easy to see that for a fixed i ∈ {2, 3, . . . , n − 2}
there are r(n − i − 1) subpaths of the form XQ′Y . Note that X and Y give rise to a
trapezoid, where the two parallel sides have lengths 2i and 2i + 2, giving rise to an area of
2i + 1. So, the contribution to the area given by the first subpaths of the form XQ′Y is
equal to the area of the trapezoids plus the area of all paths of the form Q′ (these are on
top of the trapezoids). Thus, the area of a trapezoid multiplied by the total number of
the paths of the form Q′ plus the area of all paths of the form Q′ and then all of these
multiplied by the total number of paths of the form D. Thus, the contribution to the area
given by the first subpaths of the form XQ′Y (overall paths of the form Mi for a fixed i),
is ((2i + 1)qir(n − i − 1) + Air(n − i − 1)).
We conclude that the total area of this type of paths is

n−2∑

i=2
Air(n − i − 1) +

n−2∑

i=2
(2i + 1)qir(n − i − 1).

Adding the results from Cases 1-3, we obtain that the recursive relation for the area a(n)
is given by

a(n) = a(n − 1) + (2n − 1)r(n − 1) +
n−1∑

i=1
i2r(n − i) +

n−1∑

i=1
a(n − i)

+
n−2∑

i=2
qia(n − i − 1) +

n−2∑

i=2
Air(n − i − 1) +

n−2∑

i=2
(2i + 1)qir(n − i − 1).

Subtracting a(n) from a(n + 1) and simplifying we have

a(n) = 3a(n−1)−a(n−2)+An−2+2(n−1)qn−2+(2n−1)r(n−1)+(3−2n)r(n−2)+(n−1)2

+
n−2∑

i=3
qi−1(a(n − i) − a(n − i − 1)) +

n−2∑

i=3
Ai−1(r(n − i) − r(n − i − 1))

+
n−2∑

i=3
(2i − 1)qi−1(r(n − i) − r(n − i − 1)) +

n−2∑

i=1
i2(r(n − i) − r(n − i − 1)).

After some other simplifications we have that

a(n) = 3a(n − 1) − a(n − 2) + An−2 + 2(n − 1)qn−2 + 2nr(n − 1)

+ 2(3 − n)r(n − 2) − 4r(n − 3) + (n − 1)2 +
n−2∑

i=3
qi−1(a(n − i) − a(n − i − 1))

+
n−2∑

i=3

(
Ai−1 + (2i − 1)qi−1 + i2

)
(r(n − i) − r(n − i − 1)).

This completes the proof. □

Notice that the total area of the Dyck paths (cf. [21]) is given by 4n −
(

2n+1
n

)
.
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5. Appendix. Notation table

Concept Notation
Set restricted d-Dyck paths Dd

Set restricted d-Dyck paths of length n Dn

Cardinality of Dd(n) rd(n)
Cardinality of D−1(n) r−1(n) or r(n)
Area of a path P area(P)
Semi-length of P ℓ(P )
Number of peaks of P ρ(P )
Number of paths in Dd(n) having exactly k peaks. pd(n, k)
Paths with the last valley at level i Qd,i

General pyramid ∆
Pyramid (XY )k ∆k

Table 1. Summary of notation.
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TRACKING DESCENTS VIA TWO-ROWED ARRAYS
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Abstract. We present refined enumeration formulas for lattice paths in Z2 with
two kinds of steps, by keeping track of the number of descents (i.e., turns in a given
direction), the major index (i.e., the sum of the positions of the descents), and the
number of crossings. One formula considers crossings between a path and a fixed
line; the other considers crossings between two paths. Building on the first paper of
the series, which used lattice path bijections to give the enumeration with respect to
major index and crossings, we obtain a refinement that keeps track of the number of
descents. The proof is based on new bijections which rely on certain two-rowed arrays
that were introduced by Krattenthaler.
Keywords: lattice path, major index, crossings, descents, bijection.

1. Introduction

1.1. Background. Lattice paths in the plane with two kinds of steps have played an
important role in combinatorics and mathematical statistics for decades [14, 19]. The
statistic giving the number of times that a path crosses a fixed line has been studied
at least since the sixties [4–6, 10, 21, 23], often in connection to random walks. For
tuples of paths, the enumeration in the special case of non-crossing tuples, in its closely
related non-intersecting variant, is given by the celebrated Lindström–Gessel–Viennot
determinant [9, 17], and has applications to symmetric functions, plane partitions, tilings,
and statistical physics [7].

On the other hand, a very different statistic, the sum of the positions of the turns
in a given direction, has been studied in [12, 15, 20]. This statistic is called the major
index because it arises naturally when interpreting the paths as binary words, and it was
introduced by MacMahon [18].

In the first paper of this series [3], we enumerated paths with respect to the number
of crossings of a line and the major index, as well as pairs of paths with respect to the
number of times they cross each other and the sum of their major indices. The goal of
the present paper is to refine the results from [3] by another important statistic, which is
related to the major index and arguably more natural: the number of turns in a given
direction, or equivalently, the number of descents of the associated binary word.
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The number of turns arises when studying the distribution of runs in random walks [19],
the coefficients of Hilbert polynomials of determinantal and Pfaffian rings [16], and
summations for Schur functions [12]. A thorough investigation of this parameter on lattice
paths was provided by Krattenthaler [13]. In particular, a refinement by this statistic of
the classical determinantal formula of Lindström–Gessel–Viennot [9, 17] counting tuples of
non-intersecting paths was given in [11, Thm. 1] and [13, Thm. 3.6.1]. In related work,
Krattenthaler and Mohanty [15] enumerated lattice paths constrained to a strip with
respect to the number of descents and the major index.

The tools that were used in [3] to deal with crossings and the major index consisted of
bijections with a neat description in terms of lattice paths. While these bijections were
suited to study the major index, unfortunately they do not behave well with respect to the
number of descents, which is why the results obtained in [3] do not include this statistic.
Instead, in this paper we will construct different bijections that are not described in terms
of paths, but rather in terms of two-rowed arrays.

Such arrays, which are more general than paths, have been used by Krattenthaler
and Mohanty to study descents and major index on lattice paths in a strip [15], and by
Krattenthaler to enumerate tuples of non-intersecting paths with respect to the number of
turns [11, 13] and to the major index [12]. However, to our knowledge, they have never
been used while also keeping track of the number of crossings. While two-rowed arrays
allow us to track simultaneously track multiple statistics, including the number of descents,
the trade-off is that they make the proofs more involved and less intuitive than those in [3].

Paralleling the results in [3], this paper solves two problems: the enumeration of single
paths with respect to the number of times that they cross a fixed line, and the enumeration
of pairs of paths with respect to the number of times that they cross each other, refined in
both cases by the number of descents and the major index. This paper is self-contained
and does not rely on any material from [3].

Our work is partially motivated by the simplicity of the resulting formulas in both cases.
For single paths with given endpoints, crossing a line at least a certain number of times
and having a fixed number of descents, we will show that the polynomial enumerating
them with respect to the major index is given by a product of two q-binomial coefficients
and a power of q. For pairs of paths crossing each other, the formulas we obtain involve a
product of two generating functions whose coefficients have again the same form.

The second source of motivation is that our results for paths crossing a line have
applications to the refined enumeration of integer partitions according to the number of
sign changes of their successive ranks (or off-diagonal ranks). These applications, which
generalize results of Seo and Yee [22], will be explored in [2] in connection to the study of
partitions with constrained ranks.

1.2. Preliminaries. For points A, B ∈ Z2, we denote by PA→B the set of lattice paths with
steps N = (0, 1) (north) and E = (1, 0) (east) that start at A and end at B. Sometimes it
will be convenient to consider paths with steps U = (1, 1) (up) and D = (1,−1) (down)
instead. For nonnegative integers a, b, we denote by Ga,b set of paths with a steps U and b
steps D starting at the origin.
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y = 1
P

Figure 1. A path P ∈ G≥3,1
8,6 with maj(P ) = 1 + 3 + 7 + 10 = 21. The

four valleys are marked with teal diamonds, and the three crossings of the
line y = 1 are circled in black. The middle crossing is a downward crossing,
whereas the other two are upward crossings.

In both cases, encoding paths as binary words, with 0s recording N (resp. U) steps, and
1s recording E (resp. D) steps, we define a descent (also called a valley) of the path to
be a vertex preceded by an E and followed by an N (resp. preceded by a D and followed
by a U). The number of descents of a path P is denoted by des(P ). The major index
of P , denoted by maj(P ), is defined to be the sum of the positions of the descents, where
the position is determined by numbering the vertices along the path, starting at 0. See
Figure 1 for an example. We also define a peak of the path to be a vertex preceded by
an N and followed by an E (resp. preceded by a U and followed by a D).

The enumeration of binary words by the number of descents and the major index
is implicit in work of MacMahon [18]. An explicit proof was given by Fürlinger and
Hofbauer [8]. To state this result in its lattice path version, recall that the q-binomial
coefficients are defined as

[
m
n

]

q

=
n−1∏

k=0

1− qm−k

1− qn−k

if 0 ≤ n ≤ m, and as 0 otherwise.

Lemma 1.1 ([8, 18]). For a, b ≥ 0,
∑

P ∈Ga,b

tdes(P )qmaj(P ) =
∑

n≥0
tnqn2

[
a
n

]

q

[
b
n

]

q

.

Equivalently, for x, y, u, v ∈ Z,
∑

P ∈P(x,y)→(u,v)

tdes(P )qmaj(P ) =
∑

n≥0
tnqn2

[
u− x

n

]

q

[
v − y

n

]

q

.

A self-contained proof of this lemma will be included in Section 3.1. The rest of the
paper is structured as follows. In Section 2 we state our results, both for single paths
crossing a line and for pairs of paths crossing each other. In Section 3 we prove them in
the case of single paths crossing a line, by introducing two-rowed arrays to encode paths,
generalizing the notion of crossings to such arrays, and then describing certain bijections
on them. In Section 4 we prove our results for pairs of paths crossing each other, by
generalizing crossings to pairs of two-rowed arrays, and then defining bijections on such
pairs.
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2. Main results

2.1. Paths crossing a line. First we consider the enumeration of paths with U and
D steps according to the number of times that they cross a fixed horizontal line. For
integers ℓ, r with r ≥ 0, let G≥r,ℓ

a,b denote the set of paths in Ga,b that cross the line y = ℓ
at least r times. A vertex of the path on the line y = ℓ is a crossing if it is either preceded
and followed by a D —in which case it is called a downward crossing—, or preceded and
followed by a U —called an upward crossing. See Figure 1 for an example.

We will provide expressions for the polynomials

G≥r,ℓ
a,b (t, q) =

∑

P ∈G≥r,ℓ
a,b

tdes(P )qmaj(P )

for arbitrary integers a, b, r, ℓ with a, b, r ≥ 0. Note that the polynomials for paths crossing
the line y = ℓ exactly r times can be obtained from the above simply as G≥r,ℓ

a,b (t, q) −
G≥r+1,ℓ

a,b (t, q).
An expression for G≥r,ℓ

a,b (1, q) was given in [3, Thms. 2.1 and 2.2]. The following result
refines these theorems by incorporating the statistic des.

Theorem 2.1. Let a, b, m ≥ 0, and let ℓ ∈ Z.
I. If 0 < ℓ < a− b, then

G≥2m+1,ℓ
a,b (t, q) = G≥2m,ℓ

a,b (t, q) =
∑

n≥0
tnqn2+m(m+ℓ+1)

[
a

n−m

]

q

[
b

n + m

]

q

. (2.1)

II. If 0 > ℓ > a− b, then

G≥2m+1,ℓ
a,b (t, q) = G≥2m,ℓ

a,b (t, q) =
∑

n≥0
tnqn2+m(m−ℓ−1)

[
a

n + m

]

q

[
b

n−m

]

q

. (2.2)

III. If 0 > ℓ < a− b, then

G≥2m+2,ℓ
a,b (t, q) = G≥2m+1,ℓ

a,b (t, q) =
∑

n≥0
tnqn2+(m+1)(m−ℓ)

[
a− ℓ− 1
n−m− 1

]

q

[
b + ℓ + 1

n + m + 1

]

q

. (2.3)

IV. If 0 < ℓ > a− b, then

G≥2m+2,ℓ
a,b (t, q) = G≥2m+1,ℓ

a,b (t, q) =
∑

n≥0
tnqn2+m(m+ℓ+1)

[
a− ℓ− 1

n + m

]

q

[
b + ℓ + 1
n−m

]

q

. (2.4)

V. If 0 = ℓ < a− b, then

G≥2m,ℓ
a,b (t, q) =

∑

n≥0
tnqn2+m(m+1)

[
a

n−m

]

q

[
b

n + m

]

q

, (2.5)

G≥2m+1,ℓ
a,b (t, q) =

∑

n≥0
tnqn2+m(m+1)

[
a− 1

n−m− 1

]

q

[
b + 1

n + m + 1

]

q

. (2.6)
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VI. If 0 = ℓ > a− b, then

G≥2m,ℓ
a,b (t, q) =

∑

n≥0
tnqn2+m(m−1)

[
a

n + m

]

q

[
b

n−m

]

q

, (2.7)

G≥2m+1,ℓ
a,b (t, q) =

∑

n≥0
tnqn2+m(m+1)

[
a− 1
n + m

]

q

[
b + 1
n−m

]

q

. (2.8)

VII. If 0 < ℓ = a− b, then

G≥2m,ℓ
a,b (t, q) =

∑

n≥0
tnqn2+m(m+ℓ+1)

[
a

n−m

]

q

[
b

n + m

]

q

, (2.9)

G≥2m+1,ℓ
a,b (t, q) =

∑

n≥0
tnqn2+m(m+ℓ+1)

[
a + 1
n−m

]

q

[
b− 1
n + m

]

q

. (2.10)

VIII. If 0 > ℓ = a− b, then

G≥2m,ℓ
a,b (t, q) =

∑

n≥0
tnqn2+m(m−ℓ−1)

[
a

n + m

]

q

[
b

n−m

]

q

, (2.11)

G≥2m+1,ℓ
a,b (t, q) =

∑

n≥0
tnqn2+(m+1)(m−ℓ)

[
a + 1

n + m + 1

]

q

[
b− 1

n−m− 1

]

q

. (2.12)

IX. If 0 = ℓ = a− b, then

G≥2m,ℓ
a,b (t, q) =

∑

n≥0
tnqn2+m(m+1) 1− qa−2m

1− qa

[
a

n + m

]

q

[
a

n−m

]

q

, (2.13)

G≥2m+1,ℓ
a,b (t, q) =

∑

n≥0
tnqn2+m(m+1) 1− qa+2(m+1)

1− qa

[
a

n + m + 1

]

q

[
a

n−m− 1

]

q

. (2.14)

2.2. Pairs of paths crossing each other. Next we consider the enumeration pairs
of paths with respect to the number of crossings between them. For this problem it is
convenient to consider paths with N and E steps. Let P and Q be two such paths, and
suppose that V1, V2, . . . , Vs (where s ≥ 1) is a maximal sequence of consecutive common
vertices such that

• neither V1 nor Vs are endpoints of P or Q;
• for each of P and Q, its step arriving at V1 is of the same type (N or E) as its

step leaving Vs.



142 S. Elizalde

In this case, vertex Vs is called a crossing of P and Q. This definition differs slightly from
the one used in [3], where the term crossing refers to the first vertex V1 of the sequence.
Of course, the number of crossings of P and Q does not depend on this convention, but
defining the crossing to be Vs will be more convenient in the proofs in Section 4. Figure 2
shows some examples of crossings.

Figure 2. Two examples of crossings, circled in black, and a pair of paths
that do not cross (right).

Let χ(P, Q) denote the number of crossings of P and Q; see Figure 3 for an example.

A1

A2

B1

B2

P

Q

Figure 3. A pair of paths with χ(P, Q) = 3, des(P ) + des(Q) = 6, and
maj(P ) + maj(Q) = 45.

For A1, A2, B1, B2 ∈ Z2, r ≥ 0, and {◦, •} = {1, 2}, let
P≥r

A1→B◦,A2→B• = {(P, Q) : P ∈ PA1→B◦ , Q ∈ PA2→B• , χ(P, Q) ≥ r}.
To enumerate such pairs of paths with respect to the sum of their numbers of descents
(the total descent number) and the sum of their major indices (the total major index), we
define the polynomials

H≥r
A1→B◦,A2→B•(t, q) =

∑

(P,Q)∈P≥r
A1→B◦,A2→B•

tdes(P )+des(Q)qmaj(P )+maj(Q).

Note that the polynomials for pairs of paths that cross each other exactly r times are given
by the difference H≥r

A1→B◦,A2→B•(t, q)−H≥r+1
A1→B◦,A2→B•(t, q).
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To state our formulas, let us first define the following polynomial in t and q that depends
on the points A1 = (x1, y1), A2 = (x2, y2), B1 = (u1, v1), B2 = (u2, v2), and a parameter
k ∈ Z:

fk,A1,A2,B2,B1(t, q)

= qk(k+x2−x1)


∑

n≥0
tnqn(n+k)

[
u2 − x1

n

]

q

[
v2 − y1
n + k

]

q




∑

n≥0
tnqn(n−k)

[
u1 − x2

n

]

q

[
v1 − y2
n− k

]

q


.

We use the notation A1 ≺ A2 to mean that x1 < x2 and y1 > y2. The theorem below
refines [3, Thm. 2.4].

Theorem 2.2. Let A1 = (x1, y1), A2 = (x2, y2), B1 = (u1, v1) and B2 = (u2, v2) be points
in Z2 such that A1 ≺ A2 and B1 ≺ B2. Suppose additionally that

x1 + y1 = x2 + y2. (2.15)

Then, for all m ≥ 0,

H≥2m+1
A1→B2,A2→B1(t, q) = H≥2m

A1→B2,A2→B1(t, q) = f2m,A1,A2,B2,B1(t, q), (2.16)

H≥2m+2
A1→B1,A2→B2(t, q) = H≥2m+1

A1→B1,A2→B2(t, q) = f2m+1,A1,A2,B2,B1(t, q). (2.17)

Let now A = (x, y) and B = (u, v) be points in Z2. Then, for all r ≥ 0,

H≥r
A→B1,A→B2(t, q) = fr,A,A,B2,B1(t, q), (2.18)

H≥r
A1→B,A2→B(t, q) = fr,A1,A2,B,B(t, q), (2.19)

H≥r
A→B,A→B(t, q) =





f0,A,A,B,B(t, q) if r = 0,

2∑j≥1(−1)j−1fr+j,A,A,B,B(t, q) if r ≥ 1.

(2.20)

Let us now detail the proofs of these results.
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3. Proofs for paths crossing a line

In this section we prove Theorem 2.1. Before diving into the details, we remark that it
would be possible to give an alternative proof by induction on the length (number of steps)
of the path, by first separating each of the nine cases of the theorem into two subcases,
according to whether the last step of the path is a U or a D. For example, if 0 < ℓ < a− b,
the refinement to be proved by induction would state that the generating function for
paths in G≥r,ℓ

a,b that end with a D, where r = 2m or r = 2m + 1, equals

G≥r,ℓ
a,b−1(t, q) =

∑

n≥0
tnqn2+m(m+1+ℓ)

[
a

n−m

]

q

[
b− 1
n + m

]

q

,

and so the generating function for those that end with a U equals

G≥r,ℓ
a,b (t, q)−G≥r,ℓ

a,b−1(t, q) =
∑

n≥0
tnqn2+m(m+ℓ)+b−n

[
a

n−m

]

q

[
b− 1

n + m− 1

]

q

.

Then, to prove each one of these formulas, we would remove the last step of the path, and
deduce them from the formulas for shorter paths that hold by the induction hypothesis.
This often requires additional subcases; for example, for the above paths ending in U , the
cases ℓ + 1 < a− b and ℓ + 1 = a− b would be considered separately.

Instead of such a tedious induction proof, we have chosen to present a proof that relies
on certain two-rowed arrays that have been used by Krattenthaler and Mohanty [15]. One
advantage of our proof is that it is bijective. Additionally, the methodology of two-rowed
arrays that we introduce here will later allow us to prove Theorem 2.2 for pairs of paths,
where a potential proof by induction is much less clear.

3.1. Two-rowed arrays. Let x, y, u, v, k ∈ Z and n, j ≥ 0 throughout the section. We
use the notation

(x, u]j = {(c1, . . . , cj) : x < c1 < c2 < · · · < cj ≤ u},
[y, v)j = {(d1, . . . , dj) : y ≤ d1 < d2 < · · · < dj < v},
(x, v)j = {(c1, . . . , cj) : x < c1 < c2 < · · · < cj < v},
[y, u]j = {(d1, . . . , dj) : y ≤ d1 < d2 < · · · < dj ≤ u}.

We consider pairs of such sequences arranged in a particular way, which we call two-rowed
arrays, following [11–13, 15]. We denote by

{
(x,u]n+k

[y,v)n−k

}
, or

{
(x,u]
[y,v)

}
n±k

for short, the set of
arrays of the form

x < c1 < c2 < · · · < cn+k ≤ u
y ≤ d1 < d2 < · · · < dn−k < v

,

with the convention that this set is empty unless |k| ≤ n. The two rows are interlaced
from the left, starting with the leftmost element in the bottom row. Elements in this set
are denoted by c

d , where c = (c1, . . . , cn+k) ∈ (x, u]n+k and d = (d1, . . . , dn−k) ∈ [y, v)n−k.
Similarly, we denote by

{
(x,v)
[y,u]

}
n±k

the set of arrays of the form

x < c1 < c2 < · · · < cn+k < v
y ≤ d1 < d2 < · · · < dn−k ≤ u

.
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The reason two-rowed arrays are useful for our problem is that elements of
{

(x,u]
[y,v)

}
n±0

,
which we denote simply by

{
(x,u]
[y,v)

}
n
, encode lattice paths in P(x,y)→(u,v). This is because

such paths are uniquely determined by the coordinates of their valleys. There exists a path
in P(x,y)→(u,v) whose valleys are at coordinates (c1, d1), (c2, d2), . . . , (cn, dn) if and only if

x < c1 < c2 < · · · < cn ≤ u and y ≤ d1 < d2 < · · · < dn < v,

that is, c = (c1, . . . , cn) ∈ (x, u]n and d = (d1, . . . , dn) ∈ [y, v)n. Thus, this encoding is a
bijection

{P ∈ P(x,y)→(u,v) : des(P ) = n} →
{

(x,u]
[y,v)

}
n
. (3.1)

It has the property that, if P is encoded by c
d , then

maj(P ) =
n∑

i=1
(ci + di − x− y) = ∥c∥+ ∥d∥ − n(x + y), (3.2)

where ∥c∥ denotes the sum of the entries of c. Next we enumerate two-rowed arrays with
respect to this statistic.

Lemma 3.1. (i) We have
∑

c∈(x,u]j
q∥c∥ = q(j+1

2 )+jx

[
u− x

j

]

q

,
∑

d∈[y,v)j

q∥d∥ = q(j+1
2 )+j(y−1)

[
v − y

j

]

q

,

∑

c∈(x,v)j

q∥c∥ = q(j+1
2 )+jx

[
v − x− 1

j

]

q

,
∑

d∈[y,u]j
q∥d∥ = q(j+1

2 )+j(y−1)
[
u− y + 1

j

]

q

.

(ii) We have
∑

c
d ∈
{

(x,u]
[y,v)

}
n±k

q∥c∥+∥d∥−n(x+y) = qn2+k(k+x−y+1)
[
u− x
n + k

]

q

[
v − y
n− k

]

q

, (3.3)

∑

c
d ∈
{

(x,v)
[y,u]

}
n±k

q∥c∥+∥d∥−n(x+y) = qn2+k(k+x−y+1)
[
v − x− 1

n + k

]

q

[
u− y + 1

n− k

]

q

. (3.4)

Proof. We prove the first identity in part (i), since the other three are analogous. Writing
c′

i = ci − i− x for 1 ≤ i ≤ j, the left-hand side is equal to
∑

x<c1<c2<···<cj≤u

qc1+···+cj = q(j+1
2 )+jx

∑

0≤c′
1≤c′

2≤···≤c′
j≤u−x−j

qc′
1+···+c′

j .

This sum counts partitions with at most j parts with largest part at most u− x− j, which
is a well-known interpretation of the q-binomial coefficients (see e.g. [1, Thm. 3.1]).

Part (ii) follows easily from part (i) using the simplification
(

n + k + 1
2

)
+
(

n− k + 1
2

)
+ (n + k)x + (n− k)(y− 1)−n(x + y) = n2 + k(k + x− y + 1)

in the exponent of q. □
To see how Lemma 3.1 will be applied, let us first use it to give a proof of Lemma 1.1.
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Proof of Lemma 1.1. The two statements are clearly equivalent, so we prove the second
one. Using the encoding (3.1), together with Equations (3.2) and (3.3) for k = 0, we get

∑

P ∈P(x,y)→(u,v)

tdes(P )qmaj(P ) =
∑

n≥0
tn

∑

c
d ∈
{

(x,u]
[y,v)

}
n

q∥c∥+∥d∥−n(x+y) =
∑

n≥0
tnqn2

[
u− x

n

]

q

[
v − y

n

]

q

.

□
3.2. Crossings in single two-rowed arrays. To encode paths in Ga,b as two-rowed
arrays, we first turn the U and D steps into N and E steps, respectively. Additionally,
to study crossings of the line y = ℓ in the original path, we move the starting point to
(ℓ, 0), so that these crossings become crossings of the diagonal y = x for the resulting path.
Denoting by P≥r

A→B the set of paths in PA→B that cross the diagonal at least r times, this
transformation is a bijection

G≥r,ℓ
a,b → P≥r

(ℓ,0)→(b+ℓ,a). (3.5)
See Figure 4 for an example. In analogy to the definitions for paths in Ga,b crossing a line
y = ℓ, we define upward (resp. downward) crossings of paths in PA→B to be vertices in
the diagonal y = x that are preceded and followed by an N (resp. by an E).

1
0

2
0

3

1

4

4

6

5

7

8

y = x

A

B

P

(2, 0)
(3, 1)

(4, 4)

(6, 5) 1 2 3 4 6 7
0 0 1 4 5 8

< < < < ≤
≤ < < < <

∈
{

(1,7]
[0,8)

}
4

Figure 4. The path in P≥3
(1,0)→(7,8) obtained by applying the transforma-

tion (3.5) to the path in Figure 1, and the corresponding two-rowed array
given by the encoding (3.1), where the crossings have been circled.

Next we show how these crossings of the diagonal can be read from the encoding (3.1)
of the path as a two-rowed array. Indeed, suppose that P ∈ P(x,y)→(u,v) is encoded by
c
d ∈

{
(x,u]
[y,v)

}
n
, and let c0 := x, d0 := y, cn+1 := u, dn+1 := v by convention. An upward

crossing of P occurs when, for some 0 ≤ i ≤ n, the vertex (ci, di) —which is a valley or
the first vertex of the path— lies below the diagonal and the vertex (ci, di+1) —which is
a peak or the last vertex of the path— lies above the diagonal. This happens precisely
when di < ci < di+1 for some 0 ≤ i ≤ n. Similarly, a downward crossing occurs when, for
some 1 ≤ i ≤ n + 1, the vertex (ci−1, di) —which is a peak or the starting point of the
path— lies above the diagonal and the vertex (ci, di) —which is a valley or the last vertex
of the path— lies below the diagonal. This happens precisely when ci−1 < di < ci for some
1 ≤ i ≤ n + 1.
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This description allows us to extend the notion of crossings to two-rowed arrays c
d ∈{

(x,u]
[y,v)

}
n±k

with k ∈ Z, whose rows may have different lengths. Using the convention c0 := x,
d0 := y, cn+k+1 := u, dn−k+1 := v, say that c

d has an upward crossing at ci if 0 ≤ i ≤ n−|k|
and

di < ci < di+1, (3.6)
and that it has a downward crossing at di if 1 ≤ i ≤ n− |k|+ 1 and

ci−1 < di < ci.

For two-rowed arrays of the form c
d ∈

{
(x,v)
[y,u]

}
n±k

, the definition of upward and downward
crossings is the same, now using the convention c0 := x, d0 := y, cn+k+1 := v, dn−k+1 := u.
Figure 5 shows two examples, where the crossings have been circled. As usual, the term
crossings refers to both upward and downward crossings.

0 1 4 5 7 7
2 2 3 5

< < < < ≤
≤ < <

∈
{

(0,7]
[2,5)

}
3±1

(1, 2)

(4, 3)
(0, 2)

(5, 5)

0 3 4 6
0 1 2 5 7 8

< < <

≤ < < < ≤ ∈
{

(0,6)
[0,8]

}
3∓1

(3, 1)

(4, 2)

(0, 0)

(6, 5)

Figure 5. Two two-rowed arrays c
d with their crossings circled, and the

corresponding paths T ( c
d). Note that for the array on the right, c3 = 6 is

not a crossing because it violates the condition i ≤ n− |k|.

In both of the above cases, let T ( c
d) ∈ P(x,y)→(cn−|k|+1,dn−|k|+1) be the path whose valleys

are at coordinates (ci, di) for 1 ≤ i ≤ n − |k| (with the caveat that, in the special case
when c

d ∈
{

(x,v)
[y,u]

}
n

and dn = u, the vertex (cn, dn) is not actually a valley of this path).
Then the upward and downward crossings of the two-rowed array c

d can be identified with
the upward and downward crossings of T ( c

d); see the examples in Figure 5. Note that
T ( c

d) is essentially the path corresponding to the two-rowed array obtained by truncating
the longer row of c

d so that both rows have equal length. To be precise, this path depends
not only on c

d but also on the endpoints x, y, u, v,
Throughout the paper, the rth crossing of a two-rowed array refers to the rth crossing

from the left, in the order in which the entries are placed, namely y, x, d1, c1, d2, c2, . . . We
note that this convention is different from the one used in [3], where path crossings were
numbered from the right. The unusual convention in [3] was needed because the path
bijections in that paper, in order to track the major index, changed the portion of the
paths to the left of a crossing. On the other hand, the notation in this paper becomes
slightly simpler by defining bijections for two-rowed arrays (in Sections 3.3 and 4.3) that
change the portion of the arrays to the right of a crossing instead.



148 S. Elizalde

For nonnegative r, the superscript ≥r on a set of two-rowed arrays denotes the subset
of those that have at least r crossings. When r ≥ 1, a symbol ↑ (resp. ↓) next to this
superscript denotes the subset where the rth crossing is an upward (resp. downward)
crossing. For example,

{
(x,u]
[y,v)

}≥r↑
n±k

consists of two-rowed arrays in
{

(x,u]
[y,v)

}≥r

n±k
where the rth

crossing is an upward crossing. In the case r = 0, we simply define
{

(x,u]
[y,v)

}≥0↑
n±k

=
{

(x,u]
[y,v)

}≥0↓
n±k

=
{

(x,u]
[y,v)

}≥0

n±k
=
{

(x,u]
[y,v)

}
n±k

(3.7)

by convention.
The encoding (3.1) restricts to a bijection

{P ∈ P≥r
(x,y)→(u,v) : des(P ) = n} →

{
(x,u]
[y,v)

}≥r

n
. (3.8)

Composing this with the bijection (3.5) and using Equation (3.2), it follows that

G≥r,ℓ
a,b (t, q) =

∑

n≥0
tn

∑

c
d ∈
{

(x,u]
[y,v)

}≥r

n

q∥c∥+∥d∥−n(x+y), (3.9)

where (x, y) = (ℓ, 0) and (u, v) = (b + ℓ, a).

To prove Theorem 2.1, we will construct bijections between
{

(x,u]
[y,v)

}≥r

n
and sets of the

form
{

(x,u]
[y,v)

}
n±k

or
{

(x,v)
[y,u]

}
n±k

for some k ∈ Z, which will depend on the relations between x

and y and between u and v, and then apply Lemma 3.1.

Lemma 3.2. Let r ≥ 1, and let c
d be a two-rowed array in either

{
(x,u]
[y,v)

}≥r

n±k
or
{

(x,v)
[y,u]

}≥r

n±k
.

If x > y or x = y = d1, then the rth crossing of c
d is an upward crossing if r is odd, and a

downward crossing if r is even.
If x < y or x = y < d1, then the rth crossing of c

d is a downward crossing if r is odd, and
an upward crossing if r is even.

Proof. As noted above, upward and downward crossings of c
d are the same as those of

the path T ( c
d) ∈ P(x,y)→(cn−|k|+1,dn−|k|+1). If x > y (resp. x < y), this path starts below

(resp. above) the diagonal, which forces the first crossing to be upward (resp. downward),
with successive crossings alternating between upward and downward. If x = y, then T ( c

d)
starts with an E if y = d1, and with an N if y < d1, from which the same conclusions
follow. □

The next lemma shows that the relationships between x and y and between u and v
often force the number of crossings of a two-rowed array to have a given parity. We use
the notation n∓ s to mean n± (−s).



Counting lattice paths by crossings and major index 149

Lemma 3.3. Let s, m ≥ 0.
(a) If x > y and u < v, then

{
(x,u]
[y,v)

}≥2m+1

n±s
=
{

(x,u]
[y,v)

}≥2m+1↑
n±s

=
{

(x,u]
[y,v)

}≥2m↓
n±s

=
{

(x,u]
[y,v)

}≥2m

n±s
, (3.10)

{
(x,v)
[y,u]

}≥2m+2

n∓s
=
{

(x,v)
[y,u]

}≥2m+2↓
n∓s

=
{

(x,v)
[y,u]

}≥2m+1↑
n∓s

=
{

(x,v)
[y,u]

}≥2m+1

n∓s
. (3.11)

(b) If x > y and u > v, then
{

(x,u]
[y,v)

}≥2m+2

n∓s
=
{

(x,u]
[y,v)

}≥2m+2↓
n∓s

=
{

(x,u]
[y,v)

}≥2m+1↑
n∓s

=
{

(x,u]
[y,v)

}≥2m+1

n∓s
, (3.12)

{
(x,v)
[y,u]

}≥2m+1

n±s
=
{

(x,v)
[y,u]

}≥2m+1↑
n±s

=
{

(x,v)
[y,u]

}≥2m↓
n±s

=
{

(x,v)
[y,u]

}≥2m

n±s
. (3.13)

(c) If x < y and u < v, then
{

(x,u]
[y,v)

}≥2m+2

n±s
=
{

(x,u]
[y,v)

}≥2m+2↑
n±s

=
{

(x,u]
[y,v)

}≥2m+1↓
n±s

=
{

(x,u]
[y,v)

}≥2m+1

n±s
, (3.14)

{
(x,v)
[y,u]

}≥2m+1

n∓s
=
{

(x,v)
[y,u]

}≥2m+1↓
n∓s

=
{

(x,v)
[y,u]

}≥2m↑
n∓s

=
{

(x,v)
[y,u]

}≥2m

n∓s
. (3.15)

(d) If x < y and u > v, then
{

(x,u]
[y,v)

}≥2m+1

n∓s
=
{

(x,u]
[y,v)

}≥2m+1↓
n∓s

=
{

(x,u]
[y,v)

}≥2m↑
n∓s

=
{

(x,u]
[y,v)

}≥2m

n∓s
, (3.16)

{
(x,v)
[y,u]

}≥2m+2

n±s
=
{

(x,v)
[y,u]

}≥2m+2↑
n±s

=
{

(x,v)
[y,u]

}≥2m+1↓
n±s

=
{

(x,v)
[y,u]

}≥2m+1

n±s
. (3.17)

(e) If x > y and u = v, then (3.10)–(3.12) hold for s ≥ 1, and (3.13) holds for s ≥ 0.
(f) If x < y and u = v, then (3.14)–(3.16) hold for s ≥ 1, and (3.17) holds for s ≥ 0.
(g) Statements (a), (b), (e) also hold if we replace x > y with x = y and restrict to

two-rowed arrays c
d with y = d1.

Proof. In each equation, the outer equalities follow from Lemma 3.2 (using the conven-
tion (3.7) as needed), and the left-hand side is trivially contained in the right-hand side. To
prove the reverse containment, we will show that the parity of the number of crossings of
the relevant two-rowed arrays is determined by the relation between x and y and between
u and v in each case.

Recall that if c
d is a two-rowed array in either

{
(x,u]
[y,v)

}
n±k

or
{

(x,v)
[y,u]

}
n±k

, for some k ∈ Z,
then T ( c

d) is a path from (x, y) to (cn−|k|+1, dn−|k|+1) which has the same upward and
downward crossings as c

d . The parity of the number of crossings is determined by what
side of the diagonal the endpoints of the path are on. If x > y, T ( c

d) starts below the
diagonal; if x < y, it starts above the diagonal; and if x = y = d1, it starts with an E
leaving the diagonal, so it behaves as in the x > y case.

Suppose first that c
d ∈

{
(x,u]
[y,v)

}
n±s

, where s ≥ 0 and u < v. Then the last vertex of T ( c
d) is

(cn−s+1, v), which lies above the diagonal, since cn−s+1 ≤ u < v. Thus, if x > y, then T ( c
d)

starts below the diagonal and ends above the diagonal, so it must have an odd number of
crossings, proving Equation (3.10). If x = y = d1, the same conclusion holds. On the other
hand, if x < y, then T ( c

d) starts and ends above the diagonal, so it must have an even
number of crossings, proving Equation (3.14). Modifying the hypotheses so that s ≥ 1 and
u ≥ v, the last vertex of T ( c

d) still lies above the diagonal, since cn−s+1 < cn−s+2 ≤ u ≤ v,
so Equations (3.10) and (3.14) also hold in this case.
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If c
d ∈

{
(x,v)
[y,u]

}
n∓s

, where s ≥ 0 and u < v, then the last vertex of T ( c
d) is (v, dn−s+1),

which lies below the diagonal, since dn−s+1 ≤ u < v. Thus, T ( c
d) must have an even

number of crossings if x > y or x = y = d1, proving Equation (3.11), and an odd number
of crossings if x < y, proving Equation (3.15). These two equations still hold with the
modified hypotheses s ≥ 1 and u ≤ v, since dn−s+1 < dn−s+2 ≤ u ≤ v in this case, so the
last vertex of T ( c

d) still lies below the diagonal.
If c

d ∈
{

(x,u]
[y,v)

}
n∓s

, where s ≥ 0 and u > v, then the last vertex of T ( c
d) is (u, dn−s+1),

which lies below the diagonal, since dn−s+1 ≤ v < u. This vertex also lies below the diagonal
when s ≥ 1 and u ≥ v, since dn−s+1 < dn−s+2 ≤ v ≤ u. This proves Equations (3.12)
and (3.16).

If c
d ∈

{
(x,v)
[y,u]

}
n±s

, where s ≥ 0 and u > v, then the last vertex of T ( c
d) is (cn−s+1, u),

which lies above the diagonal, since cn−s+1 ≤ v < u. This vertex also lies above the
diagonal when s ≥ 1 and u ≥ v, since cn−s+1 < cn−s+2 ≤ v ≤ u. Finally, when s = 0 and
u = v, the path T ( c

d) ends on the diagonal (at (v, u)), but its last step is an E step, since
cn−s < v. This proves Equations (3.13) and (3.17) for all s ≥ 0 and u ≥ v. □

3.3. The bijections αr and βr. We are almost ready to define the key bijections αr

and βr. These are reminiscent of the bijections σr and τr defined in [3] for paths. An
important difference, however, is that the image by βr of a two-rowed array that encodes
a path does not encode a path in general, so one cannot view βr as a map on paths.

Let c
d be a two-rowed array in either

{
(x,u]
[y,v)

}
n±k

or
{

(x,v)
[y,u]

}
n±k

. We say that a crossing of
c
d at ci (resp. di) is proper if ci /∈ {u, v} (resp. di /∈ {u, v}).

For r ≥ 1, the map αr applies to two-rowed arrays c
d whose rth crossing is a proper

upward crossing, and it swaps the parts of the top and the bottom rows of the array to
the right of this crossing. Schematically, if the rth crossing is at ci, we have

· · ·x

· · ·y

ci · · ·
· · ·di

ci+1

di+1

u

v

αr · · ·x

· · ·y

ci · · ·
· · ·di

di+1

ci+1

v

u

The properness of the crossing guarantees that ci+1 exists and that ci < ci+1. Additionally,
we have ci < di+1 and di < ci+1, so the rows of αr( c

d) are increasing. The two-rowed array
αr( c

d) has a crossing at ci, since di < ci < ci+1, and this crossing is still proper. This is
in fact the rth crossing of αr( c

d), because the portion of the arrays to the left of ci is not
affected by αr. It follows that αr is an involution.

Similarly, the map βr applies to two-rowed arrays c
d whose rth crossing is a proper

downward crossing, and it also swaps the top and the bottom rows of the array to the
right of this crossing. Schematically, if the rth crossing is at di, we have

· · ·x

· · ·y di

· · ·
· · ·

ci−1 ci

di+1

u

v

βr · · ·x

· · ·y di

· · ·
· · ·

ci−1 di+1

ci

v

u

Again, the rth crossing of βr( c
d) is still at di and is a proper crossing, and the map βr is

an involution.
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Lemma 3.4. Let x, y, u, v, k ∈ Z, n ≥ 0 and r ≥ 1, satisfying that, if u > v, then k ≤ 0,
and if u < v, then k ≥ 1. The map αr restricts to a bijection

{
(x,u]
[y,v)

}≥r↑
n±k

αr←→
{

(x,v)
[y,u]

}≥r↑
n∓k

,

and the map βr restricts to a bijection
{

(x,u]
[y,v)

}≥r↓
n±(k−1)

βr←→
{

(x,v)
[y,u]

}≥r↓
n∓k

.

Both αr and βr preserve the sum of the entries of the arrays.

Proof. The conditions on k, which depend on the relationship between u and v, guarantee
that the rth crossing of a two-rowed array in any of the four sets above is always proper, and
so the maps αr and βr are defined. Indeed, an improper upward crossing of c

d ∈
{

(x,u]
[y,v)

}
n±k

at ci could only occur if u = ci < di+1 ≤ v and k ≤ 0. Arrays c
d ∈

{
(x,v)
[y,u]

}
n∓k

cannot have
improper upward crossings, since ci = v is incompatible with i ≤ n− |k|. An improper
downward crossing of c

d ∈
{

(x,u]
[y,v)

}
n±(k−1)

at di could only occur if v = di < ci ≤ u and

k − 1 ≥ 0. And an improper downward crossing of c
d ∈

{
(x,v)
[y,u]

}
n∓k

at di could only occur if
u = di < ci ≤ v and k ≤ 0.

Having already seen that αr and βr are involutions, it remains to describe their images.
Given c

d ∈
{

(x,u]
[y,v)

}≥r↑
n±k

whose rth crossing is at ci, if we write c
d as

x c1 c2 · · ·< < < < <ci < <ci+1 · · · cn+k≤ u

y ≤d1 d2 · · ·< < < <di < < < <di+1 di+2 · · · dn−k v
<

<

,

then αr( c
d) is the two-rowed array

x c1 c2 · · ·< < < < <ci

< <ci+1 · · · cn+k≤ uy ≤d1 d2 · · ·< < < <di

< < < <di+1 di+2 · · · dn−k v
<

<

,

which has an upward crossing at ci and thus belongs to
{

(x,v)
[y,u]

}≥r↑
n∓k

.

Similarly, given c
d ∈

{
(x,u]
[y,v)

}≥r↓
n±(k−1)

whose rth crossing is at di, if we write c
d as

x c1 c2 · · ·< < < < <ci−1 ci < < <ci+1 · · · cn+k−1≤ u

y ≤d1 d2 · · ·< < < <di di+1 < < <· · · dn−k+1 v
<

<
,

then βr( c
d) is the two-rowed array

x c1 c2 · · ·< < < < <ci−1

ci < < <ci+1 · · · cn+k−1≤ uy ≤d1 d2 · · ·< < < <di

di+1 < < <· · · dn−k+1 v
<

<
,

which has a downward crossing at di and thus belongs to
{

(x,v)
[y,u]

}≥r↓
n∓k

.
It is clear by construction that both αr and βr preserve the sum of the entries of the

arrays. □
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3.4. Proof of Theorem 2.1. For a, b, r ≥ 0 and ℓ ∈ Z, we interpret elements of G≥r,ℓ
a,b

as paths in P≥r
(x,y)→(u,v), where (x, y) = (ℓ, 0) and (u, v) = (b + ℓ, a), using the transforma-

tion (3.5). For any n ≥ 0, the subset of paths having n descents is in bijection with the
set

{
(x,u]
[y,v)

}≥r

n
, using the encoding (3.8).

The proof is divided into nine cases according to whether the paths start below (0 < ℓ,
equivalently x > y), on (0 = ℓ, equivalently x = y), or above (0 > ℓ, equivalently x < y)
the line being crossed, and whether they end below (ℓ > a − b, equivalently u > v), on
(ℓ = a − b, equivalently u = v), or above (ℓ < a − b, equivalently u < v) this line. In
each case, we determine G≥r,ℓ

a,b (t, q) by first using Equation (3.9) to rewrite it in terms
of two-rowed arrays, then repeatedly applying the maps from Lemma 3.4 to construct
bijections between

{
(x,u]
[y,v)

}≥r

n
and certain sets of two-rowed arrays with no requirement on

the number of crossings, and finally using Lemma 3.1. The cases are labeled as in [3] for
consistency, but we will prove them in a slightly different order.

Case I: 0 < ℓ < a− b, equivalently x > y and u < v. By Equation (3.10) with s = 0,
{

(x,u]
[y,v)

}≥2m+1

n
=
{

(x,u]
[y,v)

}≥2m

n
,

and so G≥2m+1,ℓ
a,b (t, q) = G≥2m,ℓ

a,b (t, q). Using Lemmas 3.3(a) and 3.4, noting that the
condition k ≥ 1 in the latter holds at each step, we construct a composition of bijections
α1 ◦ β2 ◦ · · · ◦ α2m−1 ◦ β2m:
{

(x,u]
[y,v)

}≥2m

n
=
{

(x,u]
[y,v)

}≥2m↓
n

β2m−→
{

(x,v)
[y,u]

}≥2m↓
n∓1

=
{

(x,v)
[y,u]

}≥2m−1↑
n∓1

α2m−1−→
{

(x,u]
[y,v)

}≥2m−1↑
n±1

=
{

(x,u]
[y,v)

}≥2m−2↓
n±1

β2m−2−→ · · · α1−→
{

(x,u]
[y,v)

}≥1↑
n±m

=
{

(x,u]
[y,v)

}≥0↓
n±m

=
{

(x,u]
[y,v)

}
n±m

. (3.18)

See Figure 6 for an example. Since these bijections preserve the sum of the entries of the
two-rowed arrays, Equation (3.3) gives

∑

c
d ∈
{

(x,u]
[y,v)

}≥2m

n

q∥c∥+∥d∥−n(x+y) =
∑

c
d ∈
{

(x,u]
[y,v)

}
n±m

q∥c∥+∥d∥−n(x+y)

= qn2+m(m+x−y+1)
[

u− x
n + m

]

q

[
v − y
n−m

]

q

= qn2+m(m+ℓ+1)
[

a
n−m

]

q

[
b

n + m

]

q

. (3.19)

Using Equation (3.9), this proves Equation (2.1).

{
(1,7]
[0,8)

}≥2

4
=
{

(1,7]
[0,8)

}≥2↓
4

β2−→
{

(1,8)
[0,7]

}≥2↓
4∓1

=
{

(1,8)
[0,7]

}≥1↑
4∓1

α1−→
{

(1,7]
[0,8)

}≥1↑
4±1

=
{

(1,7]
[0,8)

}
4±1

1 2 3 4 6 7
0 0 1 4 5 8

< < < < ≤
≤ < < < <

1 2 3 4 8
0 0 1 4 5 6 7

< < < <

≤ < < < < ≤
1 2 3 4 5 6 7

0 0 1 4 8
< < < < < ≤
≤ < < <

Figure 6. An example of the bijection (3.18), where (x, y) = (1, 0), (u, v) =
(7, 8), m = 1 and n = 4.



Counting lattice paths by crossings and major index 153

Case II: 0 > ℓ > a − b, equivalently x < y and u > v. Similarly to Case I, the
equality G≥2m+1,ℓ

a,b (t, q) = G≥2m,ℓ
a,b (t, q) follows now from Equation (3.16) with s = 0. Again

Lemmas 3.3(d) and 3.4, noting that the condition k ≤ 0 holds at each step, allow us to
build a sequence of bijections β1 ◦ α2 ◦ · · · ◦ β2m−1 ◦ α2m:

{
(x,u]
[y,v)

}≥2m

n
=
{

(x,u]
[y,v)

}≥2m↑
n

α2m−→
{

(x,v)
[y,u]

}≥2m↑
n

=
{

(x,v)
[y,u]

}≥2m−1↓
n

β2m−1−→
{

(x,u]
[y,v)

}≥2m−1↓
n∓1

=
{

(x,u]
[y,v)

}≥2m−2↑
n∓1

α2m−2−→ · · · β1−→
{

(x,u]
[y,v)

}≥1↓
n∓m

=
{

(x,u]
[y,v)

}≥0↑
n∓m

=
{

(x,u]
[y,v)

}
n∓m

.

Then, by Equation (3.3),

∑

c
d ∈
{

(x,u]
[y,v)

}≥2m

n

q∥c∥+∥d∥−n(x+y) =
∑

c
d ∈
{

(x,u]
[y,v)

}
n∓m

q∥c∥+∥d∥−n(x+y)

= qn2−m(−m+x−y+1)
[

u− x
n−m

]

q

[
v − y
n + m

]

q

= qn2+m(m−ℓ−1)
[

a
n + m

]

q

[
b

n−m

]

q

, (3.20)

proving Equation (2.2).

Case III: 0 > ℓ < a − b, equivalently x < y and u < v. The equality G≥2m+2,ℓ
a,b (t, q) =

G≥2m+1,ℓ
a,b (t, q) follows now from Equation (3.14) with s = 0. Lemmas 3.3(c) and 3.4

produce a sequence of bijections β1 ◦ α2 ◦ · · · ◦ β2m+1:
{

(x,u]
[y,v)

}≥2m+1

n
=
{

(x,u]
[y,v)

}≥2m+1↓
n

β2m+1−→
{

(x,v)
[y,u]

}≥2m+1↓
n∓1

=
{

(x,v)
[y,u]

}≥2m↑
n∓1

α2m−→
{

(x,u]
[y,v)

}≥2m↑
n±1

=
{

(x,u]
[y,v)

}≥2m−1↓
n±1

β2m−1−→ · · · β1−→
{

(x,v)
[y,u]

}≥1↓
n∓(m+1)

=
{

(x,v)
[y,u]

}≥0↑
n∓(m+1)

=
{

(x,v)
[y,u]

}
n∓(m+1)

.

By Equation (3.4),
∑

c
d ∈
{

(x,u]
[y,v)

}≥2m+1

n

q∥c∥+∥d∥−n(x+y) =
∑

c
d ∈
{

(x,v)
[y,u]

}
n∓(m+1)

q∥c∥+∥d∥−n(x+y)

= qn2−(m+1)(−m+x−y)
[

v − x− 1
n−m− 1

]

q

[
u− y + 1
n + m + 1

]

q

= qn2+(m+1)(m−ℓ)
[

a− ℓ− 1
n−m− 1

]

q

[
b + ℓ + 1

n + m + 1

]

q

, (3.21)

proving Equation (2.3).
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Case IV: 0 < ℓ > a−b, equivalently x > y and u > v. Here G≥2m+2,ℓ
a,b (t, q) = G≥2m+1,ℓ

a,b (t, q)
because of Equation (3.12) with s = 0. Lemmas 3.3(b) and 3.4 give a sequence of bijections
α1 ◦ β2 ◦ · · · ◦ α2m+1:

{
(x,u]
[y,v)

}≥2m+1

n
=
{

(x,u]
[y,v)

}≥2m+1↑
n

α2m+1−→
{

(x,v)
[y,u]

}≥2m+1↑
n

=
{

(x,v)
[y,u]

}≥2m↓
n

β2m−→
{

(x,u]
[y,v)

}≥2m↓
n∓1

=
{

(x,u]
[y,v)

}≥2m−1↑
n∓1

α2m−1−→ · · · α1−→
{

(x,v)
[y,u]

}≥1↑
n±m

=
{

(x,v)
[y,u]

}≥0↓
n±m

=
{

(x,v)
[y,u]

}
n±m

.

Thus, using Equation (3.4), we get Equation (2.4):
∑

c
d ∈
{

(x,u]
[y,v)

}≥2m+1

n

q∥c∥+∥d∥−n(x+y) =
∑

c
d ∈
{

(x,v)
[y,u]

}
n±m

q∥c∥+∥d∥−n(x+y)

= qn2+m(m+x−y+1)
[
v − x− 1

n + m

]

q

[
u− y + 1

n−m

]

q

= qn2+m(m+ℓ+1)
[
a− ℓ− 1

n + m

]

q

[
b + ℓ + 1
n−m

]

q

.

(3.22)

Case VII: 0 < ℓ = a− b, equivalently x > y and u = v. In this case, the parity of the
total number of crossings is not forced by the endpoints, so we consider the cases r = 2m
and r = 2m + 1 separately. The case r = 2m is proved like Case I, constructing a sequence
of bijections α1 ◦ β2 ◦ · · · ◦ α2m−1 ◦ β2m:

{
(x,u]
[y,v)

}≥2m

n
=
{

(x,u]
[y,v)

}≥2m↓
n

−→
{

(x,u]
[y,v)

}≥1↑
n±m

=
{

(x,u]
[y,v)

}≥0↓
n±m

=
{

(x,u]
[y,v)

}
n±m

, (3.23)

where we use Lemma 3.2 for the left equality, and Lemmas 3.3(e) and 3.4 to compose the
bijections. Equation (2.9) now follows using Equation (3.19) again.

The case r = 2m + 1 is proved like Case IV, constructing a sequence of bijections
α1 ◦ β2 ◦ · · · ◦ α2m+1:

{
(x,u]
[y,v)

}≥2m+1

n
=
{

(x,u]
[y,v)

}≥2m+1↑
n

−→
{

(x,v)
[y,u]

}≥1↑
n±m

=
{

(x,v)
[y,u]

}≥0↓
n±m

=
{

(x,v)
[y,u]

}
n±m

. (3.24)

Now we use Equation (3.22) and the fact that ℓ = a− b to prove Equation (2.10).

Case VIII: 0 > ℓ = a − b, equivalently x < y and u = v. This case is analogous to
Case VII. When r = 2m, we use the same sequence bijections as in Case II,

β1 ◦ α2 ◦ · · · ◦ β2m−1 ◦ α2m :
{

(x,u]
[y,v)

}≥2m

n
−→

{
(x,u]
[y,v)

}
n∓m

, (3.25)

using Lemma 3.3(f). Equation (2.11) now follows from Equation (3.20).
When r = 2m + 1, we use the same sequence of bijections as in Case III,

β1 ◦ α2 ◦ · · · ◦ β2m+1 :
{

(x,u]
[y,v)

}≥2m+1

n
−→

{
(x,v)
[y,u]

}
n∓(m+1)

. (3.26)

Equation (2.12) follows from Equation (3.21) after the substitution ℓ = a− b.
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Case V: 0 = ℓ < a − b, equivalently x = y and u < v. We will reduce this case to
Case VIII by applying an involution ν on two-rowed arrays that changes the sign of each
entry, reverses each row (so that the negated entries increase from left to right), and swaps
the top and the bottom rows. The map ν restricts to bijections

{
(x,u]
[y,v)

}
n±k

ν←→
{

(−v,−y]
[−u,−x)

}
n∓k

,
{

(x,v)
[y,u]

}
n±k

ν←→
{

[−u,−y]
(−v,−x)

}
n∓k

(3.27)

for any k ∈ Z. Additionally, in the case k = 0, it restricts to a bijection
{

(x,u]
[y,v)

}≥r

n

ν←→
{

(−v,−y]
[−u,−x)

}≥r

n
, (3.28)

since it preserves the number of crossings; specifically, upward crossings turn into downward
crossings, and vice versa. Indeed, the two-rowed array

x < c1 < c2 < · · · < cn ≤ u
y ≤ d1 < d2 < · · · < dn < v

is mapped by ν to

−v < −dn < −dn−1 < · · · < −d1 ≤ −y
−u ≤ −cn < −cn−1 < · · · < −c1 < −x

.

Thus, the first array has an upward crossing at ci if and only if the second one has a
downward crossing at −ci, since condition (3.6) is equivalent to −di+1 < −ci < −di, and
similarly for the other type of crossing. In terms of the corresponding lattice paths given
by the encoding (3.8), the involution ν translates to a reflection along the line x + y = 0.

The conditions x = y and u < v are equivalent to −v < −u and −y = −x, so we can
apply the bijections from Case VIII to the set on the right-hand side of (3.28). When
r = 2m, Equation (3.25) gives a bijection

β1 ◦ α2 ◦ · · · ◦ β2m−1 ◦ α2m :
{

(−v,−y]
[−u,−x)

}≥2m

n
−→

{
(−v,−y]
[−u,−x)

}
n∓m

.

Conjugating by ν, we get a bijection

ν ◦ β1 ◦ α2 ◦ · · · ◦ β2m−1 ◦ α2m ◦ ν :
{

(x,u]
[y,v)

}≥2m

n
−→

{
(x,u]
[y,v)

}
n±m

that preserves the sum of the entries. Using Equation (3.19) with ℓ = 0, we deduce
Equation (2.5).

When r = 2m + 1, Equation (3.26) gives a bijection

β1 ◦ α2 ◦ · · · ◦ β2m+1 :
{

(−v,−y]
[−u,−x)

}≥2m+1

n
−→

{
(−v,−x)
[−u,−y]

}
n∓(m+1)

,

and conjugating by ν we get

ν ◦ β1 ◦ α2 ◦ · · · ◦ β2m+1 ◦ ν :
{

(x,u]
[u,v)

}≥2m

n
−→

{
[y,u]
(x,v)

}
n±(m+1)

.

Swapping the top and bottom rows and using Equation (3.21) with ℓ = 0, we deduce
Equation (2.6) .
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Case VI: 0 = ℓ > a− b, equivalently x = y and u > v. By applying the map ν, this case
reduces to Case VII, since the conditions x = y and u > v are equivalent to −v > −u and
−y = −x. When r = 2m, conjugating the bijection (3.23) with ν gives a bijection

ν ◦ α1 ◦ β2 ◦ · · · ◦ α2m−1 ◦ β2m ◦ ν :
{

(x,u]
[y,v)

}≥2m

n
−→

{
(x,u]
[y,v)

}
n∓m

.

Using Equation (3.20) with ℓ = 0, we deduce Equation (2.7).
When r = 2m + 1, conjugating the bijection (3.24) with ν gives a bijection

ν ◦ α1 ◦ β2 ◦ · · · ◦ α2m+1 ◦ ν :
{

(x,u]
[y,v)

}≥2m+1

n
−→

{
[y,u]
(x,v)

}
n∓m

.

Swapping the top and bottom rows and using Equation (3.22) with ℓ = 0, we deduce
Equation (2.8).

Case IX: 0 = ℓ = a− b, equivalently x = y and u = v. We consider two cases according
to the first step of the path. Via the bijection (3.8), paths in the left-hand side starting
with an N are encoded by two-rowed arrays c

d ∈
{

(x,u]
[y,v)

}≥r

n
with y < d1; equivalently, by

c
d ∈

{
(x,u]

[y+1,v)

}≥r

n
. Note that replacing the lower bound y with y + 1 does not affect the

number of crossings of the array, since c
d cannot have a crossing at c0 in either case. Since

x < y +1, the conditions in Case VIII hold with y +1 playing the role of y. Equation (3.25)
gives a bijection

β1 ◦ α2 ◦ · · · ◦ β2m−1 ◦ α2m :
{

(x,u]
[y+1,v)

}≥2m

n
−→

{
(x,u]

[y+1,v)

}
n∓m

.

Then, using Equation (3.3), it follows that
∑

c
d ∈
{

(x,u]
[y+1,v)

}≥2m

n

q∥c∥+∥d∥−n(x+y) = qn
∑

c
d ∈
{

(x,u]
[y+1,v)

}
n∓m

q∥c∥+∥d∥−n(x+y+1)

= qnqn2−m(−m+x−y)
[

u− x
n−m

]

q

[
v − y − 1

n + m

]

q

= qn2+n+m2
[

a
n−m

]

q

[
a− 1
n + m

]

q

. (3.29)

Similarly, Equation (3.26) gives a bijection

β1 ◦ α2 ◦ · · · ◦ β2m+1 :
{

(x,u]
[y+1,v)

}≥2m+1

n
−→

{
(x,v)

[y+1,u]

}
n∓(m+1)

,

and Equation (3.4) implies that
∑

c
d ∈
{

(x,u]
[y+1,v)

}≥2m+1

n

q∥c∥+∥d∥−n(x+y) = qn
∑

c
d ∈
{

(x,v)
[y+1,u]

}
n∓(m+1)

q∥c∥+∥d∥−n(x+y+1)

= qnqn2−(m+1)(−m−1+x−y)
[

v − x− 1
n−m− 1

]

q

[
u− y

n + m + 1

]

q

= qn2+n+(m+1)2
[

a− 1
n−m− 1

]

q

[
a

n + m + 1

]

q

. (3.30)
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On the other hand, paths in the left-hand side of (3.8) starting with an E are encoded
by two-rowed arrays c

d ∈
{

(x,u]
[y,v)

}≥r

n
with y = d1. Let us use the notation

{
(x,u]n
Jy,v)n

}≥r
for such

arrays, where the double bracket indicates that the first element in the bottom row is
forced to equal its lower bound. By Lemma 3.3(g), we can use the same bijections as in
Case VII, noting that the condition y = d1 is preserved when applying the maps from
Lemma 3.4. For r = 2m, we get a bijection

α1 ◦ β2 ◦ · · · ◦ α2m−1 ◦ β2m :
{

(x,u]
Jy,v)

}≥2m

n
−→

{
(x,u]
Jy,v)

}
n±m

,

and Equation (3.3) implies that
∑

c
d ∈
{

(x,u]
Jy,v)

}≥2m

n

q∥c∥+∥d∥−n(x+y) =
∑

c
d ∈
{

(x,u]
Jy,v)

}
n±m

q∥c∥+∥d∥−n(x+y)

=
∑

c
d ∈
{

(x,u]
[y,v)

}
n±m

q∥c∥+∥d∥−n(x+y) − qn
∑

c
d ∈
{

(x,u]
[y+1,v)

}
n±m

q∥c∥+∥d∥−n(x+y+1)

= qn2+m(m+x−y+1)
[

u− x
n + m

]

q

[
v − y
n−m

]

q

− qnqn2+m(m+x−y)
[

u− x
n + m

]

q

[
v − y − 1

n−m

]

q

= qn2+m(m+1)
[

a
n + m

]

q

[
a

n−m

]

q

− qnqn2+m2
[

a
n + m

]

q

[
a− 1
n−m

]

q

= qn2+m(m+1)
[

a
n + m

]

q



[

a
n−m

]

q

− qn−m

[
a− 1
n−m

]

q




= qn2+m(m+1)
[

a
n + m

]

q

[
a− 1

n−m− 1

]

q

. (3.31)

Similarly, for r = 2m + 1, we get a bijection (see the example in Figure 7):

α1 ◦ β2 ◦ · · · ◦ α2m+1 :
{

(x,u]
Jy,v)

}≥2m+1

n
−→

{
(x,v)
Jy,u]

}
n±m

. (3.32)

{
(0,7]
J0,7)

}≥3

3
=
{

(0,7]
J0,7)

}≥3↑
3

α3→
{

(0,7)
J0,7]

}≥3↑
3

=
{

(0,7)
J0,7]

}≥2↓
3

α1→
{

(0,7]
J0,7)

}≥2↓
3∓1

=
{

(0,7]
J0,7)

}≥1↑
3∓1

α1→
{

(0,7)
J0,7]

}≥1↑
3±1

=
{

(0,7)
J0,7]

}
3±1

0 2 3 6 7
0 0 3 5 7

< < < ≤
= < < <

0 2 3 6 7
0 0 3 5 7

< < < <
= < < ≤

0 2 3 7
0 0 3 5 6 7

< < ≤
= < < < <

0 2 3 5 6 7
0 0 3 7

< < < < <
= < ≤

Figure 7. An example of the bijection (3.32), where (x, y) = (0, 0), (u, v) =
(7, 7), m = 1 and n = 3.
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Then, Equation (3.4) implies that
∑

c
d ∈
{

(x,u]
Jy,v)

}≥2m+1

n

q∥c∥+∥d∥−n(x+y) =
∑

c
d ∈
{

(x,v)
Jy,u]

}
n±m

q∥c∥+∥d∥−n(x+y)

=
∑

c
d ∈
{

(x,v)
[y,u]

}
n±m

q∥c∥+∥d∥−n(x+y) − qn
∑

c
d ∈
{

(x,v)
[y+1,u]

}
n±m

q∥c∥+∥d∥−n(x+y+1)

= qn2+m(m+x−y+1)
[
v − x− 1

n + m

]

q

[
u− y + 1

n−m

]

q

− qnqn2+m(m+x−y)
[
v − x− 1

n + m

]

q

[
u− y
n−m

]

q

= qn2+m(m+1)
[

a− 1
n + m

]

q

[
a + 1
n−m

]

q

− qnqn2+m2
[

a− 1
n + m

]

q

[
a

n−m

]

q

= qn2+m(m+1)
[

a− 1
n + m

]

q

[
a

n−m− 1

]

q

. (3.33)

Adding Equations (3.29) and (3.31) to account for all paths with at least 2m crossings,
we get

∑

c
d ∈
{

(x,u]
[y,v)

}≥2m

n

q∥c∥+∥d∥−n(x+y)

= qn2+m(m+1)


qn−m

[
a

n−m

]

q

[
a− 1
n + m

]

q

+
[

a
n + m

]

q

[
a− 1

n−m− 1

]

q




= qn2+m(m+1) 1− qa−2m

1− qa

[
a

n + m

]

q

[
a

n−m

]

q

,

which proves Equation (2.13).
Similarly, adding Equations (3.30) and (3.33) to account for all paths with at least

2m + 1 crossings, we get

∑

c
d ∈
{

(x,u]
[y,v)

}≥2m+1

n

q∥c∥+∥d∥−n(x+y) = qn2+m(m+1) 1− qa+2(m+1)

1− qa

[
a

n + m + 1

]

q

[
a

n−m− 1

]

q

,

which proves Equation (2.14).
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4. Proofs for paths crossing each other

In this section we prove Theorem 2.2. Using the bijection (3.1), we will encode pairs
of lattice paths as pairs of two-rowed arrays, describe crossings in this setting, and then
define certain bijections on pairs of arrays.

4.1. Pairs of two-rowed arrays. Throughout the section, let k ∈ Z and n ≥ 0, let
{◦, •} = {1, 2}, and let A1 = (x1, y1), A2 = (x2, y2), B1 = (u1, v1), and B2 = (u2, v2) be
four pairs of integers. We consider certain sets of pairs of two-rowed arrays, for which we
introduce the notation

{
(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}
n,k

=
⋃

n1+n2=n

{
(x1,u◦]n1

[y1,v◦)n1+k

}
×
{

(x2,u•]n2
[y2,v•)n2−k

}
. (4.1)

Elements of such sets are denoted by placing two two-rowed arrays side by side, namely
c
d

∣∣∣ef , where c
d ∈

{
(x1,u◦]n1

[y1,v◦)n1+k

}
and e

f ∈
{

(x2,u•]n2
[y2,v•)n2−k

}
, with n1 + n2 = n. When k = 0, the

subscript k will often be omitted.
Applying the encoding (3.1) to each component of a pair of paths, we get a bijection

{(P, Q) ∈ PA1→B◦ × PA2→B• : des(P ) + des(Q) = n} →
{

(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}
n
. (4.2)

See Figure 8 for an example. Suppose that condition (2.15) holds, and let z = x1 + y1 =
x2 + y2. If (P, Q) is encoded by c

d

∣∣∣ef , then

maj(P )+maj(Q) =
n1∑

i=1
(ci+di−x1−y1)+

n2∑

j=1
(ej +fj−x2−y2) = ∥c∥+∥d∥+∥e∥+∥f∥−nz.

(4.3)
Next we adapt Lemma 3.1 to enumerate the sets (4.1) with respect to this statistic.

0

2

3

2

6

4

10

7

2
0

4

5

7

6

8

7

8

8

(3, 2)

(6, 4)

(4, 5)

(7, 6)

(8, 7)

(3, 4)

(6, 6)

(8, 7)

A1

A2

B1

B2

P

Q

0 3 6 10
2 2 4 7

< < ≤
≤ < <

2 3 4 7 8 8
0 2 5 6 7 8

< < < < ≤
≤ < < < <

∈
{

(0,10]
[2,7)

∣∣∣ (2,8]
[0,8)

}
6

Figure 8. The encoding (4.2) applied to the pair of paths from Figure 3,
and the resulting pair of two-rowed arrays, where the crossings have been
circled.
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Lemma 4.1. Suppose that z = x1 + y1 = x2 + y2. We have
∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}
n,k

q∥c∥+∥d∥+∥e∥+∥f∥−nz

= qk(k+x2−x1)


∑

n1≥0
tn1qn1(n1+k)

[
u◦ − x1

n1

]

q

[
v◦ − y1
n1 + k

]

q


×


∑

n2≥0
tn2qn2(n2−k)

[
u• − x2

n2

]

q

[
v• − y2
n2 − k

]

q




= fk,A1,A2,B◦,B•(t, q).

Proof. Using (4.1), the left-hand side expression can be factored as



∑

n1≥0
tn1

∑

c
d ∈
{

(x1,u◦]n1
[y1,v◦)n1+k

} q∥c∥+∥d∥−n1z







∑

n2≥0
tn2

∑

c
d ∈
{

(x2,u•]n2
[y2,v•)n2−k

} q∥c∥+∥d∥−n2z




. (4.4)

For fixed n1, Lemma 3.1(i) gives

∑

c
d ∈
{

(x1,u◦]n1
[y1,v◦)n1+k

} q∥c∥+∥d∥−n1z =

 ∑

c∈(x1,u◦]n1

q∥c∥




 ∑

d∈[y1,v◦)n1+k

q∥d∥


 q−n1(x1+y1)

= qn1(n1+k)+(k
2)+ky1

[
u◦ − x1

n1

]

q

[
v◦ − y1
n1 + k

]

q

, (4.5)

where we used the simplification
(

n1 + 1
2

)
+
(

n1 + k + 1
2

)
+n1x1 +(n1 +k)(y1−1)−n1(x1 +y1) = n1(n1 +k)+

(
k

2

)
+ky1.

Similarly,

∑

c
d ∈
{

(x2,u•]n2
[y2,v•)n2−k

} q∥c∥+∥d∥−n2z = qn2(n2−k)+(k+1
2 )−ky2

[
u• − x2

n2

]

q

[
v• − y2
n2 − k

]

q

. (4.6)

Substituting (4.5) and (4.6) into (4.4) and using that
(

k
2

)
+
(

k+1
2

)
+ k(y1 − y2) =

k(k + x2 − x1), we obtain the stated identity. □
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4.2. Crossings in pairs of two-rowed arrays. Let vertex Vs be a crossing of two paths
P and Q, as defined in Section 2.2. We say that Vs is an upward (resp. downward) crossing
of (P, Q) if the step of P leaving Vs is an N (resp. E); equivalently, if the step of Q
leaving Vs is an E (resp. N).

Crossings of a pair of paths can be read from their encoding (4.2) as a pair of two-
rowed arrays. Indeed, suppose that (P, Q) is encoded by c

d

∣∣∣ef , where c
d ∈

{
(x1,u◦]n1
[y1,v◦)n1

}
and

e
f ∈

{
(x2,u•]n2
[y2,v•)n2

}
, and let c0 := x1, d0 := y1, cn1+1 := u◦, dn1+1 := v◦, e0 := x2, f0 := y2,

en2+1 := u•, fn2+1 := v• by convention. For simplicity, let us assume that A1 ≺ A2
or A1 = A2. Then (P, Q) has an upward crossing at (ci, fj), where 0 ≤ i ≤ n1 and
1 ≤ j ≤ n2 + 1, if all of the following hold:

(i↑) ej−1 ≤ ci < ej and di ≤ fj < di+1,
(ii↑) (ej−1, fj−1, ej−2, fj−2, . . . , e0, f0) <alt (ci, di, ci−1, di−1, . . . , c0, d0) and

(di, ci−1, di−1, ci−2, . . . , c0, d0) <alt (fj, ej−1, fj−1, ej−2, . . . , e0, f0),
where <alt is defined recursively by (a1, a2, a3, . . . ) <alt (b1, b2, b3, . . . ) if either a1 < b1,
or a1 = b1 and (b2, b3, . . . ) <alt (a2, a3, . . . ). Indeed, condition (i↑) states that (ci, fj)
belongs to both P and Q, and that P (resp. Q) leaves this vertex with an N (resp. E).
Condition (ii↑) states that, if V1 is the first vertex of the maximal sequence of consecutive
common vertices ending at (ci, fj), then P (resp. Q) arrives at V1 with an N (resp. E).

Similarly, (P, Q) has a downward crossing at (ej, di), where 1 ≤ i ≤ n1+1 and 0 ≤ j ≤ n2,
if

(i↓) ci−1 ≤ ej < ci and fj ≤ di < fj+1,
(ii↓) (ci−1, di−1, ci−2, di−2, . . . , c0, d0) <alt (ej, fj, ej−1, fj−1, . . . , e0, f0) and

(fj, ej−1, fj−1, ej−2, . . . , c0, d0) <alt (di, ci−1, di−1, ci−2, . . . , e0, f0).
For example, the pair of paths in Figure 8 has a downward crossing at (e1, d2) = (3, 4).
Condition (i↓) states that 3 ≤ 3 < 6 and 2 ≤ 4 < 5, and condition (ii↓) states that
(3, 2, 0, 2) <alt (3, 2, 2, 0) and (2, 2, 0) <alt (4, 3, 2, 0, 2).

Next we generalize the definition of upward and downward crossings to pairs of two-
rowed arrays c

d

∣∣∣ef ∈
{

(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}
n,k

with k ∈ Z. Suppose that c
d ∈

{
(x1,u◦]n1

[y1,v◦)n1+k

}
and

e
f ∈

{
(x2,u•]n2

[y2,v•)n2−k

}
, where n1 + n2 = n, and use the convention c0 := x1, d0 := y1, cn1+1 := u◦,

dn1+k+1 := v◦, e0 := x2, f0 := y2, en2+1 := u•, fn2−k+1 := v•. Let m1 = min(n1, n1 + k)
and m2 = min(n2, n2 − k). Then c

d

∣∣∣ef has an upward crossing at (ci, fj) if 0 ≤ i ≤ m1 and
1 ≤ j ≤ m2 + 1, and conditions (i↑) and (ii↑) hold. Similarly, it has a downward crossing
at (ej, di) if 1 ≤ i ≤ m1 + 1 and 0 ≤ j ≤ m2, and conditions (i↓) and (ii↓) hold.

It is convenient to think of crossings of a pair of two-rowed arrays as crossings of the
pair of paths obtained by truncating the arrays, similarly to what we did in Section 3.2
for single arrays. Let T ( c

d) be the path in P(x1,y1)→(cm1+1,dm1+1) having valleys at positions
(ci, di) for 1 ≤ i ≤ m1, and let T (e

f ) be the path in P(x2,y2)→(em2+1,fm2+1) having valleys at
positions (ej, fj) for 1 ≤ j ≤ m2. Then the upward and downward crossings of c

d

∣∣∣ef can be
identified with the upward and downward crossings of the pair of paths (T ( c

d), T (e
f )). See

Figure 9 for an example. In particular, upward crossings are always at vertices of the form
(ci, fj), and downward crossings are at vertices of the form (ej, di), for some i, j.
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0 3
1 2 5
≤
≤ <

1 2 4 4
0 2 4

< < ≤
≤ <

∈
{

(0,3]
[1,5)

∣∣∣ (1,4]
[0,4)

}
3,1

(2, 2)

(0, 1)

(3, 2)

(1, 0)

(4, 4)

Figure 9. A pair of two-rowed arrays c
d

∣∣∣ef with its crossing circled, and the
corresponding pair of paths (T ( c

d), T (e
f )).

It is clear from this description that there is a natural ordering of the crossings by
increasing x-coordinate, or equivalently, by increasing y-coordinate. As in the case of
single arrays, the rth crossing of a pair of two-rowed arrays will always refer to the rth
crossing in this ordering.

For r ≥ 0, denote by
{

(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}≥r

n,k
the subset of

{
(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}
n,k

consisting of pairs
of arrays that have at least r crossings. The encoding (4.2) restricts to a bijection

{P≥r
A1→B◦,A2→B• : des(P ) + des(Q) = n} →

{
(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}≥r

n
.

Using Equation (4.3), it follows that, if z = x1 + y1 = x2 + y2, then

H≥r
A1→B◦,A2→B•(t, q) =

∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}≥r

n

q∥c∥+∥d∥+∥e∥+∥f∥−nz. (4.7)

To prove Theorem 2.2, we will construct bijections between
{

(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}≥r

n
and sets of

the form
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}
n,k

for some k ∈ Z, and then apply Lemma 4.1.

Lemma 4.2. Let r ≥ 1. If A1 ≺ A2, then the rth crossing of a pair of arrays c
d

∣∣∣ef ∈{
(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}≥r

n,k
is a downward crossing if r is odd, and an upward crossing if r is even.

Proof. Interpreting crossings of c
d

∣∣∣ef as crossings of the pair of paths (T ( c
d), T (e

f )), which
start at A1 and A2, respectively, the fact that A1 ≺ A2 implies that downward and upward
crossings must alternate, with the first crossing being downward. □

For r ≥ 1, a symbol ↑ (resp. ↓) next to the superscript ≥r denotes the subset of pairs of
arrays where the rth crossing is an upward (resp. downward) crossing. For r = 0, in the
case A1 ≺ A2, we simplify define

{
(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}≥0↑
n,k

=
{

(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}≥0↓
n,k

=
{

(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}≥0

n,k
=
{

(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}
n,k

(4.8)

by convention.
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In the case A1 = A2 = (x, y) and B1 = B2 = (u, v), we define
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↑
n,k

(resp.
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↓
n,k

) to be the set of pairs c
d

∣∣∣ef ∈
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}
n,k

such that c
d ̸=

e
f and

the leftmost entry in the usual zig-zag order where c
d and e

f differ is in the top row and
satisfies ci < ei (resp. ci > ei), or it is in the bottom row and satisfies di > fi (resp. di < fi).
Equivalently, c

d

∣∣∣ef is in the first (resp. second) set if the first step where the paths T ( c
d)

and T (e
f ) disagree is an N (resp. E) step of T ( c

d) and an E (resp. N) step of T (e
f ). See

the examples in Figure 10.
In analogy to Lemma 3.3 for single arrays, the next lemma shows how the relative

locations of the two initial points and of the two final points often force the number of
crossings of a pair of two-rowed arrays to have a given parity.

Lemma 4.3. Let m ≥ 0.
(a) If A1 ≺ A2, B1 ≺ B2, and s ≥ 0, then
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥2m+1

n,s
=
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥2m+1↓
n,s

=
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥2m↑
n,s

=
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥2m

n,s
,

(4.9)

{
(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥2m+2

n,−s
=
{

(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥2m+2↑
n,−s

=
{

(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥2m+1↓
n,−s

=
{

(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥2m+1

n,−s
.

(4.10)

(b) If A1 ≺ A2 and B1 = B2, then (4.9) and (4.10) hold for s ≥ 1.

(c) If A1 = A2 = (x, y), B1 = B2 = (u, v), and s ≥ 1, then
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m+1↓
n,s

=
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m↑
n,s

and
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m+2↑
n,−s

=
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m+1↓
n,−s

.

(4.11)

Proof. In each of Equations (4.9) and (4.10) for A1 ≺ A2, the two outer equalities follow
from Lemma 4.2 (and convention (4.8) in the case m = 0), and the left-hand side is
trivially contained in the right-hand side. To prove the reverse containment, we will show
that the parity of the number of crossings is forced in each case.

Let us first prove Equation (4.9) with the hypotheses of part (a). Let

c
d

∣∣∣ef ∈
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}
n,s

, so that c
d ∈

{
(x1,u2]n1

[y1,v2)n1+s

}
and e

f ∈
{

(x2,u1]n2
[y2,v1)n2−s

}

for some n1, n2 summing to n. Crossings of c
d

∣∣∣ef are crossings of the pair of paths
(T ( c

d), T (e
f )) ∈ PA1→B′

2
× PA2→B′

1
, where B′

2 = (u2, dn1+1) and B′
1 = (en2−s+1, v1). Since

dn1+1 ≤ v2 and en2−s+1 ≤ u1, the condition B1 ≺ B2 implies that B′
1 ≺ B′

2. Thus, since
A1 ≺ A2, the number of crossings of c

d

∣∣∣ef must be odd, proving Equation (4.9) in this case.
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With the hypotheses of part (b), letting B1 = B2 = (u, v) and s ≥ 1, the same argument
yields endpoints B′

2 = (u, dn1+1) and B′
1 = (en2−s+1, v) with dn1+1 < dn1+s+1 = v and

en2−s+1 ≤ u. Let T̃ (e
f ) be the path obtained by removing the run of E steps at the end of

T (e
f ), which does not affect any crossings since B′

2 is strictly below these steps. Crossings
of c

d

∣∣∣ef are now crossings of (T ( c
d), T̃ (e

f )) ∈ PA1→B′
2
×PA2→B′′

1
, where B′′

1 = (en2−s, v). Since
en2−s < en2−s+1 ≤ u, we have B′′

1 ≺ B′
2, implying again that the number of crossings of

c
d

∣∣∣ef is odd, which proves Equation (4.9) also in this case.
With the hypotheses of part (c), the same argument gives a pair

(T ( c
d), T̃ (e

f )) ∈ PA→B′
2
× PA→B′′

1
,

where B′′
1 ≺ B′

2 as before. Suppose that c
d

∣∣∣ef ∈
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m↑
n,s

. For m ≥ 1, this means
that the 2mth crossing of (T ( c

d), T̃ (e
f )) is an upward crossing; for m = 0, this means that

the first step where these paths disagree is an N step of T ( c
d) and an E step of T̃ (e

f ).
The fact that B′′

1 ≺ B′
2 forces these paths to cross, with the 2m + 1st crossing being a

downward crossing, which proves the first equality in (4.11).
The proof of Equation (4.10) is similar. Let c

d

∣∣∣ef ∈
{

(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}
n,−s

, so that c
d ∈{

(x1,u1]n1
[y1,v1)n1−s

}
and e

f ∈
{

(x2,u2]n2
[y2,v2)n2+s

}
for some n1, n2. Crossings of c

d

∣∣∣ef are crossings of

(T ( c
d), T (e

f )) ∈ PA1→B′
1
× PA2→B′

2
, where B′

1 = (cn1−s+1, v1) and B′
2 = (u2, fn2+1).

Since cn1−s+1 ≤ u1 and fn2+1 ≤ v2, the condition B1 ≺ B2 implies that B′
1 ≺ B′

2. Thus,
if the hypothesis of part (a) hold, the number of crossings of c

d

∣∣∣ef must be even, proving
Equation (4.10) in this case.

Letting now B1 = B2 = (u, v) and s ≥ 1, we get endpoints B′
1 = (cn1−s+1, v) and

B′
2 = (u, fn2+1) with cn1−s+1 ≤ u and fn2+1 < v. Removing the run of E steps at the end

of T ( c
d), which does not affect any crossings, we obtain a pair

(T̃ ( c
d), T (e

f )) ∈ PA1→B′′
1
× PA2→B′

2
, where B′′

1 = (cn1−s, v).

Now cn1−s < cn1−s+1 ≤ u, and so B′′
1 ≺ B′

2, implying again that the number of crossings
of c

d

∣∣∣ef is even. This proves Equation (4.10) with the hypotheses of part (b).
Finally, with the hypotheses of part (c), we obtain a pair

(T̃ ( c
d), T (e

f )) ∈ PA1→B′′
1
× PA2→B′

2
, where B′′

1 ≺ B′
2.

If c
d

∣∣∣ef ∈
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m+1↓
n,−s

, the 2m + 1st crossing of (T̃ ( c
d), T (e

f )) is a downward crossing,
so the paths must cross again, and the 2m + 2nd crossing must be an upward crossing.
This proves the second equality in (4.11). □
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4.3. The bijections γr and δr. The bijections γr and δr play a similar role for pairs of
two-rowed arrays as the bijections αr and βr played for single arrays. They are reminiscent
of the bijection θr defined in [3] for pairs of paths; however, γr and δr do not restrict to
bijections for pairs of paths, since they change the relative lengths of the rows of the
arrays.

For c
d

∣∣∣ef ∈
{

(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}
n
, we say that an upward crossing at (ci, fj) (resp. a downward

crossing at (ej, di)) is proper if ci ̸= u◦ and fj ̸= v• (resp. ej ̸= u• and di ̸= v◦), that is,
neither entry equals the upper bound for its row.

For r ≥ 1, the map γr applies to pairs of two-rowed arrays c
d

∣∣∣ef whose rth crossing is a
proper upward crossing, say at (ci, fj), and it swaps the entries to the right of ci in each
row of the first array with the entries to the right of fj in each row of the second array.
Schematically, we have:

x1 · · ·
y1 · · ·

ci

di

ci+1 · · ·
di+1· · ·

u2
v2

x2 · · ·

y2 · · · fj

ej−1 ej · · ·
fj+1 · · ·

u1
v1

γr

x1 · · ·
y1 · · ·

ci

di

ej · · ·
fj+1 · · ·

u1
v1

x2 · · ·

y2 · · · fj

ej−1 ci+1 · · ·
di+1· · ·

u2
v2

The fact that (ci, fj) is a proper crossing of c
d

∣∣∣ef guarantees that ci+1 and fj+1 exist, and
that ci < ci+1 and fj < fj+1. Condition (i↑) in the characterization of upward crossings
implies that ci < ej , di < fj+1, ej−1 < ci+1 and fj < di+1, and so the rows of the arrays in
γr( c

d

∣∣∣ef ) are increasing. The pair γr( c
d

∣∣∣ef ) still has a crossing at (ci, fj): condition (i↑) holds
because ej−1 ≤ ci < ci+1 and di ≤ fj < fj+1, and condition (ii↑) holds because the relevant
entries are not affected by γr. This crossing is clearly proper, and it is the rth crossing of
γr( c

d

∣∣∣ef ) because the entries to the left of ci and fj , and thus the first r− 1 crossings of the
pair of arrays, are not affected by γr. It follows that γr is an involution.

Similarly, the map δr applies to pairs of two-rowed arrays c
d

∣∣∣ef whose rth crossing is a
proper downward crossing, say at (ej, di), and it again swaps the entries to the right of di

in the first array with the entries to the right of ej in the second array. Schematically, we
have:

x1 · · ·
y1 · · · di

ci−1 ci · · ·
di+1· · ·

u1
v1

x2 · · ·
y2 · · ·

ej

fj

ej+1 · · ·
fj+1 · · ·

u2
v2

δr

x1 · · ·
y1 · · · di

ci−1 ej+1 · · ·
fj+1 · · ·

u2
v2

x2 · · ·
y2 · · ·

ej

fj

ci · · ·
di+1· · ·

u1
v1

The same argument shows that the rows of the arrays in δr( c
d

∣∣∣ef ) are increasing, that
δr( c

d

∣∣∣ef ) still has a proper crossing at (ej, di), which is its rth crossing, and that the map δr

is an involution. In fact, if we denote by ς the involution that swaps the two two-rowed
arrays in a pair, that is,

ς( c
d

∣∣∣ef ) = e
f

∣∣∣ c
d , (4.12)

then the maps γr and δr are related by δr = ς ◦ γr ◦ ς.
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If A1 = A2 = (x, y) and B1 = B2 = (u, v), we can extend the definitions of γr and δr to
the case r = 0 as follows. Let c

d

∣∣∣ef ∈
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↑
n,k

. If the leftmost entry where c
d and e

f

differ is ci < ei, then the vertex (ci, fi) satisfies condition (i↑) from the characterization of
upward crossings, since ei−1 < ci < ei and di = fi < di+1, even if it fails condition (ii↑) since
(di, ci−1, di−1, . . . , c0, d0) = (fi, ei−1, fi−1, . . . , e0, f0). If ci ≠ u and fi ̸= v, we define γ0 by
swapping the entries to the right of ci in each row of c

d with the entries to the right of fi

in each row of e
f , just as in the usual definition of γr if (ci, fi) had been the rth crossing.

If the leftmost entry where c
d and e

f differ is di > fi, now it is the vertex (ci−1, fi) that
satisfies condition (i↑), since ei−1 = ci−1 < ei and di−1 < fi < di. If ci−1 ̸= u and fi ̸= v,
we define γ0 by swapping the entries to the right of ci−1 in each row of c

d with the entries
to the right of fi in each row of e

f , just as in the definition of γr if (ci−1, fi) had been the
rth crossing. See the example in Figure 10.

The bijection δ0 can be defined analogously, or as δ0 = ς ◦ γ0 ◦ ς, but it will not be
needed in the proofs.

0 2 4 4
0 1 3

< < ≤
≤ <

0 2 4
0 1 2 3

< ≤
≤ < <

∈
{

(0,4]
[0,3)

∣∣∣ (0,4]
[0,3)

}≥0↑
3,−1

γ0

(0, 0)

(4, 3)
(4, 2)

0 2 4
0 1 3

< ≤
≤ <

0 2 4 4
0 1 2 3

< < ≤
≤ < <

∈
{

(0,4]
[0,3)

∣∣∣ (0,4]
[0,3)

}≥0↑
3,0

(0, 0)

(4, 3)

Figure 10. An example of the bijection γ0. For each pair of two-rowed
arrays c

d

∣∣∣ef , the leftmost entry where they differ is d2 = 3 > 2 = f2, so
(c1, f2) = (2, 2) satisfies condition (i↑). The corresponding vertex in the pair
of paths (T ( c

d), T (e
f )) has been marked with a dotted circle.

Lemma 4.4. Fix n ≥ 0, k ∈ Z and r ≥ 1. Suppose that either B1 ≺ B2 and k ≥ 0, or
that B1 = B2. The map γr restricts to a bijection

{
(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥r↑
n,k

γr←→
{

(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥r↑
n,−k−1

. (4.13)

The map δr restricts to a bijection

{
(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥r↓
n,−k

δr←→
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥r↓
n,k+1

. (4.14)

Both γr and δr preserve the sum of the entries of the pair of arrays.
Additionally, if A1 = A2 and B1 = B2, then the above statements also hold for r = 0.
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Proof. Suppose first that r ≥ 1. Let us first check that pairs of arrays in the four sets
above cannot have improper crossings, and so the maps γr and δr are defined. For
c
d

∣∣∣ef ∈
{

(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}
n,h

, where h ∈ Z, to have an improper upward crossing at (ci, fj), we
must have either ci = u◦, in which case u◦ = ci < ej ≤ u• and h ≥ 0, or fj = v•, in which
case v• = fj < di+1 ≤ v◦ and h ≥ 0. Similarly, for c

d

∣∣∣ef to have an improper downward
crossing at (ej, di), we must have either ej = u•, in which case u• = ej < ci ≤ u◦ and
h ≤ 0, or di = v◦, in which case v◦ = di < fj+1 ≤ v• and h ≤ 0.

If c
d

∣∣∣ef is in the left-hand side of (4.13) (resp. (4.14)) and has an improper upward
(resp. downward) crossing, the previous paragraph forces u2 < u1 or v2 < v1, contradicting
the hypothesis that B1 ≺ B2 or B1 = B2. If c

d

∣∣∣ef is in the right-hand side instead, the
forced inequalities u1 < u2 or v1 < v2 hold when B1 ≺ B2, but the requirement on h states
that k + 1 ≤ 0, contradicting the hypothesis that k ≥ 0 in this case.

Having already seen that γr and δr are involutions preserving the first r crossings and
preserving the sum of the entries, it remains to describe their images when restricted to
the above sets. Let c

d

∣∣∣ef be in one of the sets in (4.13), so that one has

c
d ∈

{
(x1,u◦]n1

[y1,v◦)n1+h

}
and e

f ∈
{

(x2,u•]n2
[y2,v•)n2−h

}

for some n1, n2 summing to n, and h ∈ Z. If the rth crossing of c
d

∣∣∣ef is an upward crossing
at (ci, fj), then

γr( c
d

∣∣∣ef ) ∈
{

(x1,u•]n2+i−j+1
[y1,v•)n2−h+i−j

}
×
{

(x2,u◦]n1−i+j−1
[y2,v◦)n1+h−i+j

}
⊆
{

(x1,u•]
[y1,v•)

∣∣∣ (x2,u◦]
[y2,v◦)

}
n,−h−1

.

When h ∈ {k,−k − 1}, then −h− 1 equals the other element in the set, so this argument
works in both directions.

Similarly, if c
d

∣∣∣ef is in one of the sets in (4.14) and its rth crossing is a downward crossing
at (ej, di), then

δr( c
d

∣∣∣ef ) ∈
{

(x1,u•]n2+i−j−1
[y1,v•)n2−h+i−j

}
×
{

(x2,u◦]n1−i+j+1
[y2,v◦)n1+h−i+j

}
⊆
{

(x1,u•]
[y1,v•)

∣∣∣ (x2,u◦]
[y2,v◦)

}
n,−h+1

.

When h ∈ {−k, k + 1}, then −h + 1 equals the other element in the set.
Finally, in the case that A1 = A2 and B1 = B2, a similar argument shows that the maps

γ0 and δ0 are defined and they are bijections between the stated sets. □

4.4. Proof of Theorem 2.2. The proof is divided into four cases according to which
endpoints of the paths coincide. In each case, we determine H≥r

A1→B◦,A2→B•(t, q) by first
using Equation (4.7) to write it as a sum over pairs of two-rowed arrays. Then we repeatedly
apply the maps from Lemma 4.4 to construct bijections between

{
(x1,u◦]
[y1,v◦)

∣∣∣ (x2,u•]
[y2,v•)

}≥r

n
and

certain sets of pairs of two-rowed arrays with no requirement on the number of crossings,
and finally we use Lemma 4.1 to obtain the desired expressions. Again, the cases are
labeled as in [3] for consistency.
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Case 1: endpoints A1 ≺ A2 and B1 ≺ B2. If P ∈ PA1→B2 and Q ∈ PA2→B1 , the
relative position of the endpoints forces χ(P, Q) to be odd, which proves the first equality
in Equation (2.16). Using Lemmas 4.3 and 4.4, we construct a sequence of bijections
δ1 ◦ γ2 ◦ · · · ◦ δ2m−1 ◦ γ2m:
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥2m

n
=
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥2m↑
n,0

γ2m−→
{

(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥2m↑
n,−1

=
{

(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥2m−1↓
n,−1

δ2m−1−→
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥2m−1↓
n,2

=
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥2m−2↑
n,2

γ2m−2−→ · · · δ1−→
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥1↓
n,2m

=
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥0↑
n,2m

=
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}
n,2m

, (4.15)
where the last equality comes from (4.8). See Figure 11 for an example. Since these
bijections preserve the sum of the entries of the arrays, Equation (4.7) and Lemma 4.1 give
H≥2m

A1→B2,A2→B1(t, q) =
∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}
n,2m

q∥c∥+∥d∥+∥e∥+∥f∥−nz = f2m,A1,A2,B2,B1(t, q),

proving Equation (2.16).

{
(0,10]
[2,7)

∣∣∣ (2,8]
[0,8)

}≥2

6
=
{

(0,10]
[2,7)

∣∣∣ (2,8]
[0,8)

}≥2↑
6,0

γ2−→
{

(0,8]
[2,8)

∣∣∣ (2,10]
[0,7)

}≥2↑
6,−1

=
{

(0,8]
[2,8)

∣∣∣ (2,10]
[0,7)

}≥1↓
6,−1

0 3 6 10
2 2 4 7

< < ≤
≤ < <

2 3 4 7 8 8
0 2 5 6 7 8

< < < < ≤
≤ < < < <

0 3 6 7 8 8
2 2 4 7 8

< < < < ≤
≤ < < <

2 3 4 10
0 2 5 6 7

< < ≤
≤ < < <

δ1−→
{

(0,10]
[2,7)

∣∣∣ (2,8]
[0,8)

}≥1↓
6,2

=
{

(0,10]
[2,7)

∣∣∣ (2,8]
[0,8)

}
6,2

0 3 4 10
2 2 4 5 6 7

< < ≤
≤ < < < <

2 3 6 7 8 8
0 2 7 8

< < < < ≤
≤ < <

Figure 11. An example of the bijection (4.15), where m = 1 and n = 6.

Similarly, if P ∈ PA1→B1 and Q ∈ PA2→B2 , then χ(P, Q) must be even, which proves
the first equality in Equation (2.17). In this case, we construct a sequence of bijections
δ1 ◦ γ2 ◦ · · · ◦ δ2m+1:

{
(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥2m+1

n
=
{

(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥2m+1↓
n,0

δ2m+1−→
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥2m+1↓
n,1

=
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥2m↑
n,1

γ2m−→
{

(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥2m↑
n,−2

=
{

(x1,u1]
[y1,v1)

∣∣∣ (x2,u2]
[y2,v2)

}≥2m−1↓
n,−2

δ2m−1−→ · · · δ1−→
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}≥1↓
n,2m+1

=
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}
n,2m+1

.

Equation (4.7) and Lemma 4.1 now give
H≥2m+1

A1→B1,A2→B2(t, q) =
∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x1,u2]
[y1,v2)

∣∣∣ (x2,u1]
[y2,v1)

}
n,2m+1

q∥c∥+∥d∥+∥e∥+∥f∥−nz = f2m+1,A1,A2,B2,B1(t, q),

proving Equation (2.17).
We now handle Case 3, followed by Cases 2 and 4.
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Case 3: endpoints A1 ≺ A2 and B. If P ∈ PA1→B and Q ∈ PA2→B, the parity of χ(P, Q)
is no longer forced by the endpoints, so we consider two cases. When r = 2m for some
m ≥ 1, the rth crossing is an upward crossing by Lemma 4.2, and Lemmas 4.3 and 4.4
give a sequence of bijections δ1 ◦ γ2 ◦ · · · ◦ δ2m−1 ◦ γ2m:

{
(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m

n
=
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m↑
n,0

γ2m−→
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m↑
n,−1

=
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m−1↓
n,−1

δ2m−1−→
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m−1↓
n,2

=
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m−2↑
n,2

γ2m−2−→ · · · δ1−→
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥1↓
n,2m

=
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥0↑
n,2m

=
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}
n,2m

, (4.16)

using again (4.8). Equation (4.7) and Lemma 4.1 give
H≥2m

A1→B,A2→B(t, q) =
∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}
n,2m

q∥c∥+∥d∥+∥e∥+∥f∥−nz = f2m,A1,A2,B,B(t, q),

proving Equation (2.19) for even r.
When r = 2m+1 for some m ≥ 0, the rth crossing is a downward crossing by Lemma 4.2,

and we get a sequence of bijections δ1 ◦ γ2 ◦ · · · ◦ δ2m+1:
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m+1

n
=
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m+1↓
n,0

δ2m+1−→
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m+1↓
n,1

=
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m↑
n,1

γ2m−→
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m↑
n,−2

=
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥2m−1↓
n,−2

δ2m−1−→ · · · δ1−→
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}≥1↓
n,2m+1

=
{

(x1,u]
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}
n,2m+1

,

(4.17)
from where
H≥2m+1

A1→B1,A2→B2(t, q) =
∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x1,u
[y1,v)

∣∣∣ (x2,u]
[y2,v)

}
n,2m+1

q∥c∥+∥d∥+∥e∥+∥f∥−nz = f2m+1,A1,A2,B,B(t, q),

proving Equation (2.19) for odd r.

Case 2: endpoints A and B1 ≺ B2. We will reduce this case to Case 3 by applying the
involution ν, defined above Equation (3.27), componentwise to each of the two-rowed
arrays in a pair. With some abuse of notation, we also denote this map on pairs of
two-rowed arrays by ν. It restricts to a bijection

{
(x,u1]
[y,v1)

∣∣∣ (x,u2]
[y,v2)

}
n,k

ν←→
{

(−v1,−y]
[−u1,−x)

∣∣∣ (−v2,−y]
[−u2,−x)

}
n,−k

for any k ∈ Z. In the case k = 0, translating ν into a map on pairs of paths via the
encoding (4.2) yields the involution that reflects each path along the line x + y = 0. In
particular, it preserves the number of crossings, so it restricts to a bijection

{
(x,u1]
[y,v1)

∣∣∣ (x,u2]
[y,v2)

}≥r

n

ν←→
{

(−v1,−y]
[−u1,−x)

∣∣∣ (−v2,−y]
[−u2,−x)

}≥r

n
.

The hypothesis (u1, v1) ≺ (u2, v2) implies that the initial points of the reflected paths
satisfy (−v1,−u1) ≺ (−v2,−u2), whereas the final point is the same for both paths, namely
(−y,−x). This allows us to apply Case 3.
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When r = 2m, Equation (4.16) gives a bijection

δ1 ◦ γ2 ◦ · · · ◦ δ2m−1 ◦ γ2m :
{

(−v1,−y]
[−u1,−x)

∣∣∣ (−v2,−y]
[−u2,−x)

}≥2m

n
−→

{
(−v1,−y]
[−u1,−x)

∣∣∣ (−v2,−y]
[−u2,−x)

}
n,2m

.

Conjugating by ν and composing with the map ς from Equation (4.12) yields a bijection

ς ◦ ν ◦ δ1 ◦ γ2 ◦ · · · ◦ δ2m−1 ◦ γ2m ◦ ν :
{

(x,u1]
[y,v1)

∣∣∣ (x,u2]
[y,v2)

}≥2m

n
−→

{
(x,u2]
[y,v2)

∣∣∣ (x,u1]
[y,v1)

}
n,2m

that preserves the sum of the entries. Similarly, when r = 2m + 1, conjugating the
bijection (4.17) with ν and composing with ς produces a bijection

ς ◦ ν ◦ δ1 ◦ γ2 ◦ · · · ◦ δ2m+1 ◦ ν :
{

(x,u1]
[y,v1)

∣∣∣ (x,u2]
[y,v2)

}≥2m+1

n
−→

{
(x,u2]
[y,v2)

∣∣∣ (x,u1]
[y,v1)

}
n,2m+1

.

In both cases, using Equation (4.7) and Lemma 4.1, we get

H≥r
A→B1,A→B2(t, q) =

∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x,u1]
[y,v1)

∣∣∣ (x,u2]
[y,v2)

}
n,r

q∥c∥+∥d∥+∥e∥+∥f∥−nz = fr,A,A,B2,B1(t, q),

proving Equation (2.18).

Case 4: endpoints A and B. The map ς from Equation (4.12) restricts to a bijection
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥r↑
n,k

ς←→
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥r↓
n,−k

for any r ≥ 0 and k ∈ Z. For r ≥ 1, we also have
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥r

n
=
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥r↑
n
⊔
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥r↓
n

,

and so Equation (4.7) gives

H≥r
A→B,A→B(t, q) = 2

∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥r↑

n

q∥c∥+∥d∥+∥e∥+∥f∥−nz (4.18)

= 2
∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥r↓

n

q∥c∥+∥d∥+∥e∥+∥f∥−nz. (4.19)

Our next goal is to prove that

H≥r
A→B,A→B(t, q) + H≥r+1

A→B,A→B(t, q) = 2fr+1,A,A,B,B(t, q) (4.20)

for all r ≥ 1.
For arrays with at least r = 2m crossings, Lemmas 4.3 and 4.4 give bijections δ1 ◦ γ2 ◦

· · · ◦ δ2m−1 ◦ γ2m:
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m↑
n

γ2m−→
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m↑
n,−1

=
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m−1↓
n,−1

δ2m−1−→
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m−1↓
n,2

=
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m−2↑
n,2

γ2m−2−→ · · · δ1−→
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥1↓
n,2m

=
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↑
n,2m

. (4.21)
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Similarly, for arrays with at least r = 2m + 1 crossings, we get bijections δ1 ◦ γ2 ◦ · · · ◦
δ2m−1 ◦ γ2m ◦ δ2m+1:

{
(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m+1↓
n

δ2m+1−→
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m+1↓
n,1

=
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m↑
n,1

γ2m−→
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m↑
n,−2

=
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥2m−1↓
n,−2

δ2m−1−→ · · · δ1−→
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥1↓
n,2m+1

=
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↑
n,2m+1

. (4.22)

In both cases, we can compose these bijections with ς ◦ γ0:
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↑
n,r

γ0−→
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↑
n,−r−1

ς−→
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↓
n,r+1

. (4.23)

Composing (4.21) with (4.23), where r = 2m, and using Equation (4.18), we get
H≥2m

A→B,A→B(t, q) = 2
∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↓

n,2m+1

q∥c∥+∥d∥+∥e∥+∥f∥−nz

for m ≥ 1. Similarly, the bijection (4.22) and Equation (4.19), where r = 2m + 1, give
H≥2m+1

A→B,A→B(t, q) = 2
∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↑

n,2m+1

q∥c∥+∥d∥+∥e∥+∥f∥−nz.

Adding the last two equations, using the fact that
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↑
n,k
⊔
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↓
n,k

=
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}
n,k

for all k ̸= 0, and applying Lemma 4.1, we obtain a proof of Equation (4.20) for r = 2m.
On the other hand, composing (4.22) (with m − 1 playing the role of m) with (4.23)

(with r = 2m− 1) and using Equation (4.19), we get
H≥2m−1

A→B,A→B(t, q) = 2
∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↓

n,2m

q∥c∥+∥d∥+∥e∥+∥f∥−nz

for m ≥ 1. Similarly, the bijection (4.21) and Equation (4.18), where r = 2m, give
H≥2m

A→B,A→B(t, q) = 2
∑

n≥0
tn

∑

c
d

∣∣∣ef ∈
{

(x,u]
[y,v)

∣∣∣ (x,u]
[y,v)

}≥0↑

n,2m

q∥c∥+∥d∥+∥e∥+∥f∥−nz.

Adding the last two equations and applying Lemma 4.1, we obtain a proof of Equation (4.20)
for r = 2m− 1.

Solving Equation (4.20) for H≥r
A→B,A→B(t, q) and iterating, we obtain

H≥r
A→B,A→B(t, q) = 2 (fr+1,A,A,B,B(t, q)− fr+2,A,A,B,B(t, q) + fr+3,A,A,B,B(t, q)− · · · )

which proves Equation (2.20) for r ≥ 1. The case r = 0 follows immediately from
Equation (4.7) and Lemma 4.1.

Acknowledgments. The author is grateful to Christian Krattenthaler for posing the
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172 S. Elizalde

References
[1] George E. Andrews. The Theory of Partitions. Addison-Wesley, 1976.
[2] Sylvie Corteel, Sergi Elizalde, and Carla D. Savage. Generalized rank parity blocks in partitions. In

preparation.
[3] Sergi Elizalde. Counting lattice paths by crossings and major index I: the corner-flipping bijections.

Comb. Theory, 2(2):Article #14, 37 pp., 2022.
[4] Ora Engelberg. On some problems concerning a restricted random walk. J. Appl. Probability, 2:396–404,

1965.
[5] William Feller. The numbers of zeros and of changes of sign in a symmetric random walk. Enseign.

Math. (2), 3:229–235, 1957.
[6] William Feller. An Introduction to Probability Theory and Its Applications. Vol. I . John Wiley &

Sons, third edition, 1968.
[7] Michael E. Fisher. Walks, walls, wetting, and melting. J. Statist. Phys., 34(5-6):667–729, 1984.
[8] Johannes Fürlinger and Joseph Hofbauer. q-Catalan numbers. J. Combin. Theory Ser. A, 40(2):248–

264, 1985.
[9] Ira Gessel and Gérard Viennot. Binomial determinants, paths, and hook length formulae. Adv. in

Math., 58(3):300–321, 1985.
[10] Malcolm Kern and Stanley Walter. Ballot theorem and lattice path crossings. Canad. J. Statist.,

6(1):87–90, 1978.
[11] Christian Krattenthaler. Counting nonintersecting lattice paths with turns. Sém. Lothar. Combin.,

34:Article B34i, 17 pp., 1995.
[12] Christian Krattenthaler. The Major Counting of Nonintersecting Lattice Paths and Generating

Functions for Tableaux. Mem. Amer. Math. Soc., 115, 1995.
[13] Christian Krattenthaler. The enumeration of lattice paths with respect to their number of turns. In

Advances in Combinatorial Methods and Applications to Probability and Statistics, Stat. Ind. Technol.,
pages 29–58. Birkhäuser, 1997.

[14] Christian Krattenthaler. Lattice path enumeration. In Handbook of Enumerative Combinatorics,
Discrete Math. Appl., pages 589–678. CRC Press, 2015.

[15] Christian Krattenthaler and Sri Gopal Mohanty. On lattice path counting by major index and
descents. European J. Combin., 14(1):43–51, 1993.

[16] Devadatta M. Kulkarni. Counting of paths and coefficients of the Hilbert polynomial of a determinantal
ideal. Discrete Math., 154(1-3):141–151, 1996.

[17] Bernt Lindström. On the vector representations of induced matroids. Bull. London Math. Soc.,
5:85–90, 1973.

[18] Percy A. MacMahon. Combinatory Analysis. Cambridge Univ. Press, 1915–1916. Reprinted by Chelsea
in 1960.

[19] Sri Gopal Mohanty. Lattice Path Counting and Applications. Academic Press, 1979.
[20] Bruce E. Sagan and Carla D. Savage. Mahonian pairs. J. Combin. Theory Ser. A, 119(3):526–545,

2012.
[21] Kanwar Sen. On some combinatorial relations concerning the symmetric random walk. Magyar Tud.

Akad. Mat. Kutató Int. Közl., 9:335–357, 1965.
[22] Seunghyun Seo and Ae Ja Yee. Enumeration of partitions with prescribed successive rank parity

blocks. J. Combin. Theory Ser. A, 158:12–35, 2018.
[23] Michael Z. Spivey. Enumerating lattice paths touching or crossing the diagonal at a given number of

lattice points. Electron. J. Combin., 19(3):Article #24, 6 pp., 2012.



Séminaire Lotharingien de Combinatoire 87B (2023)
Article #8, 25pp.

Special issue for the 9th International Conference
on Lattice Path Combinatorics and Applications

THREE FAMILIES OF q-LOMMEL POLYNOMIALS
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Abstract. Three q-versions of Lommel polynomials are studied. Included are explicit
representations, recurrences, continued fractions, and connections to associated Askey–
Wilson polynomials. Combinatorial results are emphasized, including a general theorem
when RI moments coincide with orthogonal polynomial moments. The combinatorial
results use weighted Motzkin paths, Schröder paths, and parallelogram polyominoes.
Keywords: Lommel polynomial, Bessel function, orthogonal polynomial.

1. Introduction

Lehmer [27] used the following Bessel function identity to study zeros of Bessel functions
Jν+1(x)
Jν(x) = 2

∞∑

n=1
σ2n(ν)x2n−1, (1.1)

where σ2n(ν) is the 2nth power sum of the inverses of the positive zeros jν,k of Jν(x):

σ2n(ν) =
∞∑

k=1
j−2n

ν,k . (1.2)

Lehmer noted that σ2n(ν) is a rational function of ν, with a predictable denominator,
and a numerator with nonnegative coefficients. Kishore [19] proved Lehmer’s positivity
conjecture. Lalanne ([25, Proposition 3.6], [26, Theorem 4.7]) proved q-versions of Kishore’s
result using weighted binary trees and also weighted Dyck paths.

The above series is related to the Lommel polynomials Ln,ν , which are orthogonal
polynomials with respect to the linear functional

L(P (x)) := 2(ν + 1)
∞∑

k=1

(
P
(
j−1

ν,k

)
+ P

(
−j−1

ν,k

))
j−2

ν,k ,

i.e., L(Ln,ν(x)Lm,ν(x)) = 0 if n ̸= m and L(1) = 1; see [15, Eq. (6.5.17)]. Thus σ2n(ν)
in (1.2) is the (2n− 2)th moment for the Lommel polynomials, while (1.1) is the Lommel
moment generating function.

The purpose of this paper is to study three sets of q-Lommel polynomials, whose moment
generating functions are quotients of q-Bessel functions. These polynomials were analyti-
cally studied by Ismail [15], Koelink and Van Assche [23], and Koelink [21]. In this paper
we concentrate on the combinatorial aspect of these three sets of q-Lommel polynomials.
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The literature already contains some combinatorial results on the quotient of Bessel
functions and the quotient of q-Bessel functions. Delest and Fédou [9] showed that a
generating function for parallelogram polyominoes can be written as a ratio of Jackson’s
third q-Bessel functions. Bousquet-Mélou and Viennot [4] generalized their result by adding
one more parameter. A recounting of the history of the combinatorics of the q-analogue of
the quotient of Bessel functions may be found in [3, Section 1] (see also [26, Section 4]). It
includes results by Klarner and Rivest [20, Eq. (19)], Fédou [12], Lalanne [25,26], Brak
and Guttmann [5], and Barcucci et al. [1, Corollary 3.5], [2, Theorems 4.3 and 5.3].

In this paper we put these results in perspective by relating them to q-Lommel poly-
nomials. The moment generating function has a continued fraction expansion. Using
the general theory of orthogonal and type RI polynomials we give finite versions of the
infinite continued fractions. We show that a generating function for bounded diagonal
parallelogram polyominoes is given by a ratio of q-Lommel polynomials, which is a finite
version of the result of Bousquet-Mélou and Viennot [4].

Even though the Lommel polynomials have a hypergeometric representation as a 2F3,
they do not appear in the Askey scheme. In this paper we rectify this, by realizing two sets
of q-Lommel polynomials as limiting cases of associated Askey–Wilson polynomials. One
may ask for an associated Askey scheme which contains this limiting case (see Problem 8.7).

The paper is organized in the following way. In Section 2 we define the three sets of
q-Lommel polynomials using three-term recurrence relations. The classical connection
between these polynomials and q-Bessel functions is given in Section 3. The associated
Askey–Wilson polynomials are reviewed in Section 4, along with explicit limiting cases to the
q-Lommel polynomials; see Theorems 4.7 and 4.8. In Section 5 we independently prove the
continued fraction expansions for the moment generating functions, and give two surprising
equalities of continued fractions in Corollary 5.6 and Theorem 5.12. Combinatorial
interpretations of these continued fractions are given in Section 6; see Theorem 6.9 and
Corollary 6.11. A general combinatorial result for the concurrence of type RI moments
and orthogonal polynomials moments is given in Section 7; see Theorem 7.2. In Section 8
we propose some open problems.

We use the standard notations pFq for hypergeometric series and pϕq for basic hypergeo-
metric series (also sometimes called q-hypergeometric series) [14].

2. q-Lommel polynomials

In this section we give the defining recurrence relations for the Lommel, the classical
q-Lommel, the even-odd q-Lommel, and the type RI q-Lommel polynomials.
Definition 2.1. The monic Lommel polynomials hn(x; c) are defined by

hn+1(x; c) = xhn(x; c) − 1
(c+ n)(c+ n− 1)hn−1(x; c), n ≥ 0, h−1(x; c) = 0, h0(x; c) = 1.

We consider three versions of q-Lommel polynomials.
Definition 2.2 ([15, § 14.4]). The classical q-Lommel polynomials are defined by
hn+1(x; c, q) = xhn(x; c, q) − λnhn−1(x; c, q), n ≥ 0, h−1(x; c, q) = 0, h0(x; c, q) = 1,

where λn = cqn−1

(1 − cqn−1)(1 − cqn) .
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Definition 2.3. The even-odd q-Lommel polynomials are defined by
pn+1(x; c, q) = xpn(x; c, q) − λnpn−1(x; c, q), n ≥ 0, p−1(x; c, q) = 0, p0(x; c, q) = 1,

where λ2n = cq3n−1

(1 − cq2n−1)(1 − cq2n) , λ2n+1 = qn

(1 − cq2n)(1 − cq2n+1) .

Note that each polynomial hn and pn may be considered as a q-analogue of the classical
Lommel polynomials since

lim
q→1

(1 − q)nhn(x/(1 − q); qc, q) = hn(x; c), lim
q→1

(1 − q)npn(x/(1 − q); qc, q) = hn(x; c).

Definition 2.4. The type RI q-Lommel polynomials are defined by
rn+1(x; c, q) = (x− bn)rn(x; c, q) − xanrn−1(x; c, q), r−1(x; c, q) = 0, r0(x; c, q) = 1,

(2.1)

where bn = qn

1 − cqn
, an = cq2n−1

(1 − cqn−1)(1 − cqn) .

Note that if
r̂n(x; c) = lim

q→1
(1 − q)2nrn(x/(1 − q)2; qc, q),

then
r̂n+1(x; c) = xr̂n(x; c) − x

(c+ n− 1)(c+ n) r̂n−1(x; c). (2.2)

The polynomials r̂n(x; c) in (2.2) are closely related to the monic Lommel polynomials.
For example, it is known that their moments are the same; see (7.2).

Koelink and Van Assche study the even-odd and the type RI q-Lommel polynomials1

in [23, Section 4], and Koelink continues this analytic study in [21].
Orthogonality relations for the classical q-Lommel are in [15, Theorem 14.4.3], while

those for the even-odd q-Lommel and the type RI q-Lommel are in [23, Theorem 4.2]
and [23, Theorem 3.4].

3. q-Bessel functions and q-Lommel polynomials

In this section we give the recurrence relation which connects q-Bessel functions to the
classical q-Lommel polynomials and the type RI q-Lommel polynomials.

Definition 3.1. The Bessel functions Jν(x) are defined by

Jν(z) = (z/2)ν

Γ(ν + 1)
∑

n≥0

(−z2/4)n

n!(ν + 1)n

.

Definition 3.2 ([6, p. 188, (6.2)]). The classical Lommel polynomials Ln,ν(z) are (non-
monic) polynomials in z−1 defined by L0,ν(z) = 1, L1,ν(z) = 2ν/z, and

Ln+1,ν(z) = 2(n+ ν)
z

Ln,ν(z) − Ln−1,ν(z), n ≥ 1.

Equivalently,
hn(x; c) = Ln,c(2/x)/(c)n.

1Continued fractions of type R and the corresponding orthogonal polynomials of type RI or RII were
introduced by Ismail and Masson in [16], the notation being a mnemonic for rational interpolation.



176 J. S. Kim and D. Stanton

The Bessel function satisfy Jν+1(z) = 2ν
z
Jν(z) − Jν−1(z). Iterating this recurrence offers

the following connection with Lommel polynomials.

Proposition 3.3 ([6, p. 187]). The Bessel functions and the classical Lommel polynomials
are related by the recurrence

Jν+n(z) = Ln,ν(z)Jν(z) − Ln−1,ν+1(z)Jν−1(z).

Definition 3.4. Jackson’s first q-Bessel function J (1)
ν (z; q) and second q-Bessel function

J (2)
ν (z; q) are defined by

J (1)
ν (z; q) = (qν+1; q)∞

(q; q)∞
(z/2)ν

2ϕ1
(
0, 0; qν+1; q,−z2/4

)
,

J (2)
ν (z; q) = (qν+1; q)∞

(q; q)∞
(z/2)ν

0ϕ1
(
−; qν+1; q,−qν+1z2/4

)
.

In this paper we consider only the first and third q-Bessel function, as the second
q-Bessel can be obtained from the first by changing q to q−1. Recall that we consider
formal power series in z, and have no restriction on q.

Proposition 3.5 ([15, Eq. (14.4.1)]). The first q-Bessel functions satisfy

qnν+(n
2)J (1)

ν+n(x; q) = L(1)
n,ν(x; q)J (1)

ν (x; q) − L
(1)
n−1,ν+1(x; q)J (1)

ν−1(x; q). (3.1)
where L(1)

0,ν(x; q) = 1, L(1)
1,ν(x; q) = 2(1 − qn+ν)/x, and

2
x

(1 − qn+ν)L(1)
n,ν(x; q) = L

(1)
n+1,ν(x; q) + qn+ν−1L

(1)
n−1,ν(x; q), n ≥ 1.

Again, we need a rescaling to obtain the classical q-Lommel polynomials,
hn(x; c, q) = L(1)

n,ν(2/x; q)/(qν ; q)n, c = qν .

Definition 3.6. The Jackson’s third q-Bessel functions J (3)
ν (z; q) are defined by

J (3)
ν (z; q) = (qν+1; q)∞zν

(q; q)∞
1ϕ1

(
0; qν+1; q, qz2

)
.

Define the Laurent polynomials L(3)
m,ν(z; q) by

L
(3)
m+1,ν(z; q) =

(
z + z−1(1 − qν+m)

)
L(3)

m,ν(z; q) − L
(3)
m−1,ν(z; q).

We rescale these Laurent polynomials to obtain polynomials

r(3)
n (x; c, q) := xn/2

(q−ν ; q−1)n

L(3)
n,ν(x−1/2; q−1), c = qν . (3.2)

Then r(3)
n (x; c, q) are the type RI polynomials defined by r(3)

−1(x; c, q) = 0, r(3)
0 (x; c, q) = 1,

and
r

(3)
n+1(x; c, q) = (x− b̂n)r(3)

n (x; c, q) − xânr
(3)
n−1(x; c, q), n ≥ 0,

where b̂n = cqn

1 − cqn
, ân = c2q2n−1

(1 − cqn−1)(1 − cqn) .

Using the recurrences one can easily check that

rn(x; c, q) = r(3)
n (cx; c, q)

cn
,
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where rn(x; c, q) are the type RI q-Lommel polynomials rn(x; c, q) in Definition 2.4.
Koelink and Swarttouw [22, Eq. (4.12)] showed that the third q-Bessel functions satisfy

the following property analogous to (3.3) and (3.1).

Proposition 3.7. The third q-Bessel functions satisfy

J
(3)
ν+m(z; q) = L(3)

m,ν(z; q)J (3)
ν (z; q) − L

(3)
m−1,ν+1(z; q)J

(3)
ν−1(z; q).

Koelink and Swarttouw [22, Eq. (4.24)] also showed that

lim
m→∞ zmR(3)

m,ν(z; q) = (q; q)∞z1−ν

(z2; q)∞
J

(3)
ν−1(z; q),

which implies

lim
m→∞

R
(3)
m,ν+2(z; q)

R
(3)
m+1,ν+1(z; q)

= J
(3)
ν+1(z; q)
J

(3)
ν (z; q)

. (3.3)

By (3.2) and (3.3) we have

J
(3)
ν+1(x1/2; q−1)
J

(3)
ν (x1/2; q−1)

= lim
n→∞

−qν+1r(3)
n (x−1; qν+2, q)

x1/2(1 − qν+1)r(3)
n+1(x−1; qν+1, q)

. (3.4)

The q-Bessel function relation for the even-odd q-Lommel polynomials which corresponds
to Proposition 3.5 is given in [23, Proposition 4.1].

4. q-Lommel polynomials and the Askey scheme

The q-Lommel polynomials do not appear in the Askey scheme. In this section we
realize both the classical q-Lommel and the even-odd q-Lommel polynomials as limiting
cases of the associated Askey–Wilson polynomials; see Theorems 4.7 and 4.8. We then use
results of Ismail and Masson [16] to give explicit formulas for each polynomial. Finally,
we prove that the moments for even-odd q-Lommel and the type RI q-Lommel agree; see
Theorem 4.14.

An explicit formula for the Lommel polynomial hn(x; c) is

hn(x; c) = xn
2F3(−n/2, (1 − n)/2; c, 1 − c− n,−n; −4/x2).

In this section we give explicit formulas for our three families of q-Lommel polynomials.
The classical q-Lommel polynomials have a corresponding single sum formula [15, Theo-
rem 14.4.1]:

hn(x; c, q) = 1
(c; q)n

⌊n/2⌋∑

j=0

(−1)j (c, q; q)n−j

(q, c; q)j (q; q)n−2j

xn−2jcjqj(j−1).

Here are the main results for the even-odd q-Lommel polynomials.

Theorem 4.1. The even even-odd q-Lommel polynomials have the explicit formula

p2n(x; c, q) = (−1)n q(
n
2)

(c; q)2n

n∑

k=0

(q−n, cqn, c; q)k

(q; q)k

qkx2k

×
n−k∑

s=0

(cqk−1; q)s

(q; q)s

1 − cqk−1+2s

1 − cqk−1
(cqn+k, qk−n, qk; q)s

(q−n, cqn, c; q)s

csq−sk+s(s−1).
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Theorem 4.2. The odd even-odd q-Lommel polynomials have the explicit formula

p2n+1(x; c, q) = (−c)n q
n2+(n+1

2 )
(cq; q)2n

n∑

k=0

(q−n, cqn+1, cq; q)k

(q; q)k

c−kq−k2
x2k+1

×
n−k∑

s=0

(cqk; q)s

(q; q)s

1 − cqk+2s

1 − cqk

(cqn+k+1, qk−n, qk+1; q)s

(q−n, cqn+1, c; q)s

csq−(3k+2)s−s(s−1).

Note that the inner sums in Theorems 4.1 and 4.2 are basic hypergeometric series.
The coefficient of x2k in Theorem 4.1 and x2k+1 in Theorem 4.2 are terminating basic
hypergeometric series.

In order to prove Theorems 4.1 and 4.2, we first write the even even-odd polynomials
as orthogonal polynomials in x2 using the odd-even trick. Then we realize the new
polynomials as limiting cases of associated Askey–Wilson polynomials, for which explicit
formulas are known. The same method will work for the odd even-odd polynomials.

We begin with the associated Askey–Wilson polynomials. First, recall that the monic
Askey–Wilson polynomials satisfy the following three-term recurrence (which, as claimed
by Favard’s theorem, is characterizing orthogonal polynomials):

pn+1(x) = (x− bn)pn(x) − λnpn−1(x), n ≥ 1, (4.1)

where

bn = 1
2(a+ a−1 − An − Cn), λn = 1

4An−1Cn,

An = (1 − abqn)(1 − acqn)(1 − adqn)(1 − abcdqn−1)
a(1 − abcdq2n−1)(1 − abcdq2n) ,

Cn = a(1 − qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)
(1 − abcdq2n−2)(1 − abcdq2n−1) .

Then, the associated Askey–Wilson polynomials are defined by the same three-term
recurrence relation (4.1), with qn replaced by αqn.

Definition 4.3. The associated Askey–Wilson polynomials p(α)
n (x) are defined as a solution

to
p

(α)
n+1(x) = (x− bn(α))p(α)

n (x) − λn(α)p(α)
n−1(x), n ≥ 1, (4.2)

bn(α) = 1
2(a+ a−1 − An(α) − Cn(α)), λn(α) = 1

4An−1(α)Cn(α),

An(α, q) = (1 − abαqn)(1 − acαqn)(1 − adαqn)(1 − abcdαqn−1)
a(1 − abcdα2q2n−1)(1 − abcdα2q2n) ,

Cn(α, q) = a(1 − αqn)(1 − bcαqn−1)(1 − bdαqn−1)(1 − cdαqn−1)
(1 − abcdα2q2n−2)(1 − abcdα2q2n−1) .

There are two linearly independent solutions to (4.2), depending on the initial conditions.
Ismail and Rahman [15, Eq. (4.15), Eq. (8.9)] gave these two independent solutions as
double sums, the inner sum being a very-well-poised 10W9.
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Theorem 4.4. Two linearly independent solutions ψ(α,ϵ)
n (x, q), ϵ = 1, 2 to (4.2) are given

by

ψ(α,ϵ)
n (x; q) = Kn

n∑

k=0

(q−n, abcdα2qn−1, abcdα2/q, az, a/z; q)k

(q, abα, acα, adα, abcdα/q; q)k

qk

× 10W9
(
abcdα2qk−2;α, bcα/q, bdα/q, cdα/q, S, abcdα2qn+k−1, qk−n; q;T

)

where
Kn = (2a)−n (abα, acα, adα, abcdα/q; q)n

(abcdα2qn−1, abcdα2/q; q)n

and the two choices for ϵ correspond to

(S, T ) = (qk+1, a2), for ϵ = 1, (S, T ) = (qk, qa2), for ϵ = 2.

We next explain how Theorem 4.1 follows from Theorem 4.4. First we rewrite the
recurrence relation [6] in terms of polynomials in x2. Let tn(x) and sn(x) be the polynomials
satisfying

p2n(x; c, q) = tn(x2),
p2n+1(x; c, q) = xsn(x2).

Proposition 4.5. We have

tn+1(x) = (x−Bn)tn(x) − Λntn−1(x), t−1 = 0, t0(x) = 1.

where

B0 = 1
(1 − c)(1 − cq) ,

Bn = λ2n + λ2n+1, n ≥ 1,
Λn = λ2n−1λ2n, n ≥ 1.

Proposition 4.6. We have

sn+1(x) = (x−Bn)sn(x) − Λnsn−1(x), s−1 = 0, s0(x) = 1.

where

Bn = λ2n+2 + λ2n+1, n ≥ 1,
Λn = λ2n+1λ2n, n ≥ 1.

We shall obtain the recurrence relations in Propositions 4.5 and 4.6 by an appropriate
limiting case of Theorem 4.4. Our goal is to obtain (An, Cn) = (λ2n+1, λ2n) for tn(x) and
(An, Cn) = (λ2n+2, λ2n+1) for sn(x). Then we match the initial conditions to find the correct
linear combination of the two solutions.

First choosing a = c−1q−1α, b = c = d = 1/α, we obtain

An(α, 1/q) = α(1 − cqn+1/α)3(1 − αcqn)
cq(1 − cq2n)(1 − cq2n+1) ,

Cn(α, 1/q) = cq(1 − qn/α)(1 − αqn−1)3

α(1 − cq2n−1)(1 − cq2n) .
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By rescaling x by Bα2x/2, i.e., p̂n(x) = 2nα−2nB−np(α)
n (Bα2x/2), we have

p̂n+1(x) = (x− b̂n(α))p̂n(x) − λ̂n(α)p̂n−1(x),

b̂n(α) = 1
Bα2

(
cq

α
+ α

cq
− An(α, 1/q) − Cn(α, 1/q)

)
,

λ̂n(α) = 1
B2α4An(α, 1/q)Cn(α, 1/q).

If α → ∞, the first two terms in b̂n(α) vanish. Choosing B = 1/q, we obtain the desired
values for Proposition 4.5

lim
α→∞

−1
Bα2An(α, 1/q) = qn

(1 − cq2n)(1 − cq2n+1) = λ2n+1,

lim
α→∞

−1
Bα2Cn(α, 1/q) = cq3n−1

(1 − cq2n−1)(1 − cq2n) = λ2n.

The first degree limiting polynomial matches the second Ismail–Rahman solution in
Theorem 4.4 with (a, b, c, d) = (α/cq, 1/α, 1/α, 1/α),

x− 1
(1 − c)(1 − cq)

so that
lim

α→∞ p̂n(x) = lim
α→∞ψ(α,2)

n (x; 1/q),
which is the stated explicit formula in Theorem 4.1.

For the odd even-odd polynomials in Proposition 4.6, we choose (a, b, c, d) = (cq2α, 1/α,
1/α, 1/α),

An(α, q) = (1 − cαqn+2)3(1 − cqn+1/α)
αcq2(1 − cq2n+1)(1 − cq2n+2) ,

Cn(α, q) = αcq2(1 − αqn)(1 − qn−1/α)3

(1 − cq2n)(1 − cq2n+1) .

As before choosing p̂n(x) = 2nα−2nB−np(α)
n (Bα2x/2) and B = −cq2 we find

lim
α→∞

1
Bα2An(α, q) = cq3n+2

(1 − cq2n+1)(1 − cq2n+2) = λ2n+2,

lim
α→∞

1
Bα2Cn(α, q) = qn

(1 − cq2n)(1 − cq2n+1) = λ2n+1.

The first degree limiting polynomial matches the first Ismail–Rahman solution in
Theorem 4.4 with (a, b, c, d) = (cq2α, 1/α, 1/α, 1/α),

x− 1 + cq

(1 − c)(1 − cq2)
so that

lim
α→∞ p̂n(x) = lim

α→∞ψ(α,1)
n (x; q),

which is the stated explicit formula in Theorem 4.2.
We summarize these limits for the even-odd q-Lommel polynomials.
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Theorem 4.7. The even-odd q-Lommel polynomials are the following limits of associated
Askey–Wilson polynomials

p2n(x; c, q) = lim
α→∞

(2q)n

α2n
ψ(α,2)

n (α2x2/2q; 1/q), (a, b, c, d) = (α/cq, 1/α, 1/α, 1/α),

p2n+1(x; c, q) = x lim
α→∞

(−2/cq2)n

α2n
ψ(α,1)

n (−cq2α2x2/2; q), (a, b, c, d) = (cq2α, 1/α, 1/α, 1/α).

For the classical q-Lommel polynomials hn(x; c; q), for the even polynomials choose
(a, b, c, d) = (1, q/α2, c, 1)

and for the odd polynomials choose
(a, b, c, d) = (1, q2/α2, c, 1).

Similar calculations to the proof of Theorem 4.7 show the next result.

Theorem 4.8. The classical q-Lommel polynomials are the following limits of associated
Askey–Wilson polynomials

h2n(x; c, q) = lim
α→∞

(−2)n

α2n
ψ(α,2)

n (−α2x2/2; q), (a, b, c, d) = (1, q/α2, c, 1),

h2n+1(x; c, q) = x lim
α→∞

(−2q)n

α2n
ψ(α,1)

n (−α2x2/2q; q), (a, b, c, d) = (1, q2/α2, c, 1).

Theorem 4.9 is [15, Theorem 14.4.1].

Theorem 4.9. The classical q-Lommel polynomials are

hn(x; c, q) =
n/2∑

k=0

[
n− k

k

]

q

(−c)kqk2−k

(c; q)k(cqn−1; q−1)k

xn−2k.

Proof. We consider the even case, the proof for the odd case is similar. The inner sum
becomes an evaluable very-well-poised 6W5

6W5

(
cqk−1; qk, cqn+k, qk−n

∣∣∣∣ q; q−2k
)

= (cqn−1; q−1)k(qn+1; q)k

(c; q)k(qk+1; q)k

q−k(n−k).

By considering the coefficient of x2n−2k, we arrive at Theorem 4.9 with n replaced by 2n.
The odd case actually gives the same result. □

For the type RI q-Lommel polynomials there is a simple generating function which gives
an explicit expression.

Proposition 4.10. The type RI q-Lommel polynomials have the generating function
∞∑

n=0
(c−1; q−1)n rn(x; c, q)tn =

∞∑

k=0

(−xt/c)kq−(k
2)

(t/c, tx; q−1)k+1
.

Proof. If G(x, t) is the generating function on the left side, then Definition 2.4 implies
G(x, t) − 1 = (x+ 1/c)tG(x, t) − xt/c G(x, tq−1) − xt2/c G(x, t),

G(x, t) = 1
(1 − xt)(1 − t/c) − xt/c

(1 − xt)(1 − t/c)G(x, tq−1)

whose iterate is the result. □
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Theorem 4.11. The type RI q-Lommel polynomials have the explicit formula

rn(x; c, q) = 1
(c−1; q−1)n

n∑

k=0

n−k∑

a=0
(−x/c)kq−(k

2)
[
k + a

a

]

q−1
c−a

[
n− a

k

]

q−1
xn−k−a.

Proof. Apply the q−1-binomial theorem to Proposition 4.10 to find the resulting coefficient
of tn. □

Proposition 4.12. We have the connection coefficient relation

rn(x2; c, q) =
n∑

k=0

[
n

k

]

q

ckqn2−(n−k)2

(cqn−1, cq2n−k; q−1)k

p2n−2k(x; c, q).

Proof. Induction on n using the three-term relations. □

Proposition 4.13. If Lp is the linear functional for the even-odd polynomials pn(x; c, q),
then

Lp(rn(x2; c, q)) = cnqn2

(c, cq; q)n

.

Proof. Apply Lp to both sides of Proposition 4.12. By orthogonality, Lp(pj(x)) = 0 for
j > 0, so only the k = n term survives. □

Theorem 4.14. The moments of the type RI q-Lommel polynomials are equal to the even
moments of the even-odd q-Lommel polynomials,

Lr(xm) = Lp(x2m), m ≥ 0.

Proof. Using the three-term recurrence (2.1), the type RI moments Lr(xm) are recursively
determined by [18, Corollary 3.15]

Lr(rn(x; c, q)) = a1a2 · · · an = cnqn2

(c, cq; q)n

, n ≥ 0.

By Proposition 4.13 the moments Lp(x2m) satisfy the same recurrence. □

For completeness, we give the inverse relation to Proposition 4.12.

Proposition 4.15. We have the connection coefficient relation

p2n(x; c, q) =
n∑

k=0

[
n

k

]

q

(−c)kq2nk−(k+1
2 )

(cqn−1, cq2n−1; q−1)k

rn−k(x2; c, q).

Proposition 4.16. The even-odd q-Lommel polynomials have the explicit expressions

p2n(x; c, q) = 1
(c; q)2n

n∑

k=0
(−1)kx2n−2k(cqk; q)2n−2k

k∑

j=0

[
n− j

k − j

]

q

[
n− k + j − 1

j

]

q

cjqjn+(k
2),

p2n+1(x; c, q) = 1
(c; q)2n+1

n∑

k=0
(−1)kx2n−2k+1(cqk; q)2n−2k+1

k∑

j=0

[
n− j

k − j

]

q

[
n− k + j

j

]

q

cjqjn+(k
2).

Proof. This follows from Definition 2.3, by considering the coefficients of x2n−2k−1. □
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5. Moments and continued fractions

In this section we review the known facts which connect continued fractions to moment
generating functions. We independently prove the continued fractions for the moment
generating functions of each of the three q-Lommel polynomials.

Definition 5.1. Take a sequence of orthogonal polynomials pn(x) which satisfy p−1(x) = 0,
p0(x) = 1, and

pn+1(x) = (x− bn)pn(x) − λnpn−1(x), n ≥ 0,
and whose linear functional for orthogonality is Lp. Define

µn({bk}k≥0, {λk}k≥0) = Lp(xn).
The moment generating function for Lp is

∞∑

n=0
Lp(xn)tn =

∞∑

n=0
µn({bk}k≥0, {λk}k≥0)tn.

A Jacobi continued fraction also exists, converging as formal power series in t:
∞∑

n=0
Lp(xn)tn =

1

1 − b0t− λ1t
2

1 − b1t− λ2t
2

1 − . . .

. (5.1)

Definition 5.2 ([18]). For general type RI orthogonal polynomials
rn+1(x) = (x− bn)rn(x) − (anx+ λn)rn−1(x), n ≥ 0,

with linear functional Lr, define
µn({bk}k≥0, {ak}k≥0, {λk}k≥0) = Lr(xn). (5.2)

The corresponding continued fraction for the type RI moment generating function
is [18, Corollary 3.7]

∞∑

n=0
Lr(xn)tn =

1

1 − b0t− a1t+ λ1t
2

1 − b1t− a2t+ λ2t
2

1 − . . .

. (5.3)

Note that both continued fractions in (5.1) and (5.3) are explicitly given in terms of the
three-term recurrence coefficients. We shall evaluate the continued fractions as quotients
of basic hypergeometric series, namely q-Bessel functions, using contiguous relations.

For the Lommel polynomials hn(x; c), it is known that the moment generating function
is a quotient of Bessel functions, with λn = 1/(c+ n− 1)(c+ n),

∞∑

n=0
Lh(xn)tn = 0F1(c+ 1; −t2)

0F1(c; −t2) =
1

1 − λ1t
2

1 − λ2t
2

1 − . . .

.
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The moment generating function for the classical q-Lommel polynomials is a quotient of
q-Bessel functions. In this section we shall see that a corresponding result holds for our
other two q-Lommel polynomials, and in fact their moment generating functions are equal.

Theorem 5.3 ([15, Theorem 14.4.3]). The moment generating function for the classical
q-Lommel polynomials hn(x; c, q) is a quotient of Jackson’s first q-Bessel functions

∞∑

n=0
Lh(xn)tn = 2ϕ1 (0, 0; cq; q,−t2)

2ϕ1 (0, 0; c; q; −t2) =
1

1 − λ1t
2

1 − λ2t
2

1 − . . .

,

where, as in Definition 2.2, λn = cqn−1/((1 − cqn−1)(1 − cqn)).

Theorem 5.4. The moment generating function for the even-odd q-Lommel polynomials
pn(x; c, q) is a quotient of Jackson’s third q-Bessel functions

∞∑

n=0
Lp(xn)tn = 1ϕ1 (0; cq; q; qt2)

1ϕ1 (0; c; q; t2) =
1

1 − λ1t
2

1 − λ2t
2

1 − . . .

,

where, as in Definition 2.3,

λ2n = cq3n−1

(1 − cq2n−1)(1 − cq2n) , λ2n+1 = qn

(1 − cq2n)(1 − cq2n+1) .

Theorem 5.5. The moment generating function for the type RI q-Lommel polynomials
rn(x; c, q) is a quotient of Jackson’s third q-Bessel functions

∞∑

n=0
Lr(xn)zn = 1ϕ1 (0; cq; q; qz)

1ϕ1 (0; c; q; z) =
1

1 − b0z − a1z

1 − b1z − a2z

1 − b2z − . . .

,

where, as in Definition 2.4,

an = cq2n−1

(1 − cqn−1)(1 − cqn) , bn = qn

1 − cqn
.

Theorem 4.14 implies that the two continued fractions in Theorems 5.4 and 5.5 with
z = t2 are equal.

Corollary 5.6. We have the equality of continued fractions
1

1 − b0z − a1z

1 − b1z − a2z

1 − b2z − . . .

=
1

1 − λ1z

1 − λ2z

1 − . . .

,

where an, bn, and λn are defined as in Theorems 5.4 and 5.5.
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Theorems 5.3, 5.4, and 5.5 may all be proven using contiguous relations for hypergeo-
metric and basic hypergeometric series. To prove Theorems 5.3 and 5.4 we use Heine’s
contiguous relation [10, Eq. 17.6.19] which is

2ϕ1 (aq, b; cq; q, z) − 2ϕ1 (a, b; c; q, z) = (1 − b)(a− c)z
(1 − c)(1 − cq) 2ϕ1

(
aq, bq; cq2; q, z

)
.

Equivalently,
2ϕ1 (aq, b; cq; q, z)

2ϕ1 (a, b; c; q, z) =
1

1 − (1 − b)(a− c)z
(1 − c)(1 − cq) · 2ϕ1 (bq, aq; cq2; q, z)

2ϕ1 (b, aq; cq; q, z)

. (5.4)

Applying (5.4) iteratively, we obtain Heine’s continued fraction, which is a q-analogue of
Gauss’s continued fraction.

Lemma 5.7 (Heine’s fraction). We have

2ϕ1 (aq, b; cq; q, z)
2ϕ1 (a, b; c; q, z) =

1

1 − β1z

1 − β2z

1 − . . .

,

where
β2n+1 = (1 − bqn)(a− cqn)qn

(1 − cq2n)(1 − cq2n+1) , β2n = (1 − aqn)(b− cqn)qn−1

(1 − cq2n−1)(1 − cq2n) .

Theorem 5.3 is the special case a = b = 0 and z = −t2 of Lemma 5.7. Theorem 5.4 is
also the limiting case z = −t2/a, b = 0, a → ∞ of Lemma 5.7.

For Theorem 5.5 we need the q-Nörlund fraction [8, Eq. (19.2.7)]. However, to simplify
the expressions we need some notation for continued fractions.

Definition 5.8. For sequences ai and bi, let
m

K
i=0

(
ai

bi

)
=

a0

b0 +
a1

b1 + . . . +
am

bm

,
∞
K
i=0

(
ai

bi

)
=

a0

b0 +
a1

b1 + . . .

.

The following lemma will be used later.

Lemma 5.9. For any sequences {ai : 0 ≤ i ≤ m}, {bi : 0 ≤ i ≤ m}, and {ci : −1 ≤ i ≤ m},
we have

m

K
i=0

(
ai

bi

)
= 1
c−1

m

K
i=0

(
aici−1ci

bici

)
.

Proof. By multiplying the numerator and denominator of the ith fraction by ci, we obtain
a0

b0 +
a1

b1 + . . . +
am

bm

=
a0c0

b0c0 +
a1c0c1

b1c1 + . . . +
amcm−1cm

bmcm

,

which is equivalent to the equation in the lemma. □
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Lemma 5.10 (q-Nörlund fraction). We have

2ϕ1 (a, b; c; q, z)
2ϕ1 (aq, bq; cq; q, z) = 1 − c− (a+ b− ab− abq)z

1 − c
+ 1

1 − c

∞
K
m=1

(
cm(z)

em + dmz

)
,

where

cm(z) = (1 − aqm)(1 − bqm)(cz − abqmz2)qm−1,

em = 1 − cqm,

dm = −(a+ b− abqm − abqm+1)qm.

The q-Nörlund fraction can be restated in the form of a continued fraction for type RI

orthogonal polynomials.

Proposition 5.11 (q-Nörlund fraction restated). We have

2ϕ1 (aq, bq; cq; q, z)
2ϕ1 (a, b; c; q, z) =

1

1 − b0z − a1z + λ1z
2

1 − b1z − a2z + λ2z
2

1 − b2z − . . .

,

where

bm = (a+ b− abqm − abqm+1)qm

1 − cqm
,

am = −(1 − aqm)(1 − bqm)cqm−1

(1 − cqm−1)(1 − cqm) ,

λm = (1 − aqm)(1 − bqm)abq2m−1

(1 − cqm−1)(1 − cqm) .

Proof. By taking the inverse on each side of the equation in Lemma 5.10, we obtain

2ϕ1 (aq, bq; cq; q, z)
2ϕ1 (a, b; c; q, z) = 1 − c

c0(z)

∞
K
m=0

(
cm(z)

em + dmz

)
.

Applying Lemma 5.9 with ci = 1/(1 − cqi) and m → ∞ yields

2ϕ1 (aq, bq; cq; q, z)
2ϕ1 (a, b; c; q, z) = (1 − cq−1)(1 − c)

c0(z)

∞
K
m=0

(
cm(z)/(1 − cqm−1)(1 − cqm)
em/(1 − cqm) + dmz/(1 − cqm)

)
,

which is the same as the desired identity. □

Proof of Theorem 5.5. Replace z by z/b, put a = 0, and let b → ∞ in Proposition 5.11.
The result is Theorem 5.5. □

Note that when b = 0 both Lemma 5.7 and Proposition 5.11 give a continued fraction
expression for

2ϕ1 (a, 0; c; q, z)
2ϕ1 (aq, 0; cq; q, z) .

Therefore we obtain the following theorem.
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Theorem 5.12. We have the equality of continued fractions
1

1 − b0z − a1z

1 − b1z − a2z

1 − b2z − . . .

=
1

1 − λ1z

1 − λ2z

1 − . . .

,

where
an = (aqn − 1)cqn−1

(1 − cqn−1)(1 − cqn) , bn = aqn

1 − cqn
,

λ2n = −cq2n−1(1 − aqn)
(1 − cq2n−1)(1 − cq2n) , λ2n+1 = (a− cqn)qn

(1 − cq2n)(1 − cq2n+1) .

When Theorem 5.12 is interpreted as an equality for moment generating functions, we
find the following generalization of Theorem 4.14 which holds for q-Lommel polynomials.
Corollary 5.13. Let λn, an and bn be given by Theorem 5.12. The 2nth moment of the
orthogonal polynomials defined by pn+1(x) = xpn(x)−λnpn−1(x) is equal to the nth moment
of the type RI polynomials defined by rn+1(x) = (x− bn)rn(x) − anxrn−1(x).

6. Combinatorics of moments of type RI q-Lommel polynomials

The moment generating function for type RI polynomials is given by the continued
fraction in (5.3). For type RI q-Lommel polynomials we give in this section a general
combinatorial interpretation for this infinite continued fraction in terms of parallelogram
polyominoes. We also interpret the finite continued fraction and give an explicit rational ex-
pression using q-Lommel polynomials. To be specific we give a combinatorial interpretation
for the ratio

r(3)
n (x−1; qν+2, q)/r(3)

n+1(x−1; qν+1, q)
of (rescaled) type RI q-Lommel polynomials, Theorem 6.9. This is a finite version of the
result of Bousquet-Mélou and Viennot [4]. The n → ∞ limit of Theorem 6.9 yields a
quotient of q-Bessel functions,

J
(3)
ν+1(x1/2; q−1)/J (3)

ν (x1/2; q−1)
which is the moment generating function for the type RI q-Lommel polynomials. This
material appears in our unpublished manuscript [17, Section 5].

We shall need several definitions related to parallelogram polyominoes and Motzkin
paths.
Definition 6.1. An NE-path is a lattice path from (0, 0) to (a, b) for some positive integers
a, b consisting of north steps (0, 1) and east steps (1, 0). A parallelogram polyomino is a
set of unit squares enclosed by two NE-paths with the same ending points that do not
intersect except the starting and ending points. Denote by P the set of parallelogram
polyominoes.

For a parallelogram polyomino α ∈ P let U(α) be the upper boundary path and D(α)
the lower boundary path; see Figure 1. A diagonal of α is the set of squares in α whose
centers are on the line x+ y = i for some integer i. The size of a diagonal is the number
of squares in it. See Figure 2.
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U(α)

D(α)

Figure 1. The boundary paths U(α) and D(α) for a parallelogram polyomino.

Figure 2. A diagonal with size 3 in a parallelogram polyomino.

n+ 1 n+ 1 n+ 1 n+ 1

Figure 3. From left to right are shown an NN-diagonal, EE-diagonal,
NE-diagonal, and EN-diagonal of size n+ 1 whose weights are, respectively,
an, bn, cn, and dn.

Definition 6.2. We denote by P≤k the set of parallelogram polyominoes in which every
diagonal has size at most k.

Consider α ∈ P and a diagonal τ of α. Let u (resp. d) be the northwest (resp. southeast)
corner of the topmost (resp. bottommost) square of τ . There are four cases for d. We say
that d is an NN-diagonal (resp. NE-diagonal, EN-diagonal, and EE-diagonal) if the step
in U(α) starting at u is a north (resp. north, east, and east) step and the step in D(α)
starting at d is a north (resp. east, north, and east) step. See Figure 3.

For sequences {an}n≥0, {bn}n≥0, {cn}n≥0, and {dn}n≥0, define the weight wt(α; a, b, c, d)
of α ∈ P to be the product of an (resp. bn, cn, and dn) for each NN-diagonal (resp. EE-
diagonal, NE-diagonal, and EN-diagonal) of size n+ 1.

Now we review Flajolet’s theory [13] on continued fraction expressions for Motzkin path
generating functions.

Definition 6.3. A Motzkin path is a lattice path from (0, 0) to (n, 0) consisting of up steps
(1, 1), down steps (1,−1), and horizontal steps (1, 0) that never goes below the x-axis. A
2-Motzkin path is a Motzkin path in which every horizontal step is colored red or blue.
The height of a 2-Motzkin path is the largest integer y for which (x, y) is a point in the
path.
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c0

c1 c1

c2a2 b2
d2 b1

d3 a2

d2

d1 b0

Figure 4. A 2-Motzkin path p in Motz≤3
2 with wt(p; a, b, c, d) = a2

2b0b1b2c0c
2
1c2d1d

2
2d3.

The blue horizontal edges are represented by double edges.

Denote by Motz2 the set of all 2-Motzkin paths and by Motz≤m
2 the set of all 2-Motzkin

paths with height at most m.
For sequences {an}n≥0, {bn}n≥0, {cn}n≥0, and {dn}n≥0, define the weight wt(p; a, b, c, d)

of a 2-Motzkin path p to be the product of an (resp. bn, cn, and dn) for each red horizontal
step (resp. blue horizontal step, up step, and down step) starting at height n; see Figure 4.

Flajolet’s theory [13] proves the following lemma for a finite continued fraction.

Lemma 6.4. Given sequences {an}n≥0, {bn}n≥0, {cn}n≥0, and {dn}n≥0, we have
∑

p∈Motz≤m
2

wt(p; a, b, c, d) =
1

1 − a0 − b0 − c0d1

1 − a1 − b1 − ... − cm−1dm

1 − am − bm

.

There is a well-known bijection between 2-Motzkin paths and parallelogram polyominoes.

Definition 6.5 (The map ϕ : Motz≤m
2 → P≤m+1). Let p ∈ Motz≤m

2 . Then ϕ(p) = α is
the parallelogram polyomino whose upper and lower boundary paths U,D are constructed
by the following algorithm.
(1) The first step of U (resp. D) is a north (resp. east) step.
(2) For i = 1, 2, . . . , n, where n is the number of steps in p, the (i+ 1)st steps of U and D

are defined as follows.
(a) If the ith step of p is an up step, then the (i+ 1)st step of U (resp. D) is a north

(resp. east) step.
(b) If the ith step of p is a down step, then the (i+ 1)st step of U (resp. D) is a east

(resp. north) step.
(c) If the ith step of p is a red horizontal step, then the (i+ 1)st steps of U and D are

both north steps.
(d) If the ith step of p is a blue horizontal step, then the (i+ 1)st steps of U and D are

both east steps.
(3) Finally, the last step of U (resp. D) is an east (resp. north) step.

For example, if p is the 2-Motzkin path in Figure 4, then ϕ(p) is the parallelogram
polyomino α in Figure 1.

It is easy to see from the construction that ϕ : Motz≤m
2 → P≤m+1 is a bijection such

that if ϕ(p) = α, then wt(α; a, b, c, d) = d0 wt(p; a, b, c, d).
Therefore we obtain the following proposition from Lemma 6.4, which changes the

weighted 2-Motzkin paths into weighted parallelogram polyominoes.
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Proposition 6.6. Given sequences {an}n≥0, {bn}n≥0, {cn}n≥0, and {dn}n≥0, we have
∑

α∈P≤m+1

wt(α; a, b, c, d) =
d0

1 − a0 − b0 − c0d1

1 − a1 − b1 − ... − cm−1dm

1 − am − bm

.

As a special case in Proposition 6.6, if {an}n≥0, {bn}n≥0, {cn}n≥0, and {dn}n≥0 are the
sequences given by an = qn+1Y , bn = qn+1X, cn = qn+1XY , and dn = qn+1, then one can
easily check that

XY · wt(α; a, b, c, d) = Xcol(α)Y row(α)qarea(α).

Thus we obtain the following corollary.
Corollary 6.7. We have
∑

α∈P≤m+1

Xcol(α)Y row(α)qarea(α) =
qXY

1 − q(X + Y ) − q3XY

1 − q2(X + Y ) − . . . − q2m+1XY

1 − qm+1(X + Y )

.

For the rest of this section we will find a finite version of the following result due to
Bousquet-Mélou and Viennot [4].
Theorem 6.8 ([9] for ν = 0 and [4] for general ν). The trivariate generating function for
parallelogram polyominoes is

∑

α∈P
(qνx)col(α)(qν)row(α)qarea(α) = −qνx1/2J

(3)
ν+1(x1/2; q−1)
J

(3)
ν (x1/2; q−1)

.

In fact Delest and Fédou [9] (for ν = 0), and Bousquet-Mélou and Viennot [4] state
their results in the following equivalent form:

∑

α∈P
xcol(α)yrow(α)qarea(α) = qxy

1 − qy
· 1ϕ1 (0; q2y; q, q2x)

1ϕ1 (0; qy; q, qx) .

Bousquet-Mélou and Viennot [4] also showed that
∑

α∈P
xcol(α)yrow(α)qarea(α) =

qxy

1 − q(x+ y) − q3xy

1 − q2(x+ y) − q5xy

. . .

. (6.1)

We note that in [4, Corollary 4.6] the sequence of the coefficients of (x + y) in the
continued fraction (6.1) was inadvertently written q, q3, q5, . . . , where the correct sequence
is q, q2, q3, . . . We also note that there are similar results in [1].

For a sequence s = {sn}n≥0, define δs = {sn+1}n≥0. Kim and Stanton [18, Eq. (5.4)]
showed that for given sequences b = {bn}n≥0, a = {an}n≥0, and λ = {λn}n≥0, and for a
nonnegative integer k,

xmPm(x−1; δb, δa, δλ)
xm+1Pm+1(x−1; b, a, λ) = 1

−a0x− λ0x2

m

K
i=0

(
−aix− λix

2

1 − bix

)
. (6.2)
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Now we are ready to prove a finite version of Theorem 6.8.

Theorem 6.9. The trivariate generating function for bounded diagonal parallelogram
polyominoes is

∑

α∈P≤m+1

(qνx)col(α)(qν)row(α)qarea(α) = q2ν+1

1 − qν+1 · r(3)
m (x−1; qν+2, q)

r
(3)
m+1(x−1; qν+1, q)

. (6.3)

Proof. Let b = {bi}i≥0, a = {ai}i≥0, and λ = {λi}i≥0, where

bi = qν+i+1

1 − qν+i+1 , ai = q2ν+2i+1

(1 − qν+i)(1 − qν+i+1) , λi = 0.

Then Pm(x; b, a, λ) = r(3)
m (x; qν+1, q) and Pm(x; δb, δa, δλ) = r(3)

m (x; qν+2, q). By (6.2),

r(3)
m (x−1; qν+2, q)

xr
(3)
m+1(x−1; qν+1, q)

= xmPm(x−1; δb, δa, δλ)
xm+1Pm+1(x−1; b, a, λ) = 1

−a0x

m

K
i=0

( −aix

1 − bix

)
.

By Lemma 5.9 with ci = 1 − qν+i+1,

1
−a0x

m

K
i=0

( −aix

1 − bix

)
= 1

−a0x

1
c−1

m

K
i=0

(−aici−1cix

ci − bicix

)

=1 − qν+1

−q2ν+1x

m

K
i=0

(
−q2ν+2i+1x

1 − qν+i+1 − qν+i+1x

)
.

Letting X = qνx and Y = qν , and combining the above equations, we obtain

q2ν+1

1 − qν+1 · r(3)
m (x−1; qν+2, q)

r
(3)
m+1(x−1; qν+1, q)

= −
m

K
i=0

(
−q2i+1XY

1 − qi+1(X + Y )

)
.

Corollary 6.7 then completes the proof. □

Remark 6.10. It is well known that the generating function for bounded Motzkin paths
is given by a ratio of orthogonal polynomials; see e.g. Flajolet [13], Viennot [28, Ch. V,
Eq. (27)], or Krattenthaler [24, Theorem 10.11.1]. The argument in this section implies
that the left-hand side of (6.3) is the generating function for certain weighted bounded
Motzkin paths. Theorem 6.9 shows that this generating function is also equal to a ratio of
type RI polynomials.

By (3.4), taking the limit m → ∞ in Theorem 6.9 we obtain Theorem 6.8. We may also
use Theorem 4.11 to write the finite continued fraction as an explicit rational function.

Corollary 6.11. The trivariate generating function for bounded diagonal parallelogram
polyominoes is

∑

α∈P≤n+1

xcol(α)yrow(α)qarea(α) = −
x
∑n

k=0
∑n−k

a=0 (−1)kxay−k−aq−(k
2)−2k

[
k+a

a

]
q−1

[
n−a

k

]
q−1

∑n+1
k=0

∑n+1−k
a=0 (−1)kxay−k−aq−(k

2)−k
[

k+a
a

]
q−1

[
n+1−a

k

]
q−1

.

Cigler and Krattenthaler [7] found a different finite version of Theorem 6.8.
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Theorem 6.12 ([7, Corollary 55]). For any integer k ≥ 1, we have

∑

α∈P≤k
1

xcol(α)yrow(α)qarea(α) = −
y
∑k

j=1(−1)jxjq(
j+1

2 )∑k−j
i=0 (yq)i

[
k−i−1

j−1

]
q

[
i+j−1

j−1

]
q

∑k
j=0(−1)jxjq(

j+1
2 )∑k−j

i=0 (yq)i
[

k−i
j

]
q

[
i+j−1

j−1

]
q

,

where P≤k
1 is the set of parallelogram polyominoes such that each column has length at

most k and
[

i
−1

]
q

= δi,−1.

Remark 6.13. The second odd-even trick (7.1) with λ2k−1 = qky and λ2k = qk gives

1 +
qy

1 − q(x+ y) − q3xy

1 − q2(x+ y) − q5xy

. . .

=
1

1 − qy

1 − qx

1 − q2y

1 − q2x

. . .

.

Remark 6.14. There are also finite versions of Theorem 6.9 for the classical q-Lommel
polynomials and the even-odd q-Lommel polynomials. The rational function is again a
quotient of orthogonal polynomials while the weights on P≤m+1 depend upon the diagonals.

Here are the infinite continued fractions for these two cases. For the classical q-Lommel
polynomials, Theorem 5.3 becomes

2ϕ1(0, 0; q2y; q; −qx)
2ϕ1(0, 0; qy; q; −qx) =

1 − qy

1 − qy − q2xy

1 − q2y − q3xy

1 − q3y − q4xy

. . .

.

For the even-odd q-Lommel polynomials, Theorem 5.4 becomes

1ϕ1(0; q2y; q; q2x)
1ϕ1(0; qy; q; qx) =

1 − qy

1 − qy − A1

1 − q2y − A2

1 − q3y − A3
. . .

where A2k−1 = xqk and A2k = xyq3k/2+1.

7. Concurrence of moments

Recall the notation (5.2) for the moments µn

(
{bk}k≥0, {ak}k≥0, {λk}k≥0

)
, which we also

write µn ({bk}, {ak}, {λk}), or µn ({bk}, {λk}) when ak = 0. There is a concurrence of
moments (see Propositions 4.5 and 4.6), which we call the first and second odd-even tricks

µ2n ({0}, {λk}) = µn ({λ2k + λ2k+1}, {λ2kλ2k−1}) ,
µ2n+2 ({0}, {λk}) = λ1µn ({λ2k+2 + λ2k+1}, {λ2kλ2k+1}) . (7.1)
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The classical orthogonal polynomial moments are a special case of type RI moments

µn({bk}, {0}, {λk}) = µn ({bk}, {λk}) .

There is another concurrence of moments, which follows from [18, Corollary 3.7]

µ2n({0}, {ak}) = µn({0}, {ak}, {0}). (7.2)

It is known [18] that a type RI moment µn({bk}, {ak}, {λk}) is a nonnegative polynomial
in the recurrence coefficients. Besides (7.2) Theorem 4.14 is another example of classical
orthogonal polynomial moments being equal to type RI moments

µ2n ({0}, {Λk}) = µn ({bk}, {ak}, {0}) . (7.3)

The main result in this section is Theorem 7.2, which expresses the Λk as a function of
the sequences ak and bk, thereby providing the concurrence (7.3).

To prove Theorem 7.2 we need to recall a classical result and notation. The Hankel
determinant [6, Theorem 4.2] will be used:

det(µi+j ({bk}k≥0, {λk}k≥0))n
i,j=0 = λn

1λ
n−1
2 · · ·λ1

n.

Recall that for a sequence a = {ak}k≥0 we write δa = {ak+1}k≥0. We also define δ−1a =
{ak−1}k≥0, where a−1 = 1 (the value of a−1 is irrelevant for our purpose).

Definition 7.1. A Schröder path is a lattice path from (r, 0) to (s, 0), for some integers
r, s, consisting of northeast steps (1, 1), east steps (1, 0), and south steps (0,−1) that never
goes below the x-axis. Given sequences b = {bk}k≥0 and a = {ak}k≥0, the weight wt(P ) of
a Schröder path P is the product of bi for each east step starting at height i and ai for
each south step starting at height i.

Our main theorem of this section is the next theorem.

Theorem 7.2. Suppose that sequences b = {bk}k≥0, a = {ak}k≥0, and Λ = {Λk}k≥0 satisfy

µ2n ({0}, {Λk}) = µn ({bk}, {ak}, {0}) .

Then

Λ1Λ2 · · · Λ2n = fn(a, b)
fn−1(a, b)

,

where
fn(a, b) =

∑

p

wt(p),

and the sum is over all n-tuples p = (P0, P1, . . . , Pn) of non-intersecting Schröder paths,
Pk : (−k, 0) → (k, 0), 0 ≤ k ≤ n. Moreover,

Λ1Λ2 · · · Λ2n−1 = a−1
0

fn(δ−1a, δ−1b)
fn−1(δ−1a, δ−1b) ,

and if ak = bk = 1 then
fn({1}, {1}) = 2(n+1

2 ).
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Proof. Let

ρn := µ2n ({0}, {Λk}) = µn ({bk}, {ak}, {0}) ,
∆n := det(ρi+j)0≤i,j≤n.

Using the odd-even trick Bn = Λ2n+1 + Λ2n and Θn = Λ2n−1Λ2n, we have

ρn = µ2n ({0}, {Λk}) = µn({Bk}, {Θk}).

Therefore

∆n = det(µi+j({Bk}, {Θk}))0≤i,j≤n = Θn
1 Θn−1

2 · · · Θ1
n = Λn

1 Λn
2 Λn−1

3 Λn−1
4 · · · Λ1

2n−1Λ1
2n,

which shows Λ1Λ2 · · · Λ2n = ∆n/∆n−1.
Kim and Stanton [18, Corollary 3.7] showed that µn ({bk}, {ak}, {0}) is the sum of weights

of all Schröder paths from (0, 0) to (n, 0). Since ∆n = det(µi+j ({bk}, {ak}, {0}))0≤i,j≤n,
the (n+ 1) × (n+ 1) determinant ∆n is the signed generating function for (n+ 1)-tuples
of Schröder paths (P0, . . . , Pn), Pk : (−k, 0) → (σ(k), 0), for some permutation σ of
{0, 1, . . . , n}. Because there are no SE edges (λk = 0), any two paths which intersect do so
at integer coordinates. Thus we may apply the Lindström–Gessel–Viennot lemma of tail
swapping to reduce this sum to non-intersecting paths, σ = identity, Pk : (−k, 0) → (k, 0).
Thus ∆n = fn(a, b) and we obtain the identity for Λ1Λ2 · · · Λ2n.

Now using the second odd-even trick B′
n = Λ2n+2 + Λ2n+1 and Λ′

n = Λ2n+1Λ2n, we have

ρn+1 = µ2n+2 ({0}, {Λk}) = Λ1µn({B′
k}, {Λ′

k}).

Then

∆′
n := det(ρi+j+1)0≤i,j≤n−1 = Λn

1 det(µi+j({B′
k}, {Λ′

k}))0≤i,j≤n−1

= Λn
1 Λn−1

2 Λn−1
3 · · · Λ1

2n−2Λ1
2n−1,

so
Λ1Λ2 · · · Λ2n−1 = ∆′

n/∆′
n−1.

As in the even case, ∆′
n = det(µi+j+1 ({bk}, {ak}, {0}))0≤i,j≤n−1 is the generating function

for n-tuples non-intersecting Schröder paths p′ = (P ′
1, . . . , P

′
n), P ′

k : (−k + 1, 0) → (k, 0).
For 1 ≤ k ≤ n, let Pk be the path from (−k,−1) to (k,−1) obtained from P ′

k by adding a
northeast step at the beginning and a south step at the end, and let P0 be the empty path
from (0,−1) to (0,−1). This gives a bijection from n-tuples non-intersecting Schröder
paths p′ = (P ′

1, . . . , P
′
n), P ′

k : (−k+1, 0) → (k, 0) to (n+1)-tuples non-intersecting Schröder
paths p = (P0, P1, . . . , Pn), Pk : (−k,−1) → (k,−1). Note that the starting point of Pk

has height −1, which shifts the indices of ak and bk down by one. This shows that

∆′
n = a−n

0 det(µi+j ({bk−1}, {0}, {ak−1}))0≤i,j≤n = a−n
0 fn(δ−1a, δ−1b),

and we obtain the identity for Λ1Λ2 · · · Λ2n−1.
Finally, the fact that ∆n = 2(n+1

2 ) and ∆′
n = 2(n+1

2 ) if ak = bk = 1 for all k follows
from [18, Theorem 6.15, A = B = 1, C = 0]. □

The first few values of Λ1 · · · Λk in Theorem 7.2 are
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Λ1 = a−1
0
f1(δ−1a, δ−1b)
f0(δ−1a, δ−1b) = a1 + b0

1 ,

Λ1Λ2 = f1(a, b)
f0(a, b)

= a1
a2 + b1

1 ,

Λ1Λ2Λ3 = a−1
0
f2(δ−1a, δ−1b)
f1(δ−1a, δ−1b)

= a1
a1a2a3 + a2

2b0 + a2a3b0 + 2a2b0b1 + b0b
2
1 + a1a2b2 + a2b0b2

a1 + b0
,

Λ1Λ2Λ3Λ4 = f2(a, b)
f1(a, b)

= a1a2
a2a3a4 + a2

3b1 + a3a4b1 + 2a3b1b2 + b1b
2
2 + a2a3b3 + a3b1b3

a2 + b1
.

Remark 7.3. Eu and Fu [11] used the idea relating ∆n and ∆′
n−1 in the proof of Theorem 7.2

to give a simple proof of the Aztec diamond theorem, which is equivalent to the result
∆n = 2(n+1

2 ) when ak = bk = 1.

8. Open problems

Recall that Kishore’s theorem is a statement about the power series coefficients of the
ratio Jν+1(x)/Jν(x) of two Bessel functions.

Theorem 8.1 (Kishore [19]). We have
Jν+1(z)
Jν(z) =

∞∑

n=1

Nn,ν

Dn,ν

(
z

2

)2n−1
,

where
Dn,ν =

n∏

k=1
(k + ν)⌊n/k⌋,

and Nn,ν is a polynomial in ν with nonnegative integer coefficients.

We conjecture the following finite version of Kishore’s theorem on a ratio of Lommel
polynomials Lm,ν(x) defined in Section 3.

Conjecture 8.2. Let
Lm,ν+2(x)
Lm+1,ν+1(x) =

∞∑

n=0

N (m)
n,ν

D
(m)
n,ν

(
x

2

)2n+1
,

where
D(m)

n,ν =
m∏

k=0
(ν + k + 1)f(m,n,k),

f(m,n, k) =





max
(⌊
n+ 1
k + 1

⌋
,

⌊
n+m− 2k + 1
m− k + 1

⌋)
, if k ̸= m/2,

1, if k = m/2.
Then N (m)

n,ν is a polynomial in ν with nonnegative integer coefficients.
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In Section 5 we saw that the ratio
J

(3)
ν+1(z; q−1)
J

(3)
ν (z; q−1)

= −qν+1z

1 − qν+1 · 1ϕ1 (0; qν+2; q, qν+2z2)
1ϕ1 (0; qν+1; q, qν+1z2)

has two generalizations, the q-Nörlund continued fraction and Heine’s continued fraction.
These two generalizations seem to have a similar property as follows.

Conjecture 8.3. Let
∑

n≥0
γn(a, b, c)zn = 2ϕ1 (aq, bq; cq; q, z)

2ϕ1 (a, b; c; q, z) .

Then
γn(a, b, c)

1 − c
= Pn(a, b, c)
∏n

k=0(1 − cqk)⌊n+1
k+1 ⌋ ,

for some polynomial Pn(a, b, c) in a, b, c, q with integer coefficients.

Conjecture 8.4. Let
∑

n≥0
γ′

n(a, b, c)zn = 2ϕ1 (aq, b; cq; q, z)
2ϕ1 (a, b; c; q, z) .

Then
γ′

n(a, b, c)
1 − c

= P ′
n(a, b, c)

∏n
k=0(1 − cqk)⌊n+1

k+1 ⌋ ,

for some polynomial P ′
n(a, b, c) in a, b, c, q with integer coefficients.

Note that, between these two conjectures, only the second argument of the 2ϕ1 in the
numerator differs (namely, bq vs b).

Problem 8.5. Find a combinatorial proof of Theorem 5.12.

Problem 8.6. Find a combinatorial proof of Theorem 6.9, which contains the Bousquet-
Mélou–Viennot result Theorem 6.8.

Problem 8.7. Find an Askey scheme whose top element is the associated Askey–Wilson
polynomial which contains the q-Lommel polynomials. As an alternative, a referee has
suggested that an Askey scheme with non-polynomial entries may exist which contains the
q-Lommel polynomials.
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Abstract. Building on the notion of q-integral introduced by Thomae in 1869, we
introduce q-order statistics (that, is q-analogues of the classical order statistics, for
0 < q < 1) which arise from dependent and not identically distributed q-continuous
random variables and to study their distributional properties. We study the q-
distribution functions and the q-density functions of the relative q-ordered random
variables. We focus on q-ordered variables arising from dependent and not identically
q-uniformly distributed random variables and we derive their q-distributions, including
q-power law, q-beta and q-Dirichlet distributions.
Keywords: q-order statistics, q-multinomial formulae, univariate and multivariate
q-continuous random variables, q-uniform distribution, q-power law distribution, q-beta
distribution, q-Dirichlet distribution, waiting times of the Heine process.

1. Introduction

Order statistics and their properties have been studied thoroughly the last decades.
The literature devoted to order statistics from independent and identically distributed
random variables is very extensive. The study of order statistics arising from independent
or dependent and not identically distributed, random variables, is of great research interest.
Excellent references devoted to order statistics are, among others, the work of Arnold,
Balakrishnan and Nagaraja [2], Balakrishnan [3], David and Nagaraja [8], or Papadatos [13].

In the field of discrete q-distributions, Charalambides [6, p.167] has presented the order
statistics arising from independent and identically distributed random variables, with
common distribution a discrete q-uniform distribution. Charalambides [4, 5] also has
studied the distributions of the record statistics in q-factorially increasing populations.

The main objective of this work is to introduce q-order statistics, for 0 < q < 1, arising
from dependent and not identically distributed q-continuous random variables and to
study their distributional properties. We introduce q-order statistics as q-analogues of the
classical order statistics. We study the q-distribution functions and q-density functions
of the relative q-ordered random variables. We focus on q-ordered variables arising from
dependent and not identically q-uniformly distributed random variables and we derive their
q-distributions, including q-power law, q-beta and q-Dirichlet distributions. Moreover, we
consider the Heine process, which had been introduced by Kyriakoussis and Vamvakari [12];
see also the work of Kemp [11]. Note that our notion of q-distribution is not related to
the q-Gaussian distribution, or to other Tsallis distributions [14].
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We prove that a conditional q-joint distribution of the waiting times of the Heine process
coincides with the joint q-density function of q-ordered random variables arising from
dependent q-continuous random variables.

This work contains three sections along with the introductory Section 1. In the
preliminary Section 2, we present all our q-definitions. In the main Section 3, we state
and prove our results concerning the q-order statistics and their distributional properties.

2. Preliminaries, definitions and notation

In this section, we define the q-series, the univariate and multivariate q-continuous
random variables, the Heine process, and the q-uniform distribution. It will allow us to
study q-order statistics in the next section.

2.1. q-Series preliminaries. The q-shifted factorials are

(a; q)0 := 1, (a; q)n :=
n∏

k=1
(1 − aqk−1), n = 1, 2, . . . , or ∞.

The multiple q-shifted factorials are defined by

(a1, . . . , ak; q)n :=
k∏

j=1
(aj; q)n

The q-binomial coefficient is defined by
[
ν
k

]

q

= (q; q)n

(q; q)k(q; q)n−k

= [n]q!
[k]q![n − k]q

, k = 0, 1, . . . , n,

where
[n]q! = [1]q[2]q · · · [n]q = (q; q)n

(1 − q)n
=
∏n

k=1(1 − qk)
(1 − q)n

is the q-factorial number of order n with [t]q = 1−qt

1−q
.

The kth-order factorial of the number [n]q is called q-factorial of n of order k and is given
by

[n]k = [n]q[n − 1]q · · · [n − k + 1]q, k = 1, 2, . . . , n .

Note that

[n]q−1 = q−n+1[n]q, [n]q−1 ! = q−(n
2)[n]q! and

[
n
k

]

1
q

= q−k(n−k)
[
n
k

]

q

.

The q-binomial coefficient
[
n
k

]

q

, equals the k-combinations {m1, . . . , mk} of the set

{1, . . . , n}, weighted by qm1+···+mk−(k+1
2 ),

∑

1≤m1<···<mk≤n

qm1+···+mk−(k+1
2 ) =

[
n
k

]

q

. (2.1)

Let n be a positive integer and let x, y and q be real numbers, with q ̸= 1. Then, a version
of q-Vandermonde’s formula is

[
x + y

n

]

q

=
n∑

k=0

[
n
k

]

q

qk(y−n+k)[x]k[y]n−k.
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An interesting q-identity deduced by the above version of q-Vandermonde’s formula is
n∑

k=0
(−1)k

[
n
k

]

q

q(k+1
2 )−n(y+k) [y]q

[y + k]q
= 1[

y + n
n

]

q

. (2.2)

Note that from the above equation we have the corresponding q−1-identity
n∑

k=0
(−1)k

[
n
k

]

q

q(k+1
2 )+ny [y]q

[y + k]q
= 1[

y + n
n

]

1
q

. (2.3)

The q-binomial formula is
n∏

i=1
(1 + tqi−1) =

n∑

k=0
q(k

2)
[
n
k

]

q

tk.

The above q-binomial formula, by replacing q by q−1 and t by −t, becomes
n∏

i=1
(1 − tq−(i−1)) =

n∑

k=0
(−1)kq−(k

2)
[
n
k

]

1
q

tk =
n∑

k=0
(−1)kq−(k

2)−k(n−k)
[
n
k

]

q

tk. (2.4)

The q-multinomial coefficient is defined for nonnegative integers n and ki’s by
[

n
k1, . . . , kr

]

q

= [n]q!
[k1]q · · · [kr]q![n − k1 − · · · − kr]q!

.

We then have the two following equivalent expressions for the q−1-multinomial coefficient
[

n
k1, . . . , kr

]

1
q

= q−(n
2)+
∑r+1

j=1 (kj
2 )
[

n
k1, . . . , kr

]

q

(2.5)

= q−
∑r

j=1 kj(n−k1−···−kj)
[

n
k1, . . . , kr

]

q

.

An ordered set partition of A is a sequence (A1, . . . , Am) of non-empty disjoint subsets
of A, such that A1 ∪ · · · ∪ Am = A. Using the notation from Flajolet and Sedgewick’s book
Analytic Combinatorics [9], ordered set partitions are accordingly defined by the symbolic
formula Seq(Set≥1), and thus have the (exponential) generating function 1/(2 − exp(t))
of Fubini numbers {Fn}n≥0 = {1, 1, 3, 13, 75, 541, . . . }. E.g., there are 13 ordered set
partitions of {1,2,3}.

Charalambides [7] showed that the q-multinomial coefficient
[

n
k1, . . . , kr

]

q

equals the

number of ordered partitions of the set {1, . . . , n} into r + 1 subsets, (A1, . . . , Ar+1) of
size (k1, . . . , kr+1), if one associates a specific q-weight to each subset. Writing Aj =
{mj,1, . . . , mj,kj

}, this weight is qmj,1+···+mj,kj
−(kj +1

2 ), and one has
[

n
k1, . . . , kr

]

q

=
∑

A1,...,Ar

r∏

j=1
qmj,1+···+mj,kj

−(kj +1
2 ), (2.6)

where the summation is over all the above mentioned ordered partitions of {1, . . . , n}.
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Vamvakari [15] earlier proved the following alternative summation expansion of the
q-multinomial coefficient

∑ r∏

j=1
qkj,1+2kj,2+···+nkj,n−(kj +1

2 ) =
[

n
k1, . . . , kr

]

q

,

where the summation is over all kj,i = 0, 1 such that ∑n
i=1 kj,i = kj (for j = 1, . . . , r).

We shall also use the following q-difference operator (which we also call “q-derivative”)

dqf(x) := f(x) − f(qx)
(1 − q)x . (2.7)

We refer to [1, Chapter 10.2] or [6] for a more thorough discussion of its properties. It is
clear that it is a discrete analogue of the derivative; it satisfies e.g.

dqx
n = 1 − qn

1 − q
xn−1 = [n]qxn−1

and dq(f(x) · g(x)) = g(x)dqf(x) + f(qx)dqg(x). What is more, for differentiable functions,
one has

lim
q→1

dqf(x) = f ′(x).

Now, following [1, Chapter 10.1], we define the q-integral by
∫ a

0
f(x)dqx :=

∞∑

n=0
[aqn − aqn+1]f(aqn), (2.8)

∫ b

a
f(x)dqx :=

∫ b

0
f(x)dqx −

∫ a

0
f(x)dqx.

In this context, dq is sometimes called the Fermat measure, and should not be confused
with the above q-derivative, even if they are, in some sense, related. The q-integral over
[0, ∞) uses the division points {qn : −∞ < n < ∞} and is

∫ ∞

0
f(x)dqx := (1 − q)

∞∑

n=−∞
qnf(qn).

2.2. The Heine process. Kyriakoussis and Vamvakari [12] introduced the Heine process
as a q-analogue of the Poisson process. The Heine process is defined as follows.

Definition 2.1 (Heine Process). A continuous time process {X(t), t > 0}, where X(t)
expresses the number of arrivals in a time interval (0, t], is called Heine process with
parameters 0 < q < 1 and λ > 0, if the following three assumptions hold
(a) The process starts at time 0 with X(0) = 0.
(b) In each time interval of length δ = (1 − q)t, one has 1 arrival with probability p(t),
and 0 arrival with probability 1 − p(t), where

p(t) := λ(1 − q)t
1 + λ(1 − q)t .

That is,

P (X(t) − X(qt) = 1) = p(t) and P (X(t) − X(qt) = 0) = 1 − p(t).
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This implies, for any k ≥ 1:

P
(
X(qk−1t) − X(qkt) = 1

)
= λ(1 − q)qk−1t

1 + λ(1 − q)qk−1t
,

P
(
X(qk−1t) − X(qkt) = 0

)
= 1

1 + λ(1 − q)qk−1t
.

Also, the Heine process has the Heine distribution:

P (X(t) = k) = eq(−λt)q(k
2)(λt)k

[k]q!
,

for k ∈ N, with eq(z) = ∏∞
i=1 (1 − (1 − q)zqi−1)−1, |z| < 1/(1 − q).

2.3. Univariate and multivariate q-continuous random variables. Kyriakoussis
and Vamvakari [12] presented the following definition of q-continuous random variables.
For clarity, let us begin by presenting this concept for one random variable.

Definition 2.2 (q-continuous). A random variable X is called q-continuous (or “Fermat
integrable”, as we integrate over the Fermat measure defined in (2.8)) if there exists a
non-negative function fq(x) (for x ≥ 0) such that

P (α < X ≤ β) =
∫ β

α
fq(x)dqx.

The function fq(x) is called q-density function of the random variable X.

Note that, in particular, one has
∫ ∞

0
fq(x)dqx = 1.

For the corresponding distribution function

F (x) = P (X ≤ x) ,

we have by definition
P (α < X ≤ β) = F (β) − F (α),

and, for x ≥ 0,

F (x) =
∫ x

0
fq(t)dqt.

Taking the q-derivative of the above relation we have

dqF (x) = fq(x)

and by the definition of the q-derivative we obtain

fq(x) = F (x) − F (qx)
(1 − q)x = P (qx < X ≤ x)

(1 − q)x .

Let us now present the case of tuples.
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Definition 2.3 (multivariate q-continuous). A k-variate random variable X = (X1, . . . , Xk)
is called q-continuous (or “Fermat integrable”, as we integrate over the Fermat measure
defined in (2.8)) if there exists a non-negative function fq(x1, . . . , xk) such that

P (α1 < X1 ≤ β1, . . . , αk < Xk ≤ βk) =
∫ βk

αk

· · ·
∫ β1

α1
fq(x1, . . . , xk)dqx1 · · · dqxk.

The function fq(x1, . . . , xk) is called q-density function of the k-variate random variable
X = (X1, . . . , Xk) or joint q-density function of the random variables X1, . . . , Xk.

In particular, we have
∫ ∞

0
· · ·

∫ ∞

0
fq(x1, . . . , xk)dqx1 · · · dqxk = 1.

For the corresponding joint distribution function

F (x1, . . . , xk) = P (X1 ≤ x1, . . . , Xk ≤ xk)

we have
F (x1, . . . , xk) =

∫ xk

0
· · ·

∫ x1

0
fq(t1, . . . , tk)dqt1 · · · dqtk. (2.9)

Building on the notation (2.7), let us define the partial q-derivatives by
∂F (x1, . . . , xk)
∂qxk · · · ∂qx1

= (dqxk) · · · (dqx1)F (x1, . . . , xk).

Then, taking the partial q-derivatives of the relation (2.9), we have
∂F (x1, . . . , xk)
∂qxk · · · ∂qx1

= fq(x1, . . . , xk), xi > 0, i = 1, . . . , k

and by the definition of the partial q-derivative we obtain

fq(x1, . . . , xk) = P (qx1 < X1 ≤ x1, . . . , qxk < Xk ≤ xk)
(1 − q)x1 · · · (1 − q)xk

. (2.10)

The marginal q-density functions of the random variables X, i = 1, . . . , k, are given by

fXi
(xi) =

∫ ∞

0
· · ·

∫ ∞

0
fX (x1, . . . , xk)dqx1 · · · dqxi−1dqxi+1 · · · dqxk, i = 1, . . . , k.

For the needs of this work, we also define the conditional q-density function. Let (X, Y )
be a bivariate q-continuous random variable, with q-density function fq(x, y) ≥ 0, x, y > 0
and fq(y) > 0, y > 0 the marginal q-density function of Y . Then the function

fX|Y (x|y) = fX,Y (x, y)
fY (y) , x > 0

is a q-density function because

fX|Y (x|y) ≥ 0, x > 0

and ∫ ∞

0
fX|Y (x|y)dqx = 1

fY (y)

∫ ∞

0
fX,Y (x, y)dqx = fY (y)

fY (y) = 1.



204 Malvina Vamvakari

Since

P (qx < X ≤ x|qy < Y ≤ y) = P (qx < X ≤ x, qy < Y ≤ y)
P (qy < Y ≤ y)

we confirm that

fX|Y (x|y) = P (qx < X ≤ x|qy < Y ≤ y)
(1 − q)x =

P (qx<X≤x,qy<Y <y)
(1−q)x(1−q)y
P (qy<Y ≤y)

(1−q)y
= fX,Y (x, y)

fY (y) (2.11)

and we give the following definition of conditional q-density function.

Definition 2.4 (conditional q-density). Let (X, Y ) be a bivariate q-continuous random
variable. Let fX,Y (x, y) be its q-density function and fY (y) the marginal q-density function
of Y . If fY (y) > 0 for y > 0, the function

fX|Y (x|y) := fX,Y (x, y)
fY (y)

is called conditional q-density function of the random variable X given that qy < Y < y.

Let (X1, . . . , Xk) be a q-continuous k-variate random variable, with joint q-density
function f(x1, . . . , xk) ≥ 0, xi > 0, i = 1, . . . , k. The conditional q-density function of a
q-continuous r-variate random variable (X1, . . . , Xr) given a q-continuous (k − r)-variate
random variable (Xr+1, Xr+2, . . . , Xk) is expressed as

h(X1,...,Xr)|(Xr+1,Xr+2,...,Xk)(x1, . . . , xr|xr+1, . . . , xk) = f(x1, . . . , xr)
g(xr+1, xr+2, . . . , xk) , (2.12)

where g(xr+1, xr+2, . . . , xk) > 0 is the marginal q-density function of the (k − r)-variate
random variable (Xr+1, Xr+2, . . . , Xk).

2.4. On the q-continuous q-uniform distribution. For the needs of this work we give
the definition of the q-uniform distribution and derive easily its main characteristics and
properties. The q-uniform distribution is defined as follows.

Definition 2.5 (q-uniform). Let X be a q-continuous random variable with q-density
function

fq(x) =




1
β
, 0 ≤ x ≤ β,

0, x < 0 or x > β,
(2.13)

where β > 0. The distribution of the random variable X is called q-uniform distribution
with parameter β.

Note that by the function (2.13) and the definition of the q-integral,
∫ β

0
fq(x)dqx =

∞∑

n=0
β
(
qn − qn+1

)
fq(βqn) = 1,

as required by the definition of a q-density function.
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Proposition 2.6. The r-th q-moments of the q-uniform distribution is given by

µr = E (Xr) = βr

[r + 1]q
. (2.14)

In particular its q-mean and q-variance are given respectively by

µq = E (X) = β

[2]q
and σ2

q = β2q

(1 + q + q2)(1 + 2q + q2) .

Proof. Using the q-density function (2.13) and the definition of the q-integral, the rth
q-moment of the q-uniform distribution,

µr = E (Xr) =
∫ β

0
xrfq(x)dqx,

is easily obtained in the form (2.14). The q-mean and q-variance of X follows. □

Remark 2.7. Let X be a q-continuous random variable obeying a q-uniform distribution
with parameter β, then the linearly transformed q-continuous random variable Y = X

β

obeys the q-uniform distribution with parameter β = 1. Indeed

FY (y) = P (Y ≤ y) = P (X ≤ βy) = FX (βy) =
∫ βy

α
fq(x)dqx = y, 0 ≤ y ≤ 1.

So

fY (y) =




1, 0 ≤ y ≤ 1,

0, y < 0 or y > 1.

In the following proposition, we show that the linear transformation Y = X
β

can be
generalized by considering the transformation Y = FX(X), where FX(x) is a distribution
function of a q-continuous random variable X.

Proposition 2.8. Let X be a q-continuous random variable with probability function
FX(x), x ∈ R. Then the distribution of the q-continuous random variable Y = FX (X) is
the q-uniform distribution with parameter β = 1.

Proof. The distribution function of the q-continuous random variable Y is given, for
0 ≤ y ≤ 1, by

FY (y) = P (Y ≤ y) = P (FX(X) ≤ y) = P
(
X ≤ F −1

X (y)
)

= FX

(
F −1

X (y)
)

= y.

So

fY (y) =




1, 0 ≤ y ≤ 1,

0, y < 0 or y > 1

and the proposition follows. □
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3. Main results

3.1. On the distributions of q-ordered random variables. Let a ν-variate q-continuous
random variable X = (X1, . . . , Xν) be defined in a sample space Ω. Then for the values
x1 = X1(ω), . . . , xν = Xν(ω), ω ∈ Ω there is a permutation (i1, . . . , iν) of the ν indices
{1, . . . , ν}, such that xi1 ≤ · · · < xiν−1 ≤ xiν . The k-th ordered random variable is denoted
by X(k) and defined by

X(k)(ω) = x(k), ω ∈ Ω,

where x(k) = xik
, k = 1, . . . , ν. In particular, for k = 1 this gives X(1) = min{X1, · · · , Xν}

and, for k = ν this gives X(ν) = max{X1, . . . , Xν}. Generally, the following inequalities
hold:

0 ≤ X(1) ≤ · · · ≤ X(ν) ≤ β,

for a positive real number β.

We now introduce the following definition of q-ordered random variables.

Definition 3.1 (q-ordered). Let Y = (Y1, . . . , Yν) be a ν-variate q-continuous random
variable and Y(k), 1 ≤ k ≤ ν, be the corresponding k-th ordered random variables. Assume
that Y(k), 1 ≤ k ≤ ν, satisfy the inequalities

0 ≤ Y(1) < qY(2) < Y(2) < · · · < Y(ν−1) < qY(ν) < Y(ν) ≤ β, (3.1)

for a positive real number β. Then, Y(k) (for any k such that 1 ≤ k ≤ ν) is called the k-th
q-ordered random variables.

Let Y(k), 1 ≤ k ≤ ν, be the k-th q-ordered random variables, where the non-ordered q-
continuous random variables Y1, . . . , Yν , are dependent and not identically distributed. The
non-ordered, dependent and not identically distributed, random variables Yi, i = 1, . . . , ν,
are randomly selected from the same sample space and the corresponding k-th q-ordered
random variables, Y(k), 1 ≤ k ≤ ν, satisfy inequalities (3.1). Each non-ordered random
variable Yi is thus defined on the set

RYi
:= [0, q(i−1)β] = ∪ν

j=iRj,

where Rj := (qjβ, qj−1β] for j = 1, . . . , ν − 1 and Rν := [0, qν−1β]. (3.2)

In particular, one has

∪ν
j=1Rj = [0, β] and Ri ∩ Rj = ∅ for i ̸= j.

Moreover, we assume that the non-ordered random variables Yi’s are not identically
distributed according to their definitions sets but they are distributed with the same
functional form. Furthermore, the stochastic dependencies satisfied by the non-ordered
random variables Yi’s are explicitly defined hereafter.
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For any integer r between 1 and ν, let {i1, . . . , ir} be an r-combination of {1, . . . , ν} sat-
isfying i1 < · · · < ir, and let {ir+1, ir+2, . . . , iν} be its complementary combination (i.e., one
has {i1, . . . , ir} ∪ {ir+1, ir+2, . . . , iν} = {1, . . . , ν}) satisfying ir+1 < ir+2 < · · · < iν . Then,
we assume that the non-ordered random variables Yi’s satisfy the following dependence
relations for y ∈ [0, β]:

P
(
Yir ≤ y|Yi1 ≤ y, . . . , Yir−1 ≤ y

)
= P

(
Yir ≤ qr−1y

)
, (3.3)

P
(
Yir ≤ y|Yi1 > y, . . . , Yir−1 > y

)
= P (Yir ≤ y) , (3.4)

and

P
(
Yim ≤ y|Yi1 ≤ y, . . . , Yir ≤ y, Yir+1 > y, . . . , Yim−1 > y

)

= P (Yim ≤ y|Yi1 ≤ y, Yir ≤ y)

= P
(
Yim,q ≤ qim−(m−r)y

)
, m = r + 1, r + 2, . . . , ν. (3.5)

The q-distribution functions of the maximum, minimum, and k-th q-ordered random
variables (respectively Y(1), Y(ν), and Y(k)) are derived in the following lemma.

Lemma 3.2. Let Y1, . . . , Yν be dependent q-continuous random variables, where
(a) Each Yi is defined on the set RYi

from Formula (3.2).
(b) Each Yi has a q-distribution function FYi

(y) = P (Yi ≤ y), for y ∈ RYi
, of the same

functional form and satisfies the dependence relations (3.3), (3.4), (3.5).
Then, the q-distribution function of the maximum q-ordered random variable Y(ν) = max
{Y1, . . ., Yν}, where Y(i), i = 1, . . . , ν, satisfy inequalities (3.1), is given for y ∈ [0, β] by

FY(ν)(y) =
ν∏

i=1
FYi

(qi−1y). (3.6)

Moreover, the q-distribution function of the minimum q-ordered random variable Y(1) =
min{Y1, . . . , Yν}, where Y(i), i = 1, . . . , ν, satisfy inequalities (3.1), is given by

FY(1)(y) = 1 −
ν∏

i=1
(1 − FYi

(y)) . (3.7)

Furthermore, the q-distribution function of k-th q-ordered random variable Y(k), 1 ≤ k ≤ ν,
where Y(i), i = 1, . . . , ν, satisfy inequalities (3.1), is given for y ∈ [0, β] by

FY(k)(y) =
ν∑

r=k

∑

1≤i1<...<ir≤ν

r∏

j=1
FYij

(
qj−1y

) ν∏

m=r+1

(
1 − FYim

(
qim−(m−r)y

))
, (3.8)

where the inner summation is over all r-combinations {i1, . . . , ir} of the set {1, . . . , ν}.
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Proof. Let FY(ν)(y) be the q-distribution function of Y(ν) = max{Y1, . . . , Yν}, then

FY(ν)(y) = P
(
Y(ν) ≤ y

)
= P (max{Y1, . . . , Yν} ≤ y)

= P (Y1 ≤ y, Y2 ≤ y, . . . , Yν ≤ y)
= P (Y1 ≤ y)P (Y2 ≤ y|Y1 ≤ y) · · · P (Yν ≤ y|Y1 ≤ y, . . . , Yν−1 ≤ y) . (3.9)

By assumptions (a) and (b), still for y ∈ [0, β], the above equation (3.9) becomes

FY(ν)(y) =
ν∏

i=1
FYi

(qi−1y).

Let also FY(1)(y), y ∈ [0, β], be the q-distribution function of Y(1) = min{Y1, . . . , Yν}, then

FY(1)(y) = P
(
Y(1) ≤ y

)
= 1 − P

(
Y(1) > y

)
= 1 − P (min{Y1, . . . , Yν} > y)

= 1 − P (Y1 > y, Y2 > y, . . . , Yν > y)
= 1 − P (Y1 > y)P (Y2 > y|Y1 > y) · · · P (Yν > y|Y1 > y, Y2 > y, . . . , Yν−1 > y)
= 1 − (1 − P (Y1 < y)) (1 − P (Y2 < y|Y1 > y) · · · (1 − P (Yν < y|Y1 > y, . . . , Yν−1 > y)).

(3.10)
By assumptions (a) and (b), the above equation (3.10) becomes

FY(1)(y) = 1 −
ν∏

i=1
(1 − FYi

(y)) , y ∈ [0, β].

Now, let FY(k)(y) be the q-distribution function of Y(k). Then, the event Y(k) ≤ y occurs
if and only if at least k random variables from {Y1, Yν} take values in the set [0, y]
while the remaining ones ν − k take values in the set (y, β]. More precisely, consider
an r-combination {i1, . . . , ir} of {1, . . . , ν, }, with i1 < . . . < ir, and its complementary
combination {ir+1, ir+2, . . . , iν}, with ir+1 < ir+2 < . . . < iν . Then the q-distribution
function of Y(k) is expressed as

FY(k)(y) = P
(
Y(k) ≤ y

)

=
ν∑

r=k

∑

1≤i1<...<ir≤ν

P
(
Yi1 ≤ y, . . . , Yir ≤ y, Yir+1 > y, . . . , Yiν > y

)

=
ν∑

r=k

∑

1≤i1<...<ir≤ν

P (Yi1 ≤ y, . . . , Yir ≤ y) P
(
Yir+1 > y, . . . , Yiν > y|Yi1 ≤ y, . . . , Yir ≤ y

)

=
ν∑

r=k

∑

1≤i1<...<ir≤ν

P
(
Yi1 ≤ y) · · · P (Yir ≤ y|Yi1 ≤ y, . . . , Yir−1 ≤ y

)

· P (Yir+1 > y|Yi1 ≤ y, . . . , Yir ≤ y) · · · P (Yiν > y|Yi1 ≤ y, . . . , Yir ≤ y, Yir+1 > y, . . . , Yiν−1 > y),
(3.11)

still with an inner summation over all r-combinations {i1, . . . , ir} of the set {1, . . . , ν}.
By assumptions (a) and (b), Equation (3.11) becomes

FY(k)(y) =
ν∑

r=k

∑

1≤i1<...<ir≤ν

r∏

j=1
FYij

(
qj−1y

) ν∏

m=r+1

(
1 − FYim

(
qim−(m−r)y

))
,

where the inner summation is over all r-combinations {i1, . . . , ir} of the set {1, . . . , ν}. □
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In the next theorem, we assume that the non ordered random variables Yi, i = 1, 2, . . .
are dependent, q-uniformly distributed on the sets [0, qi−1t], t > 0, i = 1, . . . , ν, respectively,
and we use the above lemma 3.2, to derive the q-distribution function and the q-density
function of the corresponding maximum, minimum and k-th q-ordered random variables
Y(k), k = 1, . . . , ν.

Theorem 3.3. Let Y1, . . . , Yν be dependent q-continuous random variables, q-uniformly
distributed on the sets [0, qi−1t], t > 0, i = 1, . . . , ν, respectively. Assume that the random
variables Yi, i = 1, . . . , ν, satisfy the dependence relations (3.3), (3.4), (3.5). Then, for
y ∈ [0, t], we have the following q-distribution functions and q-density functions:

• For the maximum q-ordered random variable Y(ν) = max{Y1, . . . , Yν} we have

FY(ν)(y) = yν

tν

and

fY(ν)(y) = [ν]q
yν−1

tν
. (3.12)

• For the q-distribution function and q-density function of the minimum q-ordered
random variable Y(1) = min{Y1, . . . , Yν} we have

FY(1)(y) = 1 −
ν∏

i=1

(
1 − y

qi−1t

)

and

fY(1)(y) = [ν]q
qν−1t

ν−1∏

i=1

(
1 − y

qi−1t

)
. (3.13)

• For the q-distribution function and the q-density function of the k-th q-ordered
random variable Y(k) we have

FY(k)(y) =
ν∑

r=k

[
ν
r

]

1
q

yr

tr

ν−r∏

i=1

(
1 − y

qi−1t

)

and

fY(k)(y) = [ν]q!q(ν−k
2 )

[k − 1]q![ν − k]q!q(ν
2)−(k

2)
yk−1

tk

ν−k∏

j=1

(
1 − y

qi−1t

)
. (3.14)

Proof. The theorem assumptions allow us to use Equation (3.6); the q-distribution function
of Y(ν) is thus

FY(ν)(y) =
ν∏

i=1
FYi

(qi−1y) = y

t

qy

qt
· · · qν−1

qν−1t
= yν

tν
.
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Taking the q-derivative of the above relation we have that the q-density function of Y(ν)
is straightforwardly given for y ∈ [0, t] by

fY(ν)(y) = dqFY(ν)(y) = [ν]q
yν−1

tν
.

Note that
∫ t

0
fY(ν)(y)dqy =

∫ t

0
[ν]q

yν−1

tν
dqy = 1,

which is coherent with the fact we have here a q-density function.
Also, the q-distribution function of Y(1), by Equation (3.7) of the previous lemma 3.2, is
straightforwardly given for y ∈ [0, t] by

FY(1)(y) = 1 −
ν∏

i=1
(1 − FYi

(y)) = 1 −
ν∏

i=1

(
1 − y

t

)
.

Taking the q-derivative of the above relation and using the q-binomial formula (2.4), we
have that the q-density function of Y(ν) is expressed as

fY(1)(y) = dqFY(1)(y) = −
ν∑

k=0
(−1)kq−(k

2)
[
ν
k

]

1
q

[k]qyk−1

tk

= [n]q
t

ν−1∑

k=0
(−1)k−1q−(k

2)q−k(ν−k)
[
ν − 1
k − 1

]

q

yk−1

tk−1

= [n]q
qν−1t

ν−1∑

k=0
(−1)k−1q−(k−1

2 )q−(k−1)(ν−k)
[
ν − 1
k − 1

]

q

yk−1

tk−1

= [n]q
qν−1t

ν−1∑

k=0
(−1)k−1q−(k−1

2 )
[
ν − 1
k − 1

]

1
q

yk−1

tk−1 = [ν]q
qν−1t

ν−1∏

i=1

(
1 − y

qi−1t

)
.

Note that using the q-binomial formula (2.4) and the q-identity (2.2), we obtain

∫ t

0
fY(1)(y)dqy = [ν]q

qν−1

ν−1∑

j=0
(−1)jq−(j

2)
[
ν − 1

j

]

1
q

∫ t

0

yj

tj+1 dqy

= [ν]q
qν−1

ν−1∑

j=0
(−1)jq−(j

2)q−j(ν−1−j)
[
ν − 1

j

]

q

1
[j + 1]q

= [ν]q
ν−1∑

j=0
(−1)jq(j+1

2 )q−(j+1)(ν−1)
[
ν − 1

j

]

q

1
[j + 1]q

= [ν]q
1[
ν

ν − 1

]

q

= 1,

which is coherent with the fact we have here a q-density function.
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Moreover, thanks to Equation (3.8), the q-distribution function of Y(k) is given by

FY(k)(y) =
ν∑

r=k

∑

1≤i1<...<ir≤ν

r∏

j=1
FYij

(
qj−1y

) ν∏

m=r+1

(
1 − FYim

(
qim−(m−r−1)y

))

=
ν∑

r=k

∑

1≤i1<...<ir≤ν

y

qi1−1t

qy

qi2−1t
· · · qr−1y

qir−1t

(
1 − y

t

)(
1 − y

qt

)
· · ·

(
1 − y

qν−r−1t

)

=
ν∑

r=k

yr

tr

ν−r∏

i=1

(
1 − y

qi−1t

) ∑

1≤i1<...<ir≤ν

q−i1−···−ir+(r+1
2 ),

where the inner summation is over the r-combinations {i1, . . . , ir} of the set {1, . . . , ν}.
Applying the formula of the q-binomial coefficient (2.1) in the above equation, we obtain

FY(k)(y) =
ν∑

r=k

[
ν
r

]

1
q

yr

tr

ν−r∏

i=1

(
1 − y

qi−1t

)
, y ∈ [0, t].

Taking the q-derivative of the above q-distribution function, using suitably the q-binomial
formula (2.4) and conducting all the needed algebraic manipulations, we have that the
q-density function of Y(k) for 1 ≤ k ≤ ν is expressed (for y ∈ [0, t]) as

fY(k)(y) = dqFY(k)(y) =
ν∑

r=k

q−r(ν−r)
[
ν
r

]

q

[r]q
yr−1

tr

ν−r∏

i=1

(
1 − y

qi−1t

)

+
ν∑

r=k

q−r(ν−r)
[
ν
r

]

q

qryr

tr

ν−r∑

j=0
(−1)jq−(j

2)−j(ν−r−j)
[
ν − r

j

]

q

[j]q
yj−1

tj

= [ν]q
t

ν∑

r=k

q−(ν−r)q−(r−1)(ν−r)
[
ν − 1
r − 1

]

q

yr−1

tr−1

ν−r∏

i=1

(
1 − y

qi−1t

)

− 1
t

ν∑

r=k

q−r(ν−r)
[
ν
r

]

q

qryr

tr
[ν − r]qq−(ν−r−1)

×
ν−r∑

j=0
(−1)j−1q−(j−1

2 )−(j−1)(ν−r−j)
[
ν − r − 1

j − 1

]

q

yj−1

tj−1

= [ν]q
t

ν∑

r=k

q−(ν−r)q−(r−1)(ν−r)
[
ν − 1
r − 1

]

q

yr−1

tr−1

ν−r∏

i=1

(
1 − y

qi−1t

)

− [ν]q
t

ν−1∑

r=k

q−(ν−r−1)q−r(ν−1−r)
[
ν − 1

r

]

q

yr

tr

ν−r−1∏

i=1

(
1 − y

qi−1t

)

= [ν]q
t

q−(ν−k)q−(k−1)(ν−k)
[
ν − 1
k − 1

]

q

yk−1

tk−1

ν−k∏

i=1

(
1 − y

qi−1t

)

= q−k(ν−k) [ν]q!
[k − 1]q![ν − k]q!

yk−1

tk

ν−k∏

j=1

(
1 − y

qi−1t

)

= [ν]q!q(ν−k
2 )

[k − 1]q![ν − k]q!q(ν
2)−(k

2)
yk−1

tk

ν−k∏

j=1

(
1 − y

qi−1t

)
.
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Note that using suitably the q-binomial formula (2.4), the q-identity (2.2) and carrying
out all the needed algebraic manipulations, we obtain

∫ t

0
fY(k)(y)dqy = [ν]q!q(ν−k

2 )

[k − 1]q![ν − k]q!q(ν
2)−(k

2)t

∫ t

0

yk−1

tk−1

ν−k∏

j=1

(
1 − y

qi−1t

)
dqy

= q−k(ν−k) [ν]q!
[k − 1]q![ν − k]q!

ν−k∑

j=0
(−1)jq−(j

2)
[
ν − k

j

]

1
q

∫ t

0

yk+j−1

tj+k
dqy

= q−k(ν−k) [ν]q!
[k]q![ν − k]q!

ν−k∑

j=0
(−1)jq−(j

2)q−j(ν−k−j)
[
ν − k

j

]

q

[k]q
[k + j]q

= [ν]q!
[k]q![ν − k]q!

ν−k∑

j=0
(−1)jq(j+1

2 )−(ν−k)(k+j)
[
ν − k

j

]

q

[k]q
[k + j]q

= [ν]q!
[k]q![ν − k]q!

1[
ν

ν − k

]

q

= 1,

which is coherent with the fact we have here a q-density function. □

Remark 3.4. The random variables Y(1) and Y(ν) follow q-power law distributions (see
Formulas (3.12) and (3.13)) while the random variables Y(2), . . . , Y(ν−1) follow q-beta
distributions (see Formula (3.14)).

In the following lemma, we consider the non-ordered q-continuous random variables,
Y1, . . . , Yν , being dependent and not identically distributed, and we derive the joint
q-distribution function of the q-ordered random variables, Y(1) and Y(ν) that satisfy in-
equalities (3.1).

Lemma 3.5. Let Y1, . . . , Yν be dependent q-continuous random variables, where

(a) Each Yi is defined on the set RYi
from Formula (3.2).

(b) Each Yi has a q-distribution function FYi
(y) = P (Yi ≤ y), for y ∈ RYi

, of the same
functional form and satisfy the dependence relations (3.3), (3.4), (3.5).

Then, the joint q-distribution function of the q-ordered random variables

Y(1) = min{Y1, . . . , Yν} and Y(ν) = max{Y1, . . . , Yν},

is given by

FY(1),Y(ν)(y, z) =
ν∏

i=1
FYi

(qi−1z) −
ν∏

i=1

(
FYi

(qi−1z) − FYi
(y)
)

(3.15)

with y < qν−1z, ν ≥ 1, y, z ∈ [0, β].
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Proof. Let FY(1),Y(ν)(y, z), y < qν−1z, ν ≥ 1, y, z ∈ [0, β], be the joint q-distribution function
of the random variables Y(1) and Y(ν). Using the expression

P
(
Y(1) ≤ y, Y(ν) ≤ z

)
= P

(
Y(ν) ≤ z

)
− P

(
Y(1) > y, Y(ν) ≤ z

)

we then have

FY(1),Y(ν)(y, z) = P
(
Y(1) ≤ y, Y(ν) ≤ z

)
= P

(
Y(ν) ≤ z

)
− P

(
Y(1) > y, Y(ν) ≤ z

)

= P (Y1 ≤ z, Y2 ≤ z, . . . , Yν ≤ z) − P (y < Y1 ≤ z, y < Y2 ≤ z, . . . , y < Yν ≤ z)
= P (Y1 ≤ z)P (Y2 ≤ z|Y1 ≤ z) · · · P (Yν ≤ z|Y1 ≤ z, Y2 ≤ z, . . . , Yν−1 ≤ z)

− P (y < Y1 ≤ z)P (y < Y2 ≤ z|y < Y1 ≤ z) · · ·
· P (y < Yν ≤ z|y < Y1 ≤ z, y < Y2 ≤ z, . . . , y < Yν−1 ≤ z). (3.16)

By assumptions (a) and (b), Equation (3.16) becomes (for y, z ∈ [0, β] such that y < qν−1z):

FY(1),Y(ν)(y, z) =
ν∏

i=1
FYi

(qi−1z) −
ν∏

i=1

(
FYi

(qi−1z) − FYi
(y)
)

. □

In the next theorem, we assume that the non ordered random variables Yi are dependent
and q-uniformly distributed on the sets [0, qi−1t] (for t > 0), and we use the above
lemma 3.5, to derive the joint q-distribution function and the joint q-density function of
the q-ordered random variables Y(1) and Y(ν).

Theorem 3.6. Let Y1, . . . , Yν be dependent q-continuous random variables, q-uniformly
distributed on the sets [0, qi−1t], t > 0, i = 1, . . . , ν, respectively. Assume that the ran-
dom variables Yi satisfy the dependence relations (3.3), (3.4), (3.5). Then, the joint
q-distribution function and the joint q-density function of the q-ordered random variables,
Y(1) = min{Y1, . . . , Yν} and Y(ν) = max{Y1, . . . , Yν} are given respectively by

FY(1),Y(ν)(y, z) = zν

tν
− zν

tν

ν∏

i=1

(
1 − y

qi−1z

)

and

fY(1),Y(ν)(y, z) = q−ν+1[ν]q[ν − 1]q
zν−2

tν

ν−2∏

i=1

(
1 − y

qiz

)

with y < qν−1z, ν ≥ 1, y, z ∈ [0, t].

Proof. With the conditions of the theorem, by Equation (3.15), the q-distribution function
of the random variables Y(1) and Y(ν) becomes

FY(1),Y(ν)(y, z) =
ν∏

i=1
FYi

(qi−1z) −
ν∏

i=1

(
FYi

(qi−1z) − FYi
(y)
)

= z

t

qz

qt
· · · qν−1z

qν−1t
−
(

z

t
− y

t

)(
qz

qt
− y

qt

)(
q2z

q2t
− y

q2t

)
· · ·

(
qν−1z

qν−1t
− y

qν−1t

)

= zν

tν
− zν

tν

ν∏

i=1

(
1 − y

qi−1z

)
.
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Taking the partial q-derivatives of the above joint q-distribution function and using the
q-binomial formula (2.4), we have that the joint q-density function of the random variables
Y(1) and Y(ν) is expressed as

fY(1),Y(ν)(y, z) =
∂FY(1),Y(ν)(y, z)

∂qz∂qy
= − 1

∂qz∂qy

zν

tν

ν∏

i=1

(
1 − y

qi−1z

)

= − 1
∂qz∂qy

zν

tν

ν∑

r=0
(−1)rq−(r

2)
[
ν
r

]

1
q

yr

zr

= − 1
tν

ν∑

r=0
(−1)rq−(r

2)q−r(ν−r)
[
ν
r

]

q

[r]q[ν − r]qyr−1zν−r−1

= zν−2

tν
[ν]q[ν − 1]q

ν∑

r=0
(−1)r−1q−(r

2)q−r(ν−r)
[
ν − 2
r − 1

]

q

yr−1

zr−1

= zν−2

qν−1tν
[ν]q[ν − 1]q

ν∑

r=0
(−1)r−1q−(r−1

2 )q−(r−1)(ν−r−1)
[
ν − 2
r − 1

]

q

yr−1

(qz)r−1

= zν−2

qν−1tν
[ν]q[ν − 1]q

ν∑

j=0
(−1)jq−(j

2)q−j(ν−2−j)
[
ν − 2

j

]

q

yj

(qz)j

= q−ν+1[ν]q[ν − 1]q
zν−2

tν

ν−2∏

i=1

(
1 − y

qiz

)
.

Note that using suitably the q-binomial formula (2.4), the q−1-identity (2.3) and carrying
out all the needed algebraic manipulations, we obtain

∫ t

0

∫ qν−1z

0
fY(1),Y(ν)(y, z)dqydqz

= q−ν+1

tν
[ν]q[ν − 1]q

ν∑

j=0
(−1)jq−(j

2)q−j(ν−2−j)−j

[
ν − 2

j

]

q

∫ t

0

∫ qν−1z

0
yjzν−2−jdqydqz

= q−ν+1

tν
[ν]q[ν − 1]q

ν∑

j=0
(−1)jq−(j

2)q−j(ν−2−j)−j

[
ν − 2

j

]

q

q(ν−1)(j+1)tν

[j + 1]q[ν]q

= q−ν+2[ν − 1]q
ν∑

j=0
(−1)jq(j+1

2 )+ν−2
[
ν − 2

j

]

q

[1]q
[1 + j]q

= q−ν+2[ν − 1]q
1[

ν − 1
ν − 2

]

1
q

= 1

which is coherent with the fact we have here a q-density function. □

In the following lemma, we consider the non-ordered q-continuous random variables,
Y1, . . . , Yν , being dependent and not identically distributed, and we derive the joint q-
distribution function of the q-ordered random variables, Y(k) and Y(r), 1 ≤ k < r ≤ ν.
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Lemma 3.7. Let Y1, . . . , Yν be dependent q-continuous random variables, where
(a) Each Yi is defined on the set RYi

from Formula (3.2).
(b) Each Yi has a q-distribution function FYi

(y) = P (Yi ≤ y) , y ∈ RYi
of the same

functional form and satisfies the dependence relations (3.3), (3.4), (3.5).
Then, the joint q-distribution function of the q-ordered random variables Y(k) and Y(r) for
1 ≤ k < r ≤ ν, where Y(i), i = 1, . . . , ν, satisfy inequalities (3.1), is given by

FY(k),Y(r)(y, z)

=
ν∑

j=r

j∑

s=k

∑ s∏

n1=1
FYin1

(
qn1−1y

) j∏

ni1,...,ir=s+1

(
FYin2

(
qn2−s−1z

)
− FYin2

(y)
)

·
ν∏

n3=j+1

(
1 − FYin3

(
qin3 −(n3−j)z

))
, y < qr−kz, 1 ≤ k < r ≤ ν, y, z ∈ [0, β], (3.17)

where the inner summation is over all pairwise disjoint subsets {i1, . . . , is} and {is+1, . . . , ij}
of the set {1, . . . , ν} with 1 ≤ i1 < · · · < is ≤ ν and 1 ≤ is+1 < is+2 < · · · < ij ≤ ν.

Proof. Let FY(k),Y(r)(y, z) = P
(
Y(k) ≤ y, Y(r) ≤ z

)
, y < qr−kz, 1 ≤ k < r ≤ ν, y, z ∈ [0, β],

be the joint q-distribution function of the random variables Y(k) and Y(r) with 1 ≤ k < r ≤ ν.
Then, the events Y(k) ≤ y and Y(r) ≤ z occur if and only if at least k random variables in
{Y1, . . . , Yν} take values in the set [0, y], while r − k random other variables take values in
the set (y, z], and the remaining ones take values in the set (z, β], 1 ≤ k < r ≤ ν. So, for
y < qr−kz, 1 ≤ k < r ≤ ν, y, z ∈ [0, β], we have

FY(k),Y(r)(y, z) = P
(
Y(k) ≤ y, Y(r) ≤ z

)

=
ν∑

j=r

j∑

s=k

∑

1≤i1<...<is≤ν
1≤is+1<is+2<...<ij≤ν

P
(
{Yiℓ

≤ y}ℓ=1,...,s, {y < Yiℓ
≤ z}ℓ=s+1,...,j, {Yiℓ

> z}ℓ=j+1,...,ν

)

=
ν∑

j=r

j∑

s=k

∑

1≤i1<...<is≤ν
1≤is+1<is+2<...<ij≤ν

P (Yi1 ≤ y)P (Yi2 ≤ y|Yi1 ≤ y) · · · P (Yis ≤ y|Yi1 ≤ y, Yi2 ≤ y, . . . , Yis−1 ≤ y)

· P
(
y < Yis+1 ≤ z|Yi1 ≤ y, . . . , Yis ≤ y

)

· P
(
y < Yis+2 ≤ z|Yi1 ≤ y, . . . , Yis ≤ y, y < Yis+1 ≤ z

)
· · ·

· P
(
y < Yij

≤ z|Yi1 ≤ y, . . . , Yis ≤ y, y < Yis+1 ≤ z, . . . , y < Yij−1 ≤ z
)

· P
(
Yij+1 > z|Yi1 ≤ y, . . . , Yis ≤ y, y < Yis+1 ≤ z, . . . , y < Yij

≤ z
)

· · ·
· P
(
Yiν > z|Yi1 ≤ y, . . . , Yis ≤ y, y < Yis+1 ≤ z, . . . , y < Yij

≤ z, Yij+1 > z, . . . , Yiν−1 > z
)
,

(3.18)

where the inner summation is over all pairwise disjoint subsets {i1, . . . , is} and {is+1, . . . , ij}
of the set {1, . . . , ν} with 1 ≤ i1 < . . . < is ≤ ν and 1 ≤ is+1 < is+2 < . . . < ij ≤ ν.
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By assumptions (a) and (b), Equation (3.18) becomes (for y < qr−kz, 1 ≤ k < r ≤ ν,
and y, z ∈ [0, β])

FY(k),Y(r)(y, z) =
ν∑

j=r

j∑

s=k

∑

1≤i1<...<is≤ν
1≤is+1<is+2<...<ij≤ν

s∏

n1=1
FYin1

(
qn1−1y

)

·
j∏

n2=s+1

(
FYin2

(
qn2−s−1z

)
− FYin2

(y)
) ν∏

n3=j+1

(
1 − FYin3

(
qin3 −(n3−j)z

))
,

where the inner summation is over all pairwise disjoint subsets {i1, . . . , is} and {is+1, . . . , ij}
of the set {1, . . . , ν} with 1 ≤ i1 < · · · < is ≤ ν and 1 ≤ is+1 < is+2 < · · · < ij ≤ ν. □

In the next theorem, we use the above lemma 3.7 to derive the joint q-distribution
function and the joint q-density function of the ordered random variables.

Theorem 3.8. Let Y1, . . . , Yν be dependent q-continuous random variables, q-uniformly
distributed on the sets [0, qi−1t], t > 0, i = 1, . . . , ν, respectively. Assume that the random
variables Yi, i = 1, . . . , ν, satisfy the dependence relations (3.3), (3.4), (3.5). Then, the
joint q-distribution function and the joint q-density function of the q-ordered random
variables, Y(k) and Y(r), for 1 ≤ k < r ≤ ν, are given respectively by

FY(k),Y(r)(y, z) =
ν∑

j=r

j∑

s=k

[
ν

s, j − s

]

1
q

ys

ts

zj−s

tj−s

j−s∏

i=1

(
1 − y

qi−1z

) ν−j∏

m=1

(
1 − z

qm−1t

)
(3.19)

and

fY(k),Y(r)(y, z) = q−r(ν−r)q−k(r−k)[ν]q !
[k−1]q ![r−k−1]q ![ν−r]q !

yk−1

tr zr−k−1∏r−k−1
i=1

(
1 − y

qiz

)∏ν−r
m=1

(
1 − z

qm−1t

)

(3.20)
with y < qr−kz, 1 ≤ k < r ≤ ν, y, z ∈ [0, t].

Proof. By Equation (3.17) and the q-multinomial formulas (2.6) and (2.5), the joint
q-distribution function of Y(k) and Y(r) satisfies

FY(k),Y(r)(y, z) =
ν∑

j=r

j∑

s=k

∑

1≤i1<···<is≤ν
1≤m1<m2<···<mj−s≤ν

q(s+1
2 )q(j−s+1

2 )q−i1−···−isq−m1−···−mj−s

· ys

ts

zj−s

tj−s

(
1 − y

z

)(
1 − y

qz

)
· · ·

(
1 − y

qj−s−1z

)(
1 − z

t

)(
1 − z

qt

)
· · ·

(
1 − z

qν−j−1t

)

=
ν∑

j=r

j∑

s=k

[
ν

s, j − s

]

1
q

ys

ts

zj−s

tj−s

j−s∏

i=1

(
1 − y

qi−1z

) ν−j∏

m=1

(
1 − z

qm−1t

)
, (3.21)

where the inner summation of the first equality, is over all pairwise disjoint subsets
{i1, i2, . . . , is} and {m1, m2, . . . , mj−s} of the set {1, . . . , ν} with 1 ≤ i1 < . . . < is ≤ ν
and 1 ≤ m1 < m2 < . . . < mj−s ≤ ν.



On q-order statistics 217

The above joint q-distribution (3.21), of the random variables Y(k) and Y(r), for 1 ≤ k <
r ≤ ν and y < qr−kz, y, z ∈ [0, t] can be written as

FY(k),Y(r)(y, z) =
ν∑

j=r

q−j(ν−j)

tj

[
ν
j

]

q

ν−j∏

m=1

(
1 − z

qm−1t

) j∑

s=k

[
j
s

]

q

(
z

qs

)j−s j−s∏

i=1

(
1 − y

qi−1z

)
.

Taking the partial q-derivative of the inner sum over y, using suitably the q-binomial
formula (2.4) and carrying out all needed algebraic manipulations, we obtain

∂q

∂qy

j∑

s=k

q−s(j−s)
[
j
s

]

q

zj−s
j−s∏

i=1

(
1 − y

qi−1z

)

= [j]q




j∑

s=k

q−s(j−s)
[
j − 1
s − 1

]

q

ys−1zj−s
j−s∏

i=1

(
1 − y

qi−1z

)
− [j]q




j∑

s=k

q−(s+1)(j−s−1)
[
j − 1

s

]

q

yszj−s−1
j−s−1∏

i=1

(
1 − y

qi−1z

)
q−k(j−k)[j]q

[
j − 1
k − 1

]

q

yk−1zj−k
j−k∏

i=1

(
1 − y

qi−1z

)
 .

So,

∂qFY(k),Y(r)(y, z)
∂qy

=
ν∑

j=r

q−j(ν−j)
[
ν
j

]

q

1
tj

ν−j∏

m=1

(
1 − z

qm−1t

)
q−k(j−k)[j]q

[
j − 1
k − 1

]

q

yk−1zj−k
j−k∏

i=1

(
1 − y

qi−1z

)

=
ν∑

j=r

q−j(ν−j)q−k(j−k)
[
ν
j

]

q

[
j − 1
k − 1

]

q

[j]q
1
tj

yk−1zj−k
j−k∏

i=1

(
1 − y

qi−1z

) ν−j∏

m=1

(
1 − z

qm−1t

)

= [ν]q!yk−1

[k − 1]q![ν − k]q!

ν∑

j=r

q−j(ν−j)q−k(j−k)
[
ν − k
j − k

]

q

zj−k

tj

j−k∏

i=1

(
1 − y

qi−1z

) ν−j∏

m=1

(
1 − z

qm−1t

)
.

In the last sum of this equation, taking the partial q-derivative over z, and using suitably
q-binomial formula (2.4), we get

∂q

∂qz

ν∑

j=r

q−j(ν−j)q−k(j−k)
[
ν − k
j − k

]

q

1
tj

zj−k
j−k∏

i=1

(
1 − y

qi−1z

) ν−j∏

m=1

(
1 − z

qm−1t

)

=
ν∑

j=r

q−j(ν−j)q−k(j−k)
[
ν − k
j − k

]

q

[j − k]q
1
tj

zj−k−1
j−k−1∏

i=1

(
1 − y

qiz

) ν−j∏

m=1

(
1 − z

qm−1t

)

−
ν∑

j=r

q−j(ν−j)−k(j−k)−(ν−j−1)+j−k

[
ν − k
j − k

]

q

[ν − j]q
zj−k

tj+1

j−k∏

i=1

(
1 − y

qiz

) ν−j−1∏

m=1

(
1 − z

qm−1t

)
.
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It follows that
∂q

∂qz

ν∑

j=r

q−j(ν−j)q−k(j−k)
[
ν − k
j − k

]

q

1
tj

zj−k
j−k∏

i=1

(
1 − y

qi−1z

) ν−j∏

m=1

(
1 − z

qm−1t

)

= [ν − k]q
ν∑

j=r

q−j(ν−j)q−k(j−k)
[
ν − k − 1
j − k − 1

]

q

1
tj

zj−k−1
j−k−1∏

i=1

(
1 − y

qiz

) ν−j∏

m=1

(
1 − z

qm−1t

)

-[ν-k]q
ν∑

j=r

q−j(ν−j)−k(j−k)−(ν−j−1)+j−k

[
ν-k-1
j-k

]

q

zj−k

tj+1

j−k∏

i=1

(
1- y

qiz

) ν−j−1∏

m=1

(
1- z

qm−1t

)

= q−r(ν−r)q−k(r−k)[ν − k]q
[
ν − k − 1
r − k − 1

]

q

1
tr

zr−k−1
r−k−1∏

i=1

(
1 − y

qiz

) ν−j∏

m=r

(
1 − z

qm−1t

)
.

From this identity, we get that the joint q-density function given by

fY(k),Y(r)(y, z) =
∂2

q FY(k),Y(r)(y, z)
∂qz∂qy

= q−r(ν−r)q−k(r−k)[ν]q!
[k − 1]q![r − k − 1]q![ν − r]q!

yk−1

tr
zr−k−1

r−k−1∏

i=1

(
1- y

qiz

) ν−j∏

m=r

(
1- z

qm−1t

)

with y < qr−kz, y, z ∈ [0, t].
Note that using suitably the q-binomial formula (2.4), the q−1 and q-identities (2.2), (2.3)
and carrying out all the needed algebraic manipulations, we obtain

∫ t

0

∫ qr−kz

0
fY(k),Y(r)(y, z)dqy dqz

= q−r(ν−r)q−k(r−k)[ν]q!t−r

[k − 1]q![r − k − 1]q![ν − r]q!

×
∫ t

0

(∫ qr−kz

0
yk−1

r−k−1∏

i=1

(
1 − y

qiz

)
dqy

)
zr−k−1

ν−j∏

m=r

(
1 − z

qm−1t

)
dqz

= q−r(ν−r)q−k(r−k)[ν]q!t−r

[k − 1]q![r − k − 1]q![ν − r]q!
qk

[k]q

×
r−k−1∑

m=0
(−1)mq(m+1

2 )+(r−k−1)k
[
r − k − 1

m

]

q

[k]q
[k + m]q

∫ t

0
zr−1

ν−j∏

m=r

(
1 − z

qm−1t

)
dqz

= q−k(r−k)[ν]q!
[k-1]q![r-k-1]q![ν-r]q!

1[
r-1

r-k-1

]

1
q

qk

[k]q[r]q

ν−r∑

i=0
(−1)iq(i+1

2 )−(i+r)(ν−r)
[
ν-r
i

]

q

[r]q
[r + i]q

= [ν]q!
[k]q![r − k − 1]q![ν − r]q!

[r − k − 1]q![k]q!
[r]q!

1[
ν

ν − r

]

q

= 1,

which is coherent with the fact we have here a q-density function. Note also that the joint
q-distribution function and q-density function of the random variables Y(1) and Y(ν) are
given respectively by (3.19) and (3.20), for k = 1 and r = ν. □
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Remark 3.9. The bivariate random variables
(
Y(k), Y(r)

)
for 1 ≤ k < r ≤ ν with joint

q-density function (3.20), follow q-Dirichlet distributions.

In the following proposition, we consider the non-ordered q-continuous random vari-
ables, Y1, . . . , Yν , being dependent and not identically distributed and we derive the joint
distribution function of the q-ordered random variables, Y(1), . . . , Y(ν).

Proposition 3.10. Let (Y1, . . . , Yν) be a q-continuous ν-variate random vector with joint
q-density function f(y1, . . . , yν). Then the q-density function of the q-ordered random
vector Y = (Y(1), . . . , Y(ν)) is given by

fY(y(1), . . . , y(ν)) =
∑

fYiν
(y(ν)) fYiν−1 |Yiν

(y(ν−1)|y(ν)) · · · fYi1 |(Yi2 ,...,Yiν )(y(1)|y(2), . . . , y(ν)),
0 < y(1) < qy(2) < y(2) < qy(3) < · · · < y(ν−1) < qy(ν) < y(ν) < β, (3.22)

where the summation is over all permutations (i1, . . . , iν) of {1, . . . , ν}.

Proof. The joint q-density function is

fY(y(1), . . . , y(ν)) =
P
(
qy(1) < Y(1) ≤ y(1), . . . , qy(ν) < Y(ν) ≤ y(ν)

)

(1 − q)y(1)(1 − q)y(2) · · · (1 − q)y(ν)

= (1 − q)−ν
ν∏

i=1
y−1

(i)
∑

P
(
qy(1) < Yi1 ≤ y(1), . . . , qy(ν) < Yiν ≤ y(ν)

)

= (1 − q)−ν
ν∏

i=1
y−1

(i)
∑

P
(
qy(ν) < Yiν ≤ y(ν)

)
P
(
qy(ν−1) < Yiν−1 ≤ y(ν−1)|qy(ν) < Yiν ≤ y(ν)

)

· · · P
(
qy(ν) < Yi1 ≤ y(1)|qy(1) < Yi1 ≤ y(1), . . . , qy(ν) < Yiν ≤ y(ν)

)
,

(3.23)

where the summation is over all permutations (i1, . . . , iν) of {1, . . . , ν}.
Applying Definition 2.4 on the dependent q-density function and the relations (2.11), (2.12),
to the above equation (3.23), we obtain 3.22. □

Next, we assume that the non ordered random variables Yi, i = 1, . . . , ν are dependent
and q-uniformly distributed on the sets [0, qi−1t], t > 0, i = 1, . . . , ν, respectively, and the
joint q-density function of the q-ordered random variables Y(1), . . . , Y(ν), is obtained in the
following corollary of Proposition 3.10.

Corollary 3.11. Let Y1, . . . , Yν be dependent q-continuous random variables, q-uniformly
distributed on the sets [0, qi−1t], t > 0 i = 1, . . . , ν, respectively. Assume that the random
variables Yi, i = 1, . . . , ν, satisfy the dependence relations (3.3), (3.4), (3.5). Then the
joint q-density function of the ν-variate q-continuous random vector Y = (Y(1), . . . , Y(ν))
with Y(k), k = 1, . . . , ν, the k-th q-ordered random variables, is given by

fY(y1, . . . , yν) = [ν]q!
q(ν

2)tν
, 0 < y1 < qy2 < y2 < qy3 < · · · < yν−1 < qyν < yν < t. (3.24)
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Proof. Let Y1, . . . , Yν be dependent q-continuous random variables, with each Yi (for
i = 1, . . . , ν) q-uniformly distributed on the set [0, qi−1t] (for some t > 0). Applying (3.22)
of the previous proposition 3.10, the joint q-density function of the ν-variate q-continuous
random vector Y = (Y(1), . . . , Y(ν)) (where each Y(k), for k = 1, . . . , ν, is the k-th q-ordered
random variable) is given (for 0 < y1 < qy2 < y2 < qy3 < · · · < yν−1 < qyν < yν < t) by

fY(y1, . . . , yν) =
∑ 1

qiν−1t

1
qiν−1−1t

. . .
1

qi1−1t

= 1
tν

∑ 1
∏ν

i qij−1 ,

where the summation is over all permutations (i1, . . . , iν) of {1, . . . , ν}.
So,

fY(y1, . . . , yν) = [ν]q−1 !
tν

= [ν]q!
q(ν

2)tν
.

Note that
∫ t

0

∫ qyν

0

∫ qyν−1

0
· · ·

∫ qy3

0

∫ qy2

0
fY(y1, . . . , yν)dqy1 dqy2 · · · dqyν−2 dqyν−1 dqyν

=
∫ t

0

∫ qyν

0

∫ qyν−1

0
· · ·

∫ qy3

0

∫ qy2

0

[ν]q!
q(ν

2)tν
dqy1 dqy2 · · · dqyν−2 dqyν−1 dqyν = 1,

which confirms that Equation (3.24) is a joint q-density function. □

3.2. On a conditional joint q-distribution of the waiting times of the Heine
process and q-order statistics. Let Tk be the waiting time of the kth arrival in the
Heine process {X(t), t > 0} with parameters λ and q. Let us stop the process at Tν ,
for some integer ν ≥ 1. Now, we study the joint q-density function of the waiting times
T1, . . . , Tν . In the next theorem we prove that this conditional joint q-density function
coincides with the joint q-density function of a q-ordered random sample of size ν, from
the q-continuous uniform distribution in the set [0, qi−1t], i = 1, . . . , ν.

Theorem 3.12. Let Tk be the waiting time of the kth arrival of the Heine process
{X(t), t > 0} with parameters λ and q. Then the joint q-density function of the waiting
times T1, . . . , Tν, in which the first ν events occur given that X(t) = ν, 0 < t1 < · · · <
tν < t with ti ∈ (qν−i+1t, qν−it], i = 1, . . . , ν − 1, is given by

fq (t1, . . . , tν |X(t) = ν) = [ν]q!
q(ν

2)tν
,

that is the joint q-density function of a q-ordered random sample of size ν, from the
q-continuous uniform distribution in the set [0, qi−1t], i = 1, . . . , ν.
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Proof. By using the expression (2.10) and the three basic assumptions of Definition 2.1,
the conditional joint q-density function of the Heine process satisfies the equation

fq (t1, . . . , tν |X(t) = ν) qν−1(1 − q)tqν−2(1 − q)t · · · q(1 − q)t

= P
(
qνt < T1 ≤ qν−1t, . . . , q2t < Tν ≤ qt | X(t) = ν

)

= P (X(qνt) = 0)
(

ν−1∏

i=1
P
(
X(qi(1 − q)t) = 1

)) P (X((1 − q)t) = 0)
P (X(t) = ν)

= eq(−λqνt) λqν−1(1 − q)t
1 + λqν−1(1 − q)t

λqν−2(1 − q)t
1 + λqν−2(1 − q)t · · · λq(1 − q)t

1 + λq(1 − q)t
1

1 + λ(1 − q)t

·

eq(−λt)q(ν

2)(λt)ν

[ν]q!




−1

.

So,
fq (t1, . . . , tν |X(t) = ν) = [ν]q!

q(ν
2)tν

.

Therefore, by Corollary 3.11, this conditional joint q-density function coincides with
q-ordered density from the claim of the theorem. □

4. Concluding remarks

In this work we have introduced q-order statistics, for 0 < q < 1, arising from dependent
and not identically q-continuous random variables, as q-analogues of the classical order
statistics. We have studied their main properties concerning the q-distribution functions
and q-density functions of the relative q-ordered random variables. We have concentrated on
the q-ordered variables arising from dependent and not identically q-uniformly distributed
random variables. The derived q-distributions include q-power law, q-beta and q-Dirichlet
distributions. The motivation for introducing q-order statistics was given by studying the
properties of the waiting times of the Heine process.

As further study we propose the introduction of q-order statistics arising from dependent
and not identically discrete q-distributed random variables. Last but not least, in link with
lattice paths combinatorics, we intend to study the relations between q-order statistics
and q-random walks in Zd, building on [10].
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Abstract. In the present paper we study the nature of the trivariate generating
functions of weighted walks in the quarter plane. Combining the results of this paper
to previous ones, we complete the proof of the following theorem. The series satisfies a
nontrivial algebraic differential equation in one of its variables, if and only if it satisfies
a nontrivial algebraic differential equation in each of its variables.
Keywords: Random walks in quarter plane, elliptic functions, transcendence.

1. Introduction

Framework. Consider a walk with small steps in the nonnegative quadrant Z2
≥0 =

{0, 1, 2, . . .}2 starting from P0 := (0, 0), that is a succession of points

P0, P1, . . . , Pk,

where each Pn lies in the quarter plane, where the moves (or steps) Pn+1 − Pn belong
to {0,±1}2, and the probability to move in the direction Pn+1 − Pn = (i, j) may be
interpreted as some weight parameter di,j ∈ [0, 1], with ∑(i,j)∈{0,±1}2 di,j = 1. The model
of the walk (or model for short) is the data of the di,j and the step set of the walk is the
set of directions with nonzero weights, that is

S = {(i, j) ∈ {0,±1}2 | di,j ̸= 0}.

If d0,0 = 0 and if the nonzero di,j all have the same value, we say that the model is
unweighted. The following picture provides an example of a walk in the nonnegative
quadrant:

S =
{ }
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Such objects are very natural both in combinatorics and probability theory: they are
interesting for themselves and also because they are strongly related to other discrete
structures; see [4, 6] and references therein.

The weight of the walk is defined to be the product of the weights of its component
steps. For any (i, j) ∈ Z2

≥0 and any k ∈ Z≥0, we let qi,j,k be the sum of the weights of all
walks reaching the position (i, j) from the initial position (0, 0) after k steps. We introduce
the corresponding trivariate generating function

Q(x, y; t) :=
∑

i,j,k≥0
qi,j,kx

iyjtk.

Being the generating function of probabilities, Q(x, y; t) converges for all (x, y, t) ∈ C3

such that |x|, |y| ≤ 1 and |t| < 1. Note that in several papers, as in [4], it is not assumed
that ∑ di,j = 1. However, after a rescaling of the t variable, we may always reduce to this
case.

Statement of the main result. As we will see in the sequel, this paper takes part
in a long history of articles that study the algebraic and differential relations satisfied
by Q(x, y; t). For any choice of a variable ⋆ among x, y, t, we say that Q(x, y; t) is ∂⋆-
algebraic if there exists n ∈ Z≥0, such that there exists a nonzero multivariate polynomial
P⋆ ∈ C(x, y, t)[X0, . . . , Xn], such that

0 = P⋆(Q(x, y; t), . . . , ∂n
⋆Q(x, y; t)).

We stress that in the above definition, it is equivalent to require 0 ̸= P⋆ ∈ Q[X0, . . . , Xn]; see
Remark 3.1. Otherwise, we say that the series Q(x, y; t) is ∂⋆-differentially transcendental.

Since the three variables x, y and t play a different role, we might expect the series to
be of different nature with respect to the three derivatives. The main result of this paper,
quite unexpected at first sight, shows that it is not the case. More precisely, using results
of this paper and combining them to partial cases already known (see the discussion in
the sequel), we complete the proof of the following main theorem.

Theorem 1.1. The following facts are equivalent:
• The series Q(x, y; t) is ∂x-algebraic;
• The series Q(x, y; t) is ∂y-algebraic;
• The series Q(x, y; t) is ∂t-algebraic.

Note that an algorithm is given in [16, Section 5] to decide whether the generating
function is differentially algebraic in the x variable or not, but this does not provide the
differential equation when it exists.

State of the art. More generally, the question of studying whether Q(x, y; t) satisfies
algebraic (resp. linear differential, resp. algebraic differential) equations attracted the
attention of many authors in the last decade. In the unweighted case, the problem
was first addressed in the seminal paper [4] and solved using several methods, such as
combinatorics, computer algebra, complex analysis, and more recently, difference Galois
theory; see [2, 3, 7–9,19–21]. We refer to the introduction of [12] for a history of the cited
results, from which it follows that Theorem 1.1 is valid for the unweighted models.



Differential algebraic generating functions of walks in the quarter plane 225

The main difficulty in generalizing those results to weighted models is that, contrary to
the unweighted framework, there are infinitely many weighted models. However, certain
unweighted results are still valid in the weighted cases, while some others are proved by a
case-by-case argument, and therefore cannot be generalized straightforwardly. So beyond
the generalization, we believe that replacing case-by-case proofs by systematic arguments
has its own interest since it shows that the unweighted version of Theorem 1.1 has not
appeared by accident in a finite number of cases, and illustrates a general phenomenon.

In many situations, the equivalence between the ∂x-algebraicity and the ∂y-algebraicity
can be straightforwardly deduced in this weighted context from the proof of [8, Proposi-
tion 3.10]. In [7, Theorem 2] it was proved that the ∂t-algebraicity implies the ∂x-algebraicity.
So it remains to show the converse. In [2], the authors show that all ∂x-differentially
algebraic unweighted models have a decoupling function. They use this property to prove
the ∂t-algebraicity in that case. In [8], using difference Galois theory, the authors show that
such unweighted models admit a telescoping relation. We refer to [16] for precise definitions
of the two latter notions. In [11], it is proved that the ∂x-algebraic weighted models also
have a telescoping relation. Finally in [16] the equivalence between the existence of a
telescoping relation and the existence of decoupling functions is shown. This implies that
a ∂x-algebraic series admits a certain decomposition into elliptic functions.

The main difficulty is that the existence of such decompositions is proved for fixed values
of t, so nothing is known about the dependence in t of the coefficients. For instance, the
function xΓ(t), seen as a function of x is simple for all fixed value of t (it is rational!) but
it is differentially transcendental with respect to t, due to Hölder’s result. We then have
to make a careful study of the t-dependence of such elliptic relations, and use some results
of ∂t-algebraicity of the Weierstrass function in [2]. Finally, we are able to show that the
∂x-algebraicity implies the ∂t-algebraicity. The following diagram summarizes the various
contributions toward the proof of Theorem 1.1.

∂y-algebraicity ks
[8]

+3 ∂x-algebraicity ks
[7]

∂t-algebraicity

Telescoping relation
��

[11]
ks
[16]
+3 Decoupling function

This paper + [2]
KS

Structure of the paper. The paper is organized as follows. In Section 2 we provide
some reminders of objects appearing in the study of models of walks in the quarter plane.
More precisely, we will study well-known properties of the kernel curve and explain how
the generating function may be continued. We will also explain why Theorem 1.1 is correct
in some degenerate cases that we may withdraw. In Section 3 we prove technical results on
differential algebraicity. Some intermediate results stay valid in the framework of algebraic
functions and/or solution of linear differential equations, but to simplify the exposition,
we chose to present this section in a unified framework, making some intermediate results
suboptimal. Finally Section 4 is devoted to the proof of Theorem 1.1. We split our study
in two cases depending on whether the so-called group of the walk is finite or not.
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2. Kernel of the walk

2.1. Functional equation. The kernel of the walk is the polynomial defined by
K(x, y; t) := xy(1 − tS(x, y)),

where S(x, y) denotes the jump polynomial

S(x, y) =
∑

(i,j)∈{0,±1}2
di,jx

iyj

= A−1(x)1
y

+ A0(x) + A1(x)y

= B−1(y) 1
x

+B0(y) +B1(y)x,

with Ai(x) ∈ x−1R[x], Bi(y) ∈ y−1R[y] (we recall that we consider weights di,j ∈ [0, 1]).
The kernel plays an important role in the so-called kernel method and the techniques we
are going to apply will vary depending on its algebraic properties, that have been studied
in [14] (when t = 1), and in [10,11] (when t ∈ (0, 1)). The starting point is the following
fundamental functional equation.

Lemma 2.1. The generating function Q(x, y; t) satisfies the functional equation
K(x, y; t)Q(x, y; t) = xy+K(x, 0; t)Q(x, 0; t) +K(0, y; t)Q(0, y; t) −K(0, 0; t)Q(0, 0; t).

Proof. As a walk is either empty, or a smaller walk to which one added a step (removing the
cases leaving the quarter-plane), one has the following combinatorial functional equation

Q(x, y; t) = 1 + tS(x, y)Q(x, y; t) − tB−1(y)
x

Q(0, y; t) − tA−1(x)
y

Q(x, 0; t) + td−1,−1
xy

Q(0, 0; t),

where the last summand removes the corresponding double counting. Multiplying by xy,
we get Lemma 2.1. □

2.2. Degenerate cases. Like in [10], we will discard the following degenerate cases.

Definition 2.2 (Degenerate model). Let us fix t ∈ (0, 1). A model of walk is called
degenerate if one of the following holds:

• K(x, y; t) factors in non-constant polynomials in C[x, y],
• K(x, y; t) has x-degree (or y-degree) less than or equal to 1.

The notion of degeneracy thus seems to depend upon the parameter t. However, we will
see in Proposition 2.3 below that the model is degenerate for a value of t ∈ (0, 1) if and
only if it is degenerate for all values of t ∈ (0, 1). So, to lighten the terminology, we prefer
not to stress this t-dependence and we say “degenerate” rather than “t-degenerate”.

In what follows we will sometimes represent a family of models of walks with arrows.
For instance, the family of models represented by or, equivalently,

{
, , ,

}

corresponds to models with d1,0 = d0,−1 = d−1,1 = d−1,0 = 0 and nothing is assumed on
the other di,j. We stress the fact that the other di,j (the weight of the arrows above) are
allowed to be 0. In the following results, the behavior of the kernel curve never depends
on d0,0. This is the reason why, to reduce the amount of notations, we have decided not to
associate an arrow to d0,0.
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The following proposition has been proved in [14, Lemma 2.3.2] for t = 1, in [10,
Proposition 1.2] for t is transcendental over Q(di,j), and in [11, Proposition 1.3] for the
other values of t in (0, 1).

Proposition 2.3. Let us fix t ∈ (0, 1). A model of walk is degenerate if and only if at
least one of the following holds:

(a) There exists i ∈ {−1, 1} such that di,−1 = di,0 = di,1 = 0. This corresponds to the
following families of models

,

(b) There exists j ∈ {−1, 1} such that d−1,j = d0,j = d1,j = 0. This corresponds to the
following families of models

,

(c) All the weights are 0 except maybe {d−1,−1, d0,0, d1,1} or {d−1,1, d0,0, d1,−1}. This
corresponds to the following families of models

{
,

}
,

{
,

}

In virtue of the following lemma, Theorem 1.1 is valid for the degenerate models of
walks. Therefore we will focus on models that are not degenerate.

Lemma 2.4. Assume that the model of walk is degenerate. Then Q(x, y; t) is algebraic
over C(x, y, t) (and thus is differentially algebraic in its three variables).

Proof. We use Proposition 2.3. Consider the cases (a), (b), and first configuration of the
case (c). In the unweighted case it is proved in [4, Section 1.2] that Q(x, y; t) is algebraic
over C(x, y, t). The proof is the same in the weighted context but, to be self-contained, let
us sketch the proof here. In the first configuration of case (a) the generating function is the
same as the corresponding generating function of a model in the upper half-plane Z×N. The
latter is classically known to be algebraic over C(x, y, t), see for instance [5, Proposition 2].
In the second configuration of case (a), we have a unidimensional walk on the y-axis and
such series is known to be rational, and therefore algebraic over C(x, y, t). The case (b) is
similar. In the first configuration of case (c), we are considering a unidimensional walk on
the half-line {(x, x), x ∈ N}, and the generating function is algebraic. Since in all these
cases, Q(x, y; t) is algebraic over C(x, y, t), it is differentially algebraic in its three variables.
In the last configuration of case (c), all the weights are 0 except maybe {d−1,1, d0,0, d1,−1},
so the walk cannot leave (0, 0) and we have

Q(x, y; t) =
∞∑

k=0
dk

0,0t
k = 1

1 − d0,0t
.

Therefore the result holds in that case too. □
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2.3. Genus of the walk. The kernel curve Et is the complex affine algebraic curve
defined by

Et = {(x, y) ∈ C × C | K(x, y; t) = 0}.
We shall now consider a compactification of this curve. We let P1(C) be the complex
projective line, that is the quotient of (C × C) \ {(0, 0)} by the equivalence relation ∼
defined by

(x0, x1) ∼ (x′
0, x

′
1) ⇔ ∃λ ∈ C∗, (x′

0, x
′
1) = λ(x0, x1).

The equivalence class of (x0, x1) ∈ (C × C) \ {(0, 0)} is denoted by [x0 : x1] ∈ P1(C). The
map x 7→ [x : 1] embeds C inside P1(C). The latter map is not surjective: its image is
P1(C) \ {[1 : 0]}; the missing point [1 : 0] is usually denoted by ∞. Now, we embed Et

inside P1(C) × P1(C) via (x, y) 7→ ([x : 1], [y : 1]). The kernel curve Et is the closure of
this embedding of Et. In other words, the kernel curve Et is the algebraic curve defined by

Et = {([x0 : x1], [y0 : y1]) ∈ P1(C) × P1(C) | K(x0, x1, y0, y1; t) = 0}
where K(x0, x1, y0, y1; t) is the following degree two homogeneous polynomial in the four
variables x0, x1, y0, y1

K(x0, x1, y0, y1; t) = x2
1y

2
1K

(
x0

x1
,
y0

y1
; t
)

= x0x1y0y1 − t
2∑

i,j=0
di−1,j−1x

i
0x

2−i
1 yj

0y
2−j
1 .

Although it may seem more natural to take the closure of Et in P2(C), the above
definition allows us to avoid unnecessary singularities.

The following proposition has been proved in [10, Proposition 2.1 and Corollary 2.6],
when t is transcendental over Q(di,j) and has been extended for a general 0 < t < 1
in [11, Proposition 1.9].

Proposition 2.5. Let us fix t ∈ (0, 1) and assume that the model of the walk is not
degenerate. The following facts are equivalent:

(1) Et is an elliptic curve;
(2) The set of authorized directions S is not included in any half-space with boundary

passing through the origin.

Let us now discuss the case where for t ∈ (0, 1) fixed, the model is not degenerate and
Et is not an elliptic curve. By Proposition 2.3 and Proposition 2.5, this corresponds to
nondegenerate models that belong to one of the four families in Figure 1.

Figure 1. Our four nondegenerate models

Note that although the third configuration in Figure 1 is called nondegenerate, it leads
to walks that never escape from (0, 0) and thus their generating function is trivial.

The following lemma yields that Theorem 1.1 is valid for the families of models in
Figure 1.
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Lemma 2.6. The following holds:
(a) Assume that the model of the walk is not degenerate and belongs to the first family

in Figure 1. Then Q(x, y; t) is differentially transcendental in its three variables.
(b) Assume that the model of the walk belongs to the second, third or the fourth family

in Figure 1. Then Q(x, y; t) is algebraic over C(x, y, t), and thus is differentially
algebraic in its three variables.

Proof. (a) This is [7, Corollary 2.2]; see also [9, Theorem 3.1].
(b) Consider the second family. We have Q(x, 0; t) = Q(0, 0; t) and K(x, 0; t) =

K(0, 0; t). Then by Lemma 2.1,

K(x, y; t)Q(x, y; t) = K(0, y; t)Q(0, y; t) + xy. (2.1)

Let us see that with the same arguments as for the walks in the half-plane, we
deduce that Q(x, y; t) is algebraic over C(x, y, t). The idea is to locally write
K(ϕ(y; t), y; t) = 0. Evaluating at (ϕ(y; t), y; t) we then have for convenient y and t,
0 = K(0, y; t)Q(0, y; t) + ϕ(y; t)y, proving that Q(0, y; t) is algebraic over C(x, y, t).
The functional equation (2.1) allows then to conclude that Q(x, y; t) is algebraic
over C(x, y, t). As in the proof of Lemma 2.4, we may deduce that Q(x, y; t) is
differentially algebraic in its three variables. The reasoning for the fourth family is
similar. For the third family, the walk has to stay at (0, 0) and we have

Q(x, y; t) =
∞∑

k=0
dk

0,0t
k = 1

1 − d0,0t
.

Therefore the result holds in that case too. □

2.4. Group of the walk. From now on, we may focus on the case where Et is an elliptic
curve. Recall that we have seen in Proposition 2.3, that K(x, y; t) has degree two in x
and y, and nonzero coefficient of degree 0 in x and y. Hence, A1(x), A−1(x), B1(y), B−1(y)
are not identically zero.

Following [4, Section 3], [17, Section 3] or [14], and using the notations introduced in
Section 2.3, we consider the rational involutions given by

i1([x0 : x1], [y0 : y1]) =

x0

x1
,
A1(x0

x1
)

A−1(x0
x1

)y0
y1


 and i2([x0 : x1], [y0 : y1]) =


 B−1(y0

y1
)

B1(y0
y1

)x0
x1

,
y0

y1


 .

Note that we have i1([x0/x1 : 1], [y0/y1 : 1]) = i1([x0 : x1], [y0 : y1]) and the same holds
for i2. Note also that i1, i2 are a priori not defined when the denominators vanish but we
will see in the sequel that we may overcome this problem when we will restrict to Et.

For a fixed value of x, there are at most two possible values of y such that (x, y) ∈ Et.
The involution i1 corresponds to interchanging these values. A similar interpretation can
be given for i2. Therefore the kernel curve Et is left invariant by the natural action of i1, i2.
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•

P ι2(P )

ι1(P ) σ(P )

σ−1(P )
Et

Figure 1. The maps ι1, ι2 restricted to the kernel curve Et

Since K(x0, x1, y0, y1, t) is quadratic in each of the variables, the curve Et is naturally endowed
with two involutions ι1, ι2, namely the vertical and horizontal switches of Et defined, for any
P = (x, y) ∈ Et, by

{P, ι1(P )} = Et ∩ ({x} × P1(C)) and {P, ι2(P )} = Et ∩ (P1(C)× {y})
(see Figure 1). Let us also define

σ := ι2 ◦ ι1.
Remark 1.2. There are several choices for the compactification of Et. For instance, we could
have compactified the curve Et in the complex projective plane P2(C) instead of P1(C) × P1(C)
but, in this case, the compactification is not defined by a biquadratic polynomial so that the
construction of the above-mentioned involutions in that situation is not so natural.

Assumption 1.3. From now on, we consider a weighted model arising from (S) and we fix a
transcendental real number 0 < t < 1.§

Proposition 1.4. The curve Et is an irreducible genus zero curve.

Proof. This is the analog of [FIM17, Lemmas 2.3.2, 2.3.10], where the case t = 1 is considered. �

1.3. Parametrization of Et. Since Et has genus zero, there is a rational parameterization of
Et, see [Ful89, Page 198, Ex.1], i.e., there exists a birational map

φ : P1(C) → Et
s 7→ (x(s), y(s)).

Proposition 1.5 below gives such an explicit parametrization, which induces a bijection between
P1(C) \ φ−1(Ω) and Et \ {Ω}, where Ω = ([0 : 1], [0 : 1]) ∈ Et. It is the analogue of [FIM17,
Section 6.4.3], where the case t = 1 is considered. The proof is similar for t transcendental and
the details are left to the reader.

We first introduce some notations. For any [x0 : x1] and [y0 : y1] in P1(C), we denote by
∆x

[x0:x1] and ∆y
[y0:y1] the discriminants of the degree two homogeneous polynomials given by

y 7→ K(x0, x1, y, t) and x 7→ K(x, y0, y1, t) respectively. We have

∆x
[x0:x1] = t2

(
(−1

t
x0x1 + d0,0x0x1 + d1,0x

2
0)2 − 4d1,−1x

2
0(d−1,1x

2
1 + d0,1x0x1 + d1,1x

2
0)
)

§In this paper, we have assumed that the di,j belong to Q, but everything stays true if we assume that di,j
are positive real numbers and that t is transcendental over the field Q(di,j).

Figure 2. The maps i1 and i2 restricted to the kernel curve Et are denoted
by ι1 and ι2, respectively.

We denote by ι1, ι2 the restriction of i1, i2 to Et; see Figure 2. Again, these functions are
a priori not defined where the denominators vanish. However, by [10, Proposition 4.1], this
is only an “apparent problem”. To be precise, the authors proved this for t transcendental
over Q(di,j) but the proof is still valid when Et is an elliptic curve. We then obtain that
ι1 and ι2 can be extended to morphisms of Et. We recall that a rational map f from Et

to Et is a morphism if it is regular at any P ∈ Et, i.e. if f can be represented in suitable
affine charts containing P and f(P ) by a rational function with nonvanishing denominator
at P .

Let us finally define σ = ι2 ◦ ι1. Note that such a map is called a QRT-map and has
been widely studied; see [13].
Definition 2.7 (Group of the walk). We call G the group generated by ι1 and ι2 and we
call Gt the specialization of this group for a fixed value of 0 < t < 1.

In the unweighted case, the algebraic nature of the generating series depends on whether σ
has finite or infinite order. More precisely, G is finite if and only if the generating function
is holonomic, i.e. satisfies a nontrivial linear differential equation with coefficients in
C(x, y, t) in each of its three variables. On the other hand, when G is infinite, Gt can be
either finite or infinite; see [15] for concrete examples. However, in that situation, the set
of values of t such that Gt is finite is countable, see [8, Proposition 2.6].

2.5. Uniformization of the curve. In this section, we consider the uniformization
problem in the genus one context, that has been solved in [14] for the case t = 1, and [11]
for the case 0 < t < 1. Let us consider a nondegenerate model of walk and assume that for
all t ∈ (0, 1), Et is an elliptic curve. By Proposition 2.5, this corresponds to the situation
where the step set is not included in any half-plane whose boundary passes through (0, 0).
By [11, Proposition 2.1], the elliptic curve Et is biholomorphic to C/(ω1(t)Z + ω2(t)Z) for
some lattice ω1(t)Z+ ω2(t)Z of C via some (ω1(t)Z+ ω2(t)Z)-periodic holomorphic map Λ

Λ : C → Et

Λ(ω) := (x(ω; t), y(ω; t)),
where x, y are rational functions of ℘ and its derivative ∂ω℘, and ℘ is the Weierstrass
function associated with the lattice ω1(t)Z + ω2(t)Z:

℘(ω; t) = 1
ω2 +

∑

(ℓ1,ℓ2)∈Z2\{(0,0)}

(
1

(ω + ℓ1ω1(t) + ℓ2ω2(t))2 − 1
(ℓ1ω1(t) + ℓ2ω2(t))2

)
.
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Then, the field of meromorphic functions on Et is isomorphic to the field of meromorphic
functions on C/(ω1(t)Z + ω2(t)Z), that is itself isomorphic to the field of meromorphic
functions on C that are (ω1(t), ω2(t))-periodic. For t ∈ (0, 1) fixed, the latter field is equal
to C(℘, ∂ω℘); see [23, Chapter 9, Theorem 1.8].

The maps ι1, ι2, and σ may be analytically lifted to the ω-plane C via the map Λ−1.
We denote these lifts by ι̃1, ι̃2, and σ̃ respectively. So we have the commutative diagrams

Et
ιk // Et

C

Λ

OO

ι̃k

// C

Λ

OO
Et

σ // Et

C

Λ

OO

σ̃

// C

Λ

OO

For any [x0 : x1] in P1(C), we denote by ∆1([x0 : x1]; t) the discriminant of the degree two
homogeneous polynomial given by y 7→ K(x0, x1, y; t). Let us write

∆1([x0 : x1]; t) =
4∑

i=0
αi(t)xi

0x
4−i
1 .

By [11, Theorem 1.11], the discriminant ∆1([x0 : x1]; t) admits four distinct continuous real
roots a1(t), . . . , a4(t). They are numbered such that the cycle of P1(R) starting from −1
to ∞ and from −∞ to −1 crosses the ai in the order a1(t), . . . , a4(t). Furthermore, [1 : 0] is
a root if and only if α4(t) = 0. In [11, Section 1.4], we see that α4(t) = t2(d2

1,0 − 4d1,−1d1,1).
It follows that [1 : 0] is a root of ∆1([x0 : x1]; t) for one value of t ∈ (0, 1), if and only if
[1 : 0] is a root of ∆1([x0 : x1]; t) for all t ∈ (0, 1).

Similarly, we denote by b1(t), . . . , b4(t) the continuous real roots of the discriminant x 7→
K(x, y0, y1; t), numbered in the same way, and we write ∆2([y0 : y1]; t) =

4∑

i=0
βi(t)yi

0y
4−i
1 .

The following formulas have been proved
• in [14, Section 3.3] when t = 1,
• in [22] in the unweighted case,
• in [11, Proposition 2.1 and (2.16)], in the weighted case.

Proposition 2.8 ([11], Proposition 2.1, Lemma 2.6, and (2.16)). For i = 1, 2, let us
set Di(⋆; t) := ∆i([⋆ : 1]; t). An explicit expression of the periods is given by the elliptic
integrals

ω1(t) = i
∫ a4(t)

a3(t)

dx√
|D1(x; t)|

∈ iR>0 and ω2(t) =
∫ a1(t)

a4(t)

dx√
D1(x; t)

∈ R>0.

An explicit expression of the holomorphic map Λ(ω; t) = (x(ω; t), y(ω; t)) is given by

• If a4(t) ̸= [1:0], then x(ω; t) =
[
a4(t) + D′

1(a4(t);t)
℘(ω;t)− 1

6 D′′
1 (a4(t);t) : 1

]
;

• If a4(t) = [1 :0], then x(ω; t) = [℘(ω; t) − α2(t)/3 : α3(t)];

• If b4(t) ̸= [1:0], then y(ω; t) =
[
b4(t) + D′

2(b4(t);t)
℘(ω−ω3(t)/2;t)− 1

6 D′′
2 (b4(t);t) : 1

]
;

• If b4(t) = [1 :0], then y(ω; t) = [℘(ω − ω3(t)/2; t) − β2(t)/3 : β3(t)].
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An explicit expression of the involutions is given by

ι̃1(ω) = −ω, ι̃2(ω) = −ω + ω3 and σ̃(ω) = ω + ω3,

where
ω3(t) =

∫ X±(b4(t);t)

a4(t)

dx√
D1(x; t)

∈ (0, ω2(t)), (2.2)

and X±(y; t) are the two roots of K(X±(y; t), y; t) = 0.

2.6. Meromorphic continuation of the generating function. Let us summarize here
the results of [11, Section 2.3]. Let us fix t ∈ (0, 1). The generating function Q(x, y; t)
converges for |x|, |y| < 1. The projection of this set inside P1(C) × P1(C) has a nonempty
intersection with the kernel curve Et. In virtue of Lemma 2.1, we then find for |x|, |y| < 1
and (x, y) ∈ Et,

0 = K(x, 0; t)Q(x, 0; t) +K(0, y; t)Q(0, y; t) −K(0, 0; t)Q(0, 0; t) + xy.

To shorten several expressions hereafter, it is convenient to rewrite this equation introducing
new auxiliary series F1 and F2:

0 = F1(x; t) + F2(y; t) −K(0, 0; t)Q(0, 0; t) + xy. (2.3)

Since the series F1(x; t) and F2(y; t) converge for |x| and |y| < 1 respectively, we then
continue F1(x; t) for (x, y) ∈ Et and |y| < 1 with the formula:

F1(x; t) = −F2(y; t) +K(0, 0; t)Q(0, 0; t) − xy.

We continue F2(y; t) for (x, y) ∈ Et and |x| < 1 similarly. There exists a connected set
O ⊂ C such that

• Λ(O) = {(x, y) ∈ Et such that |x| < 1 or |y| < 1};
• σ̃−1(O) ∩ O ≠ ∅;
•
⋃

ℓ∈Z
σ̃ℓ(O) = C.

There also exist meromorphic functions on O, rx(ω; t) and ry(ω; t), such that rx(ω; t) =
F1(x(ω; t); t) and ry(ω; t) = F2(y(ω; t); t).

Lemma 2.9 (Inclusion of poles). The set of poles of rx(ω; t) inside O are contained in the
set of poles of x(ω; t) with |y(ω; t)| < 1. The set of poles of ry(ω; t) inside O are contained
in the set of poles of y(ω; t) with |x(ω; t)| < 1.

Proof. Let us use (2.3). On O, we have

0 = rx(ω; t) + rx(ω; t) −K(0, 0; t)Q(0, 0; t) + x(ω; t)y(ω; t).

Let us focus on rx(ω; t), the proof for ry(ω; t) is similar. Recall that F1(x; t) has no poles for
|x| < 1. Since rx(ω; t) = F1(x(ω; t); t), we find that rx(ω; t) has no poles when |x(ω; t)| < 1.
With Λ(O) = {(x, y) ∈ Et||x| < 1 or |y| < 1}, we deduce that a pole of rx(ω; t) inside O
satisfies |y(ω; t)| < 1. We use ry(ω; t) = F2(y(ω; t); t), and the fact that F2(y; t) has no
poles for |y| < 1 to deduce that ry(ω; t) has no poles when |y(ω; t)| < 1. Therefore, the
poles of rx(ω; t) inside O corresponds to the poles of x(ω; t)y(ω; t) with |y(ω; t)| < 1. The
result follows. □
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With
⋃

ℓ∈Z
σ̃ℓ(O) = C and σ̃−1(O) ∩ O ̸= ∅, we then extend rx(ω; t) and ry(ω; t) as

meromorphic functions on C where they satisfy the functional equations

rx(ω + ω3(t); t) = rx(ω; t) + bx(ω; t), (2.4)
rx(ω + ω1(t); t) = rx(ω; t), (2.5)
ry(ω + ω3(t); t) = ry(ω; t) + by(ω; t),
ry(ω + ω1(t); t) = ry(ω; t), (2.6)

where bx(ω; t) = y(−ω; t)(x(ω; t)−x(ω+ω3(t); t)) and by(ω; t) = x(ω; t)(y(ω; t)−y(−ω; t)).
From the functional equations (2.5) and (2.6), the set of poles of ω 7→ rx(ω; t) and

ω 7→ ry(ω; t) are ω1(t) periodic. With the other functional equations and
⋃

ℓ∈Z
σ̃ℓ(O) = C,

we may deduce the expression of a discrete set containing the poles of rx and ry.

Lemma 2.10. Let Px be the poles of rx in O and Pb,x be the poles of bx in C. The set of
poles of ω 7→ rx(ω; t) is included in (Px + ω3(t)Z)⋃ (Pb,x + ω3(t)Z). A similar statement
holds for ry(ω; t).

3. Preliminary results on differential algebraicity

In this section, we prove some results on differential algebraicity, and more specifically
on ∂t-algebraicity of the functions that appear in Section 2.

Let us begin by definitions. Let f(x1, . . . , xn) be a multivalued Puiseux series. For
i = 1, . . . , n, we say that f is ∂xi

-algebraic if and only if it satisfies a nontrivial algebraic
differential equation in the variable xi, with coefficients in Q. We say that f is differentially
algebraic in all its variables (or differentially algebraic for short) if and only if for all
1 ≤ i ≤ n, f is ∂xi

-algebraic.
The following remark, proved e.g. in [18, Proposition 8, page 101], will be used several

times in the sequel.

Remark 3.1. Let f1, . . . , fn be differentially algebraic functions meromorphic on a common
domain. A function satisfies a nontrivial algebraic differential equation with coefficients
in C(f1, . . . , fn) if and only if it satisfies a nontrivial algebraic differential equation with
coefficients in Q.

The following lemma shows that the set of differentially algebraic functions is stable
under many operations.

Lemma 3.2 (Closure properties). The set of differentially algebraic functions meromorphic
on a domain is a field stable under derivations. If f and g are differentially algebraic
and f ◦ g is well-defined then f ◦ g is differentially algebraic as well. If f is differentially
algebraic and admits an inverse f−1, then f−1 is also differentially algebraic.

Proof. See [8, Lemma 6.4] for the inverse property in the univariate case. The proof
extends straightforwardly to the multivariate case. The rest of the statements follows
from [2, Corollary 6.4 and Proposition 6.5]. □
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In what follows, we might also consider functions of t defined only on some intervals
of (0, 1). Let D be the field of multivalued functions that admit an expansion as convergent
Puiseux series for all t ∈ (0, 1), and that are differentially algebraic. In the sequel, when we
will say that a function of t defined (a priori) only of some intervals of (0, 1) is differentially
algebraic, it will be implicit that it may be continued as an element of D.

The goal of the following results is to prove that various functions that appear in the
uniformization of the elliptic curve are ∂t-algebraic.

Lemma 3.3 ([2, Lemma 6.10]). The functions ω1(t), ω2(t), ω3(t) belong to D.1 Moreover,
they are analytic on a complex neighborhood of (0, 1).

Proposition 3.4. Functions of D(℘(ω; t), ∂ω℘(ω; t)) are differentially algebraic in t and ω.

Proof. Since the differentially algebraic functions form a field stable under the derivations
(see Lemma 3.2), it suffices to show that ℘(ω; t) is differentially algebraic. It is well known
that for t ∈ (0, 1) fixed, ℘(ω; t) is ∂ω-algebraic. More precisely, it satisfies an equation of
the form (∂ω℘)2 = 4℘3 − g2(t)℘− g3(t), where g2(t), g3(t) are the invariants of the elliptic
curve. Differentiating with respect of ω allows us to eliminate the invariants, and obtain
∂3

ω℘(ω; t) = 12℘(ω; t)∂ω℘(ω; t); see [1, (18.6.5)]. Hence ℘(ω; t) is ∂ω-algebraic.
Let us prove the ∂t-algebraicity. In virtue of [2, Proposition 6.7], ℘ satisfies a nontrivial

∂t-algebraic equation with coefficients in C(ω1(t), ω2(t)). By Lemma 3.3, the periods
ω1(t) and ω2(t) of ℘ are differentially algebraic, so in virtue of Remark 3.1, ℘(ω; t) is
∂t-algebraic. □

Remark 3.5. The same result holds with ℘ replaced by the Weierstrass function associated
to the lattice ω1(t)Z + kω2Z, or the lattice ω1(t)Z + ω3(t)Z.

Definition 3.6 (Principal part). Let f(ω; t) be a meromorphic function at ω = a(t) ∈ D,
with Laurent series f(ω; t) = ∑∞

ℓ=ν aℓ(t)(ω − a(t))ℓ. The principal part of f at ω = a(t) is
the sum ∑−1

ℓ=ν aℓ(t)(ω− a(t))ℓ with the convention that it is 0 when ν ≥ 0. The coefficients
of this principal part are aν(t), . . . , a−1(t).

The following lemma will be used several times in the sequel.

Lemma 3.7. The following statements hold:
• Let d(t) ∈ D be an arbitrary function. We have ℘(ω; t) ∈ D((ω + d(t)));
• ℘(ω; t) ∈ ω−2D[[ω]];
• The coefficients of the principal parts of ω 7→ ℘(ω; t) belong to D.

Proof. The last two assertions are straightforward consequences of the first one. Let
us prove the first point. The function d(t) and the poles of ω 7→ ℘(ω; t) are analytic
on a convenient domain. So either −d(t) is a pole of ω 7→ ℘(ω; t) with constant order
with respect to t, or the set of t such that −d(t) is a pole of ω 7→ ℘(ω; t) is discrete.
It follows that the order of the pole of ω 7→ ℘(ω; t) at −d(t) is constant except on a
discrete set. Since for t fixed, ω 7→ ℘(ω; t) has pole of order at most two, we may write
℘(ω; t) = ∑∞

ℓ=k cℓ(t)(ω + d(t))ℓ.

1They even are solutions of linear differential equations.
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Note that the coefficients cℓ(t) may have a pole when the order of the pole of ω 7→
℘(ω; t) at d(t) increases. In virtue of the field property of Lemma 3.2, combined with
Proposition 3.4, we find that (ω + d(t))−k℘(ω; t) is differentially algebraic. Note that ck(t)
is the value at −d(t) of the ∂t-algebraic function (ω+ d(t))−k℘(ω; t). By the field property
of Lemma 3.2 and Proposition 3.4, (ω + d(t))−k℘(ω; t) is differentially algebraic in its two
variables. By the composition property of Lemma 3.2 it follows that ck(t) ∈ D. Let us fix
k ≤ n and assume that for ℓ = k, . . . , n, cℓ(t) ∈ D. Let us show that cn+1(t) ∈ D. This
will prove the result by induction. Let us define hn(ω; t) = ℘(ω, t) −∑n

ℓ=k cℓ(t)(ω + d(t))ℓ.
By Proposition 3.4, the field property of Lemma 3.2, and the induction hypothesis, the
function t 7→ hn(ω; t) is differentially algebraic in its two variables. Note that cn+1(t) is
the value at −d(t) of (ω + d(t))−(n+1)hn(ω; t). By the composition property of Lemma 3.2
it follows that ck(t) ∈ D. □

As a consequence of what precedes, we deduce:

Corollary 3.8. The following holds:

• The functions x(ω; t) and y(ω; t) are differentially algebraic in their two variables;
• For d(t) ∈ D, we have x(ω; t), y(ω; t) ∈ D((ω + d(t)));
• The poles and the coefficients of the principal parts of ω 7→ x(ω; t) and ω 7→ y(ω; t)

belong to D.

Proof. We use the expressions of x(ω; t) and y(ω; t) given in Proposition 2.8. The elements
involved in the expression are meromorphic on some complex neighborhood of (0, 1) in the
t-plane and are differentially algebraic by Proposition 3.4. Since the differentially algebraic
elements form a field, see Lemma 3.2, the first point follows. Using Lemma 3.7, we deduce
that x(ω; t), y(ω; t) ∈ D((ω + d(t))) for all d(t) ∈ D. Then the coefficients of the principal
parts of ω 7→ x(ω; t) and ω 7→ y(ω; t) belong to D.

It remains to prove the differential algebraicity of the poles. Let a(t) be a pole of
ω 7→ x(ω; t) or ω 7→ y(ω; t). Then a(t) is a continuous function solution of ℘(a(t); t) = b(t),
where b(t) is ∂t-algebraic.

Assume first that ∂ω℘(a(t); t) is identically zero or a(t) is a pole of ℘(ω; t). By [23,
page 270], this corresponds to the case where a(t) ∈ ω1(t)Z2 + ω2(t)Z2 . By Lemma 3.3, a(t)
is meromorphic on a complex neighborhood of (0, 1) and is ∂t-algebraic. Then, it belongs
to D.

Assume now that ∂ω℘(a(t); t) is not identically zero and ℘(a(t); t) = b(t). Then, by
the implicit function theorem, a(t) admits an expansion as a meromorphic function on a
complex neighborhood of any t ∈ (0, 1) with ∂ω℘(a(t); t) ̸= 0. On that domain ℘ is locally
invertible and its inverse is differentially algebraic in its two variables by Lemma 3.2. So
we may write ℘−1(b(t); t) = a(t), where ℘−1 is the local inverse of ℘. With the composition
and inverse properties of Lemma 3.2, we deduce that a(t) is ∂t-algebraic. Furthermore, by
the implicit function theorem, it admits an expansion as a convergent series on a complex
neighborhood of any t ∈ (0, 1). The set of t such that ∂ω℘(a(t); t) ̸= 0 being dense, we
find that the differential equation holds everywhere. This concludes the proof. □
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Recall, see Section 2.6, that
bx(ω; t) = y(−ω; t)(x(ω; t) − x(ω + ω3(t); t)) and by(ω; t) = x(ω; t)(y(ω; t) − y(−ω; t)).

Corollary 3.9. The following holds:
• The functions bx(ω; t) and by(ω; t) are differentially algebraic in their two variables;
• For d(t) ∈ D, we have bx(ω; t), by(ω; t) ∈ D((ω + d(t)));
• The poles and the coefficients of the principal parts of ω 7→ bx(ω; t) and ω 7→ by(ω; t)

belong to D.
Proof. By Lemma 3.3, ω3(t) belongs to D. This is now a straightforward application of
Corollary 3.8, combined with the field property of Lemma 3.2. □

Toward the proof of Theorem 1.1, we are going to face to many situations where the
series is known to be ∂x-algebraic (or ∂y-algebraic) for all fixed values t. More precisely
the differential algebraicity of the series will be proved to be equivalent to the existence of
functions that are for all t fixed, elliptic functions. Unfortunately, few things are known
about the t-dependence of the coefficients. The following result will be the main ingredient
in the proof of Theorem 1.1 since it gives a framework where we can state that the elliptic
functions are differentially algebraic in all their variables.
Theorem 3.10. Let ω 7→ f(ω; t) be a function such that:

• For all t ∈ (0, 1), ω 7→ f(ω; t) ∈ C(℘(ω; t), ∂ω℘(ω; t)).
• There are countably many elements of D, whose union forms the set of poles of
ω 7→ f(ω; t).

• The coefficients of the principal parts of ω 7→ f(ω; t) are in D.
• There exists a(t) ∈ D such that f(a(t); t) ∈ D.

Then, f(ω; t) is differentially algebraic in its two variables.
Remark 3.11. At first sight, nothing is explicitly assumed on the t-dependence of t 7→ f(ω; t).
However, the assumptions on the poles, on the principal parts, and on the special value
f(a(t); t), will imply that t 7→ f(ω; t) is analytic on a convenient domain.
Proof. If f is constant in the ω variable, then the result is clear. Assume that f(ω; t)
is not constant. Let a ∈ C. By the field property in Lemma 3.2, f(ω + a; t) satisfies
the assumptions of Theorem 3.10. By the composition property, f(ω; t) is differentially
algebraic in its two variables if and only if f(ω + a; t) is differentially algebraic in its two
variables. Then, without loss of generality, we may reduce to the case where for any pole
b(t) of ω 7→ f(ω; t), ∂ω℘(b(t); t) is not identically zero. We may also assume that a(t) is
not a pole of ω 7→ ℘(ω; t).

Let us begin with the case where ω 7→ f(ω; t) is an even function. As we can see in the
proof of [23, Lemma 1.9], we may write

f(ω; t) = c(t)
κz∏

i=1
fi(ω; t)

κp∏

j=1
gj(ω; t),

where
• c(t) is a function that does not depend upon ω;
• fi(ω; t) are of the form ℘(ω; t) − ℘(a(t); t), where a(t) are zeros of ω 7→ f(ω; t);
• gj(ω; t) are of the form (℘(ω; t) − ℘(b(t); t))−1, where b(t) are poles of ω 7→ f(ω; t).
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Then, a partial fraction decomposition yields a sum of the form

f(ω; t) = c̃(t) +
n∞∑

i=1
ai,∞(t)℘(ω; t)i +

∑

j

nj∑

i=1

ai,j(t)
(℘(ω; t) − ℘(bj(t); t))i

. (3.1)

By assumption, the bj(t) are differentially algebraic. Recall, see Lemma 3.7, that for
all j, we have ℘(ω; t) ∈ D((ω + bj(t))) (resp. ℘(ω; t) ∈ ω−2D[[ω]]). Then, for every i, j,

ai,j(t)(
℘(ω; t) − ℘(bj(t); t)

)i = ai,j(t)(
∂ω℘(bj(t); t)(ω − bj(t))

)i +O((ω − bj(t))−i+1).

By the composition property of Lemma 3.2 and Proposition 3.4, for all k, ℓ the function(
∂k

ω℘(bj(t); t)
)ℓ

is differentially algebraic. Let us write the Taylor expansion of the function

f(ω; t) =
∞∑

i=−nj

ãi(t)(ω − bj(t))i.

Then, for i < 0, one has

ãi(t) = ai,j(t)
∂ω℘(bj(t); t)i

+ fi,j, where fi,j ∈ D(ai+1,j(t), . . . , anj ,j(t)).

Since the coefficients of the principal part at bj(t) are differentially algebraic we have
ãi(t) ∈ D. By Lemma 3.2, D is a field, and we find by a decreasing induction that for all
1 ≤ i ≤ nj, ai,j(t) ∈ D. Similarly, for all i, we have

ai,∞(t)℘(ω; t)i = ω−2iai,∞(t) +O(ω−2i+1).

Then the coefficient of the term in ω−2i with i > 0 is of the form ai,∞(t) + fi, where
fi ∈ D(ai+1,∞(t), . . . , an∞,∞(t)). Since the coefficients of the principal part at 0 are
differentially algebraic, we find ai,∞(t) + fi ∈ D. By Lemma 3.2, D is a field, and we find
by a decreasing induction that for all 1 ≤ i ≤ n∞, ai,∞(t) ∈ D. Recall that by assumption,
f(a(t); t) is ∂t-algebraic. By Lemma 3.2 and Proposition 3.4, we find

d̃(t) :=
n∞∑

i=1
ai,∞(t)℘(a(t); t)i +

∑

j

nj∑

i=1

ai,j(t)
(℘(a(t); t) − ℘(bj(t); t))i

∈ D.

By the subtraction property of Lemma 3.2 we deduce that c̃(t) = f(a(t); t) − d̃(t) is
∂t-algebraic. In virtue of Lemma 3.2 and Proposition 3.4, every term in the right-hand side
of (3.1) is differentially algebraic. With the field property of Lemma 3.2, this concludes
the proof in the even case.

Assume that ω 7→ f(ω; t) is odd. The function ∂ω℘(ω; t)−1f(ω; t) is even, and ω1(t)Z +
ω2(t)Z, the poles of ∂ω℘(ω; t), are ∂t-algebraic; see Lemma 3.3. Then, we may apply the
even case to deduce that f(ω; t) is of the form

∂ω℘(ω; t)c̃(t) +
n∞∑

i=1
ai,∞(t)∂ω℘(ω; t)℘(ω; t)i +

∑

j

nj∑

i=1

ai,j(t)∂ω℘(ω; t)
(℘(ω; t) − ℘(bj(t); t))i

.
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Setting a0,∞(t) := c̃(t), we may rewrite the latter expression as
n∞∑

i=0
ai,∞(t)∂ω℘(ω; t)℘(ω; t)i +

∑

j

nj∑

i=1

ai,j(t)∂ω℘(ω; t)
(℘(ω; t) − ℘(bj(t); t))i

.

By Proposition 3.4, for all j, we have ∂ω℘(ω; t) ∈ D((ω− bj(t))) (resp. we have ∂ω℘(ω; t) ∈
D((ω))). The same reasoning as in the even case shows that for all 1 ≤ i ≤ nj, the
functions ai,j(t) are differentially algebraic. Similarly, for all 0 ≤ i ≤ n∞, the functions
ai,∞(t) are differentially algebraic. By Proposition 3.4 and Lemma 3.2, we find that f(ω; t)
is differentially algebraic. This completes the proof in the odd case.

Let us consider the general case. Note that by Proposition 3.4, ℘(ω; t) − ℘(a(t); t)
is differentially algebraic. So for all n, Lemma 3.2 ensures that f(ω; t) is differentially
algebraic if and only if (℘(ω; t) − ℘(a(t); t))nf(ω; t) is differentially algebraic. So without
loss of generality, we may reduce to the case where f(±a(t); t) = 0. We write f(ω; t) =
f+(ω; t) + f−(ω; t), where

f+(ω; t) := f(ω; t) + f(−ω; t)
2 ,

f−(ω; t) := f(ω; t) − f(−ω; t)
2 .

The poles of ω 7→ f±(ω; t) are poles of f or opposite of the latter. By Lemma 3.2, they
are ∂t-algebraic and the coefficients of the principal parts are in D. Since f(±a(t); t) = 0
we find f±(a(t); t) = 0. In particular it is differentially algebraic. From the even and the
odd cases, f±(ω; t) are differentially algebraic in their two variables. Since the sum of two
differentially algebraic functions is differentially algebraic, see Lemma 3.2, we deduce that
f(ω; t) = f+(ω; t) + f−(ω; t) is differentially algebraic. □

Remark 3.12.
• As in Remark 3.5, we may consider ℘̃(ω; t), the Weierstrass functions associated to

the lattice ω1(t)Z + ω3(t)Z, or the lattice ω1(t)Z + kω2(t)Z, with k ∈ N∗. Then,
the proof of Theorem 3.10 can be straightforwardly adapted to this new lattice.
We then deduce the following. If ω 7→ f(ω; t) is a function such that:
(1) For all t ∈ (0, 1), ω 7→ f(ω; t) ∈ C(℘̃(ω; t), ∂ω℘̃(ω; t)).
(2) There are countably many elements of D, whose union forms the set of poles

of ω 7→ f(ω; t).
(3) The coefficients of the principal parts of ω 7→ f(ω; t) are in D.
(4) There exists a(t) ∈ D such that f(a(t); t) ∈ D.

Then, f(ω; t) is differentially algebraic in its two variables.
• Let us now just assume that ω 7→ f(ω; t) satisfies the above first three points and let
a(t) ∈ D that is not a pole. Then, f(ω; t)−f(a(t); t) satisfies the four points and is
therefore differentially algebraic. By construction, the function f(ω; t) − f(a(t); t)
has the same principal parts as f(ω; t).

Although rx and ry are not elliptic functions, we will see in the next section that
it is sufficient to control the behavior of their poles and coefficients in order to apply
Theorem 3.10.
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Lemma 3.13. The following holds:
(A1) The poles and coefficients of the principal parts of ω 7→ rx(ω; t) belong to D.
(A2) There exists a(t) ∈ D such that rx(a(t); t) ∈ D.

Similar statements hold for ry.

Proof. Let us prove the result for rx, the reasoning for ry is similar. We refer to Section 2.6
for the notations used in this proof.

Recall that the series Q(x, y; t) converges for |x|, |y|, |t| < 1. Let us consider t in (0, 1).
Take ω ∈ O (note that O depends continuously on t), for each of the domains |x(ω; t)| < 1
and |y(ω; t)| < 1, one has the following equality of functions:

F1(x(ω; t); t) = rx(ω; t) and F2(y(ω; t); t) = ry(ω; t),

with no poles on these domains. Via the equality 0 = rx(ω; t)+ry(ω; t)−K(0, 0; t)Q(0, 0; t)+
x(ω; t)y(ω; t), and Lemma 2.9 on the inclusion of poles, we deduce that the poles inside
O of ω 7→ rx(ω; t) are the poles inside O of ω 7→ x(ω; t)y(ω; t) with |y(ω; t)| < 1. What
is more, on that domain, ω 7→ x(ω; t)y(ω; t) and ω 7→ rx(ω; t) have the same principal
parts. By Corollary 3.8, the poles of ω 7→ rx(ω; t) inside O are differentially algebraic.
Furthermore, the corresponding principal parts have differentially algebraic coefficients.

Recall, see (2.4), that rx(ω + ω3(t); t) = rx(ω; t) + bx(ω; t). By Corollary 3.9, the poles
and the coefficients of the principal parts of ω 7→ bx(ω; t) are differentially algebraic. By
Lemma 3.3, ω3(t) is differentially algebraic. Recall that

⋃

ℓ∈Z
σ̃ℓ(O) = C. With (2.4) and

what precedes, we get assertion (A1).
It remains to prove assertion (A2). To lighten the notations we omit the dependence in t

in what follows. Let us writeK(x, y; t) = B̃0(y)+xB̃1(y)+x2B̃2(y). Let ω0(t) ∈ O such that

y(ω0) = 0 and x(ω0) =
−B̃1(y(ω0)) +

√
B̃1(y(ω0))2 − 4B̃0(y(ω0))B̃2(y(ω0))

2B̃2(y(ω0))
.

The y-valuation of B̃2(y) being at most two, we consider the following subcases.

• If it is 0 or 1, the valuation of the algebraic function y × −B̃1(y)+
√

B̃1(y)2−4B̃0(y)B̃2(y)
B̃2(y)

is nonnegative and then ω0 is not a pole of x(ω; t)y(ω; t).
• If it is 2, then 4B̃0(y)B̃2(y) converges to 0 when y goes to 0 and hence the same

holds for −B̃1(y) +
√
B̃1(y)2 − 4B̃0(y)B̃2(y).

We further find that y ×
(

−B̃1(y) +
√
B̃1(y)2 − 4B̃0(y)B̃2(y))

)
∈ O(y2). In that case, we

find that ω0 is not a pole of x(ω; t)y(ω; t) either. With K(0, 0; t)Q(0, 0; t) = F2(y(ω0; t); t) =
ry(ω0; t), and 0 = rx(ω; t) + ry(ω; t) − K(0, 0; t)Q(0, 0; t) + x(ω; t)y(ω; t), we then find
0 = rx(ω0; t) + x(ω0; t)y(ω0; t). It then suffices to show that x(ω0; t)y(ω0; t) is differentially
algebraic. With the expression of y(ω0; t) in Proposition 2.8, we find that ω0 is solution of
an equation of the form ℘(ω0; t) = b(t) with b(t) ∈ D. With the same reasons as in the
proof of Corollary 3.8, we find that ω0 is differentially algebraic, and x(ω0; t), y(ω0; t) ∈ D.
Then rx(ω0(t); t) ∈ D. This concludes the proof. □
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The following result relates the differential transcendence of Q(x, y; t) and the differential
transcendence of rx(ω; t) and ry(ω; t).
Proposition 3.14. The following statements are equivalent.

• The generating function Q(x, y; t) is differentially algebraic in its three variables.
• The series F1(x; t) and F2(y; t) are differentially algebraic in their two variables.
• The meromorphic continuations rx(ω; t) and ry(ω; t) are differentially algebraic in

their two variables.
Proof. If Q(x, y; t) is differentially algebraic then Q(x, 0; t) is differentially algebraic. Since
K(x, 0; t) is differentially algebraic, we use the ring property of Lemma 3.2 to deduce that
F1(x; t) = K(x, 0; t)Q(x, 0; t) is differentially algebraic. (The reasoning is similar for the
differential algebraicity of F2(y; t)). Conversely, if F1(x; t) and F2(y; t) are differentially
algebraic, then, by evaluation, so is Q(0, 0; t). As the right-hand side of the expression
in Lemma 2.1 is a sum and product of elements that are differentially algebraic, it is
differentially algebraic (by the field property in Lemma 3.2). Therefore, K(x, y; t)Q(x, y; t)
is differentially algebraic. Thus, Q(x, y; t) is differentially algebraic. So the first two points
are equivalent.

Assume that the series F1(x; t) is differentially algebraic in its two variables. Recall
that F1(x(ω; t); t) = rx(ω; t) where x(ω; t) is differentially algebraic; see Corollary 3.8. By
composition of differentially algebraic functions, see Lemma 3.2, rx(ω; t) is differentially
algebraic. Conversely, on a domain where x(ω; t) is invertible, its inverse is also differentially
algebraic; see Lemma 3.2. We conclude similarly that if rx(ω; t) is differentially algebraic
then F1(x; t) is differentially algebraic. A similar reasoning holds for the y variable and we
find that F2(y; t) is differentially algebraic if and only if ry(ω; t) is differentially algebraic.
This proves the equivalence between the last two points. □

4. Differential algebraicity of the generating function

The goal of this section is to prove Theorem 1.1 (the ∂x, ∂y, and ∂t differential algebraicity
are equivalent). By Lemma 2.4, the result holds for all degenerate cases. By Lemma 2.6
and Proposition 2.5, it also holds when Et is not an elliptic curve. So we now prove the
case where Et is an elliptic curve. Let G be the group of the walk (see Definition 2.7).
Our proof handles separately the cases |G| < ∞ and |G| = ∞.

4.1. Finite group case.
Proposition 4.1. Let us consider a nondegenerate model of walks, assume that Et is an
elliptic curve and |G| < ∞. Then, Q(x, y; t) is ∂x-algebraic, ∂y-algebraic and ∂t-algebraic.
Proof. By Proposition 3.14, it suffices to show that rx(ω; t) and ry(ω; t) are differentially
algebraic in their two variables. Let us only consider rx(ω; t), the proof for ry(ω; t) is
similar. Recall that the ωi(t) are continuous and that ω3(t) ∈ (0, ω2(t)) (see Equation (2.2)).
Since |G| < ∞ and σ̃(ω) = ω + ω3(t), there exist k, ℓ ∈ N∗ with gcd(k, ℓ) = 1 such
that ω3(t)/ω2(t) = k/ℓ. By (2.4), we have rx(ω + ω3(t); t) = rx(ω; t) + bx(ω; t), where
bx(ω; t) = y(−ω; t)(x(ω; t) − x(ω + ω3(t); t)). Let us recall some notations borrowed from
the proof of [11, Theorem 4.1]. It is shown that we may write a decomposition of the form

rx(ω; t) = ψ(ω; t) + Φ(ω; t)ϕ(ω; t). (4.1)
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More precisely,

• Φ(ω; t) =
ℓ−1∑

i=0
bx(ω + iω3(t); t);

• ϕ(ω; t) = ω1(t)
2iπ ζ(ω; t) − ω

iπζ(ω1(t)/2; t), where ζ is an opposite of the antiderivative
of the Weierstrass function with periods ω1(t) and kω2(t), that is

ζ(ω; t) = 1
ω

+
∑

(ℓ1,ℓ2)∈Z2\{(0,0)}

(
1

ω + ℓ1ω1(t) + ℓ2kω2(t)
− 1
ℓ1ω1(t) + ℓ2kω2(t)

+ ω

(ℓ1ω1(t) + ℓ2kω2(t))2

)
;

• for all t ∈ (0, 1), the function ω 7→ ψ(ω; t) is (ω1(t), kω2(t))-periodic.
The idea is to prove successively that Φ(ω; t), ϕ(ω; t) and ψ(ω; t) are differentially algebraic.
We will also see them as functions of ω and study their poles and principal parts.

Step 1: Study of Φ(ω; t).

Lemma 4.2. The following holds:
• There are countably many elements of D, whose union forms the set of poles of
ω 7→ Φ(ω; t).

• The coefficients of the principal parts of ω 7→ Φ(ω; t) are in D.
• Φ is differentially algebraic in its two variables.

Proof. Recall, see Lemma 3.3, that ω3(t) ∈ D. We may combine Corollary 3.9 and
Lemma 3.2, to deduce that the poles and the coefficients of the principal parts of ω 7→ Φ(ω; t)
are ∂t-algebraic. Furthermore by Lemma 3.2 and Proposition 3.4, Φ is differentially
algebraic in its two variables. □

Step 2: Study of ϕ(ω; t).

Before proving that ϕ(ω; t) is differentially algebraic, let us study ζ(ω; t).

Lemma 4.3. The following holds:
• There are countably many elements of D, whose union forms the set of poles of
ω 7→ ζ(ω; t).

• The coefficients of the principal parts of ω 7→ ζ(ω; t) are in D.
• ζ is differentially algebraic in its two variables.

Proof. In virtue of Lemma 3.3, the periods ω1(t), ω2(t) are differentially algebraic. Then,
the poles and the coefficients of the principal parts of ω 7→ ζ(ω; t) belong to D.

Let ℘̃ be the Weierstrass function with periods ω1(t), kω2(t) and let us write the classical
differential equation

∂ω℘̃(ω; t)2 = 4℘̃(ω; t)3 − g̃2(t)℘̃(ω; t) − g̃3(t). (4.2)

By Remark 3.5, ℘̃(ω; t) = −∂ωζ(ω; t) is differentially algebraic in its two variables. Then,
ζ(ω; t) is ∂ω-algebraic too. Let us prove the ∂t-algebraicity. Let us differentiate (4.2) with
respect to ∂ω and simplify by ∂ω℘̃(ω; t), to find

2∂2
ω℘̃(ω; t) = 12℘̃(ω; t)2 − g̃2(t).
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By Lemma 3.2, for all k ≥ 0, the derivatives ∂k
ω℘̃(ω; t) are ∂t-algebraic. Since the ∂t-

algebraic functions form a ring, see Lemma 3.2, we deduce that g̃2(t) is ∂t-algebraic. Using
again the ring property of Lemma 3.2 in (4.2), we deduce that g̃3(t) is ∂t-algebraic too.
We may see the elliptic functions as functions of ω and g̃2, g̃3. By [1, (18.6.19)],

(g̃2
3 − 27g̃3

2)∂g̃3℘̃ = (3g̃2ζ − 9
2 g̃3ω)∂ω℘̃+ 6g̃2℘̃

2 − 9g̃3℘̃− g̃2
2. (4.3)

We have ∂t℘̃ = ∂tg̃3∂g̃3℘̃. If ∂tg̃3 = 0 then ℘̃ does not depend on t. In particular, its poles
are independent of t, which implies that the periods ω1(t) and kω2(t) are independent of t.
Then, ζ(ω; t) is independent of t and therefore ∂t-algebraic. We similarly deal with the
case ∂tg̃2 = 0. So let us consider the situation where both functions ∂tg̃2 and ∂tg̃3 are not
identically zero. By the derivation property of Lemma 3.2, we deduce that ∂t℘̃, ∂tg̃3 are
∂t-algebraic. Since the ∂t-algebraic functions form a field, see Lemma 3.2, we then find
that ∂g̃3℘̃ = ∂t℘̃/∂tg̃3 is ∂t-algebraic. Since ∂tg̃2 ̸= 0, we are in the situation where g̃2 is
not identically zero. With (4.3), and the field property of Lemma 3.2, we deduce that
ζ(ω; t) is ∂t-algebraic. This completes the proof of the lemma. □

Lemma 4.4. The following holds:
• There are countably many elements of D, whose union forms the set of poles of
ω 7→ ϕ(ω; t).

• The coefficients of the principal parts of ω 7→ ϕ(ω; t) are in D.
• ϕ is differentially algebraic in its two variables.

Proof. In virtue of Lemma 3.3, the period ω1(t) is differentially algebraic. By Lemma 3.2,
and Lemma 4.3, we find that ϕ(ω; t) is differentially algebraic in its two variables. Fur-
thermore, the poles and the coefficients of the principal parts of ω 7→ ϕ(ω; t) belong
to D. □

Step 3: Study of ψ(ω; t).

Let us now study ψ(ω; t). By Lemma 3.13 there exists a(t) ∈ D such that rx(a(t); t) ∈ D.
Furthermore, the poles and the coefficients of the principal parts of ω 7→ rx(ω; t) are ∂t-
algebraic.

With (4.1), Lemma 4.2 and Lemma 4.4, we deduce that the poles of ω 7→ ψ(ω; t) are
∂t-algebraic, and the coefficients of the principal parts are ∂t-algebraic. Recall that for
all t, ω 7→ ψ(ω; t) is (ω1(t), kω2(t))-periodic. By Remark 3.12, we may build ω 7→ ψ0(ω; t),
that is differentially algebraic and (ω1(t), kω2(t))-periodic, with same principal parts as
ω 7→ ψ(ω; t). We have

rx(ω; t) = ψ(ω; t) − ψ0(ω; t) + Φ(ω; t)ϕ(ω; t) + ψ0(ω; t). (4.4)

Note that by construction ω 7→ ψ(ω; t) − ψ0(ω; t) has no poles. Since ω 7→ rx(ω; t) has no
poles at a(t), we deduce with (4.4), that ω 7→ Φ(ω; t)ϕ(ω; t) +ψ0(ω; t) has no poles at a(t).
Since Φ(ω; t)ϕ(ω; t) + ψ0(ω; t) is differentially algebraic (as the sum of two differentially
algebraic functions, see Lemma 3.2), with no poles at a(t), we find that its evaluation at
a(t) is differentially algebraic. Since rx(a(t); t) ∈ D we use the ring property in Lemma 3.2
to deduce that ψ(a(t); t) − ψ0(a(t); t) is differentially algebraic.
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Then, ψ(ω; t) − ψ0(ω; t) satisfies the assumptions of Theorem 3.10 (with ω2(t) replaced
by kω2(t)) and we deduce that it is differentially algebraic by Remark 3.12. By Lemma 3.2,
and the differential algebraicity of ψ0(ω; t), we deduce that ψ(ω; t) is differentially algebraic.

Step 4: Study of rx(ω; t).

Let us now finish the proof of Proposition 4.1. Since ψ(ω; t), Φ(ω; t), and ϕ(ω; t) are differ-
entially algebraic in their two variables, we conclude that rx(ω; t) = ψ(ω; t) + Φ(ω; t)ϕ(ω; t)
is differentially algebraic as the sum and product of differentially algebraic functions; see
Lemma 3.2. □

4.2. Infinite group case. It now remains to handle the case where the group has infinite
order. So let us consider a nondegenerate model of walks and assume that Et is an
elliptic curve and |G| = ∞. The equivalence between the ∂x-algebraicity and the ∂y-
algebraicity can be straightforwardly deduced in this weighted context from the proof
of [8, Proposition 3.10]. Let us see that the ∂t-algebraicity implies the ∂x-algebraicity. If
Q(x, y; t) is ∂t-algebraic, then Q(x, 0; t) is ∂t-algebraic. By [7, Theorem 3.12], if Q(x, 0; t)
is ∂t-algebraic, then it is ∂x-algebraic. In virtue of Lemmas 2.1 and 3.2, we find that if
Q(x, 0; t) is ∂x-algebraic, then Q(x, y; t) is ∂x-algebraic. So to prove Theorem 1.1, it now
suffices to show the following result.

Theorem 4.5. Let us consider a nondegenerate model of walks, assume that Et is an
elliptic curve and |G| = ∞. If Q(x, y; t) is ∂x-algebraic, then it is ∂t-algebraic.

Proof. By Proposition 3.14, it suffices to show that rx(ω; t) and ry(ω; t) are differentially
algebraic. Let us consider rx(ω; t), the proof for ry(ω; t) is similar. By Proposition 2.5,
for all t ∈ (0, 1) fixed, Et is an elliptic curve. Let Gt be the group G specialized
at t. The order of the group Gt may depend upon t. However by [8, Proposition 2.6],
see also [19, Proposition 14], which can be straightforwardly extended in the weighted
framework, the set of t ∈ (0, 1) such that Gt has infinite order is dense. By assumption,
for such t fixed, x 7→ F1(x; t) is ∂x-algebraic. By [16, Theorem 3.8], for all such t fixed
there exists a (ω1(t), ω2(t))-periodic function g̃(ω; t), such that

bx(ω; t) = g̃(ω + ω3(t); t) − g̃(ω; t). (4.5)

By [16, Proposition 3.9], there exist g(x; t) ∈ C(x, t) and h(y; t) ∈ C(y, t) such that
g(x(ω; t); t) = g̃(ω; t) and for all (x, y) ∈ Et,

xy = g(x; t) + h(y; t).

Since g(x(ω; t); t) = g̃(ω; t), we use Corollary 3.8 to deduce that we may continue g̃(ω; t)
in the t variable.

Step 1: Study of g̃(ω; t).

Lemma 4.6. The following holds:
• There are countably many elements of D, whose union forms the set of poles of
ω 7→ g̃(ω; t).

• The coefficients of the principal parts of ω 7→ g̃(ω; t) are in D.
• g̃ is differentially algebraic in its two variables.
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Proof. We claim that the poles of ω 7→ g̃(ω; t) are of the form ω0(t) + ℓω3(t), where ω0(t)
is a pole of ω 7→ bx(ω; t) and ℓ ∈ Z. To the contrary, assume that a(t) is a pole that is
not of this form. Then a(t) − ω3(t) is a pole of ω 7→ g̃(ω + ω3(t); t), that is not a pole of
ω 7→ bx(ω; t). With (4.5), we find that a(t) − ω3(t) is a pole of ω 7→ g̃(ω; t). We prove
successively that for all ℓ ≥ 0, a(t) − ℓω3(t) is a pole of ω 7→ g̃(ω; t). Since g̃(ω; t) is
(ω1(t), ω2(t))-periodic, a(t) − ω3(t)N + ω1(t)Z + ω2(t)Z are poles of ω 7→ g̃(ω; t). Since
|G| = ∞ and σ̃(ω) = ω + ω3(t), the sets Aℓ := {a(t) − ℓω3(t) + ω1(t)Z + ω2(t)Z}, with
ℓ ∈ N, are disjoint. Then, the set of poles of ω 7→ g̃(ω; t) possesses an accumulation point
which contradicts that the function is meromorphic. This proves the claim.

By Corollary 3.9, the poles of ω 7→ bx(ω; t) are ∂t-algebraic. By Lemma 3.3, ω3(t) is
∂t-algebraic too. With the claim, it follows that the poles of ω 7→ g̃(ω; t) are ∂t-algebraic.
By Corollary 3.8, the coefficients of the principal parts of ω 7→ x(ω; t) are ∂t-algebraic.
With g(x(ω; t); t) = g̃(ω; t), and g(x; t) ∈ C(x, t), we deduce that the coefficients of the
principal parts of ω 7→ g̃(ω; t) are ∂t-algebraic. Finally g̃(ω; t) is differentially algebraic, as
the composition of differentially algebraic functions; see Lemma 3.2. □

Step 2: Study of f̃(ω; t) := rx(ω; t) − g̃(ω; t).

By (2.4) and (4.5), we find

f̃(ω + ω3(t); t) = rx(ω + ω3(t); t) − g̃(ω + ω3(t); t)
= rx(ω; t) + bx(ω; t) − (g̃(ω; t) + bx(ω; t)) = f̃(ω; t).

Then, f̃(ω; t) is ω3(t)-periodic. Recall that g̃(ω; t) is ω1(t)-periodic. By (2.5), rx(ω; t) is
also ω1(t)-periodic. Therefore, ω 7→ f̃(ω; t) is elliptic with periods (ω1(t), ω3(t)). Recall
that the poles and the coefficients of the principal parts of ω 7→ g̃(ω; t) are ∂t-algebraic. By
Lemma 3.13, the same holds for rx(ω; t) and there exists a(t) ∈ D such that rx(a(t); t) is
differentially algebraic. By Remark 3.12, we may build ω 7→ f̃0(ω; t), that is differentially
algebraic, (ω1(t), ω3(t))-periodic, and with same principal parts as ω 7→ f̃(ω; t). Let us
write

f̃(ω; t) − f̃0(ω; t) = rx(ω; t) − g̃(ω; t) − f̃0(ω; t).

The function −g̃(ω; t) − f̃0(ω; t) is differentially algebraic, as the sum of two differentially
algebraic functions; see Lemma 3.2. Since f̃(ω; t) − f̃0(ω; t) has no poles and a(t) is not
a pole of ω 7→ rx(ω; t), we deduce that a(t) is not a pole of ω 7→ −g̃(ω; t) − f̃0(ω; t).
Therefore, its evaluation at a(t) is still differentially algebraic. Then, the same holds
for ω 7→ f̃(ω; t) − f̃0(ω; t), which satisfies the assumptions of Theorem 3.10 (with ω2(t)
replaced with ω3(t)) and we deduce that it is differentially algebraic by Remark 3.12.
Hence, rx(ω; t) =

(
f̃(ω; t) − f̃0(ω; t)

)
+ g̃(ω; t) + f̃0(ω; t) is differentially algebraic as the

sum of differentially algebraic functions, see Lemma 3.2. This concludes the proof. □
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Abstract. We look at multidimensional random walks (Sn)n⩾0 in convex cones,
and address the question of whether two naturally associated generating functions
may define rational functions. The first series is the one of the survival probabilities
P(τ > n), where τ is the first exit time from a given cone; the second series is that
of the excursion probabilities P(τ > n, Sn = y). Our motivation to consider this
question is twofold: first, it goes along with a global effort of the combinatorial
community to classify the algebraic nature of the series counting random walks in
cones; second, rationality questions of the generating functions are strongly associated
with the asymptotic behaviors of the above probabilities, which have their own interest.
Using well-known relations between rationality of a series and possible asymptotics of
its coefficients, recent probabilistic estimates immediately imply that the excursion
generating function is not rational. Regarding the survival probabilities generating
function, we propose a short and self-contained proof that it cannot be rational neither.
Keywords: random walks in cones, survival probabilities, generating functions,
rational functions, Laplace transform, univariate singularity analysis.

1. Introduction

Main result and our approach. For a d-dimensional random walk (Sn)n⩾0 with
integrable and independent increments Xn = Sn − Sn−1 having common distribution µ,
we consider the generating function

F (t) =
∑

n⩾0
antn =

∑

n⩾0
Px(τ > n)tn, (1.1)

where Px is a probability distribution under which the random walk starts at S0 = x, and
τ denotes the first exit time from a given cone K, i.e.,

τ = inf{n > 0 : Sn /∈ K}.

See (1.7) for an explicit computation of (1.1) in a simple one-dimensional example. Our
first main result can be stated as follows:

Theorem 1.1. If the drift m = EX1 is not interior to the cone K, and if four further
assumptions (A1)–(A4) (to be introduced below) are satisfied, then the generating function
F (t) in (1.1) is not a rational function.
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Let us emphasize that in Theorem 1.1, the distribution of X1 is not assumed to be a
discrete measure. This theorem covers, amongst other cases, the class of walks with small
steps in orthants (with arbitrary weights on the steps), a model that has attracted a lot of
attention from the combinatorial community, but is much more general.

The non-rationality of the generating function (1.1) is based on the fact that the numbers
an don’t have an asymptotic behavior that is compatible with the Taylor coefficients of a
rational function. More precisely, we identify in Theorem 1.3 a rate ρ ∈ (0, 1] such that

an = ρnBn, (1.2)
with Bn satisfying

(i) n
√

Bn → 1,
(ii) Bn → 0.

Using then classical analytic combinatorics techniques (see in particular Theorem 4.1
and Lemma 4.2), one will directly deduce that the generating function (1.1) cannot be
rational.

In this paper, we provide proofs of estimates (i) and (ii) which are self-contained, and
as simple and elementary as possible. Only item (ii) is new. Item (i) (in particular the
value of the rate ρ in (1.2)) is already obtained in [11], but for the reader’s convenience,
we shall give here a detailed proof in a simplified setting, that covers the cases which are
relevant to combinatorialists. In a special case (when the drift is, in some sense, directed
towards the vertex of the cone), the precise asymptotics of the survival probability (hence
in particular items (i) and (ii)) is derived in [8].

Drift inside of the cone. In case of a drift m = EX1 interior to the cone, the probabilistic
behavior is rather constrained as we have Px(τ > n) → Px(τ = ∞) > 0. The positivity
of the escape probability is intuitively clear, based on the law of large numbers and the
fluctuations of the random walk; see Lemma 3.1 for a precise statement. Equivalently, in
the neighborhood of t = 1, one has

F (t) ∼ Px(τ = ∞)
1 − t

,

which contains no contradiction with F being a rational function. However, for one-
dimensional walks with bounded jumps, it is proved in [1, Thm 4] that Px(τ > n) =
Px(τ = ∞) + cρn

n3/2 + · · · , with ρ ∈ (0, 1), which is not compatible with F being rational.
One of the simplest examples for which the rationality of F in (1.1) was an open question

before the present paper is the following: in the quarter plane K = N2, take a uniform
distribution µ on {(1, 0), (0, −1), (−1, 0), (0, 1), (1, 1)}. Here, we answer this question and,
more generally, solve the problem for the orthant K = [0, ∞)d and any (weighted) small
step walk, i.e., random walk with increments Xk that belong to {−1, 0, 1}d almost surely.
If P(Xk ∈ K) = 1, then the random walk is trapped forever in K and an = Px(τ > n) = 1
for all n, so that F (t) = 1

1−t
is a rational function. Let us say the walk is not trapped if

P(Xk /∈ K) > 0. Our second main result is the following:

Theorem 1.2. For all d-dimensional weighted small step walks with a drift interior to
the orthant K = [0, ∞)d, not trapped and satisfying (A2), the generating function F (t)
in (1.1) is not rational.
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Here again, the non-rationality of the generating F (t) is obtained as a consequence of
estimates on an = Px(τ > n). More precisely, in Theorem 1.4, we prove that

Px(τ > n) = Px(τ = ∞) + Θ(ρnBn), (1.3)

where ρ ∈ (0, 1) and Bn satisfies n
√

Bn → 1 and Bn → 0, and the notation fn = Θ(gn)
means that there exist constants 0 < c < C such that cgn ⩽ fn ⩽ Cgn.

We could have unified the presentation of the interior and non-interior drift estimates,
since Px(τ = ∞) = 0 when the drift is not in Ko. However, we choose not to do so,
because the last double-sided estimate (1.3) is obtained only in the small step walk setting.
We leave open the general case of this interesting interior drift problem.

In the papers [12, 13] (see also [7]), the authors prove the non-rationality of F (t), for
certain models of singular walks in the quarter plane, by proving that F (t) admits infinitely
many poles.

Combinatorial motivations. Up to a scaling of the t-variable, our framework is equiva-
lent to a more combinatorial question, related to the enumeration of walks. More precisely,
in case µ is a uniform distribution on a finite set S (with cardinality |S|), one has

F (|S|t) =
∑

n⩾0
qntn,

where qn denotes the number of walks starting from x, having length n and staying in the
cone K. More generally, when µ is any distribution, the series F (t) counts the numbers of
µ-weighted walks of length n staying in the cone K. Accordingly, all our results admit
direct combinatorial interpretations.

Recently, in the combinatorial literature, the seminal paper [3] inspired the following
question, which has attracted a lot of attention: given an orthant K = Nd = {0, 1, . . .}d

and a distribution µ on Zd (a step set in the combinatorial terminology), is the generating
function (1.1), or its refined version

F (x1, . . . , xd; t) =
∑

n⩾0

∑

(n1,...,nd)∈Nd

Px(τ > n, Sn = (n1, . . . , nd))xn1
1 · · · xnd

d tn (1.4)

a rational function? An algebraic function? A function satisfying a linear (or non-linear)
differential equation? A hypertranscendental function, meaning that like Euler’s Γ function
it does not satisfy any differential equation? In the present article, we look at the possible
rationality of the generating function.

Notice the following relation between (1.1) and (1.4):

F (1, . . . , 1; t) = F (t).

On the other hand, F (0, . . . , 0; t) is the generating function of the excursion sequence

F (0, . . . , 0; t) =
∑

n⩾0
Px(τ > n, Sn = (0, . . . , 0))tn,

which will be studied (based on earlier literature [5]) in Section 5.
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K

K∗

Figure 1. A cone K (in red) and its dual cone cone K∗ (in blue)

Technical assumptions. In order to present the hypotheses in the statement of our main
results, we need to introduce two objects, through which the exponential rate ρ in (1.2)
will be determined:

• the Laplace transform L of the increment distribution µ:

L(t) = E
(
e⟨t,Xk⟩

)
=
∫

Rd
e⟨t,y⟩µ(dy),

• the dual cone K∗ associated with K (see Figure 1 for an example):

K∗ = {x ∈ Rd : ⟨x, y⟩ ⩾ 0 for all y ∈ K}. (1.5)

Obviously, K∗ is a closed convex cone.
Throughout this paper, we make the following assumptions on the cone K and on the

distribution µ of the random walk increments:
(A1) The cone K is closed, convex, with non-empty interior.
(A2) The random walk is truly d-dimensional, i.e., there is no u ̸= 0 such that ⟨u, X1⟩ = 0

almost surely. Moreover, the random walk started at zero can reach the interior
Ko of the cone: there exists k > 0 such that P0(τ > k, Sk ∈ Ko) > 0.

(A3) The random walk increments are L1. We call m = EX1 =
∫

yµ(dy) the drift.
(A4) There exists a point t0 ∈ K∗ and a neighborhood V of t0 such that the Laplace

transform L of µ is finite in V and t0 is a minimum point of L restricted to K∗ ∩ V .
We would like to give some intuition on the hypothesis (A4), which is designed to perform an
exponential change of measure adapted to the geometry of the problem (see Subsection 2.1).
First, (A4) implies the existence of some exponential moments, but not all; it is even not
necessary that the increments have a moment of order one.
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For example, consider a random variable X with probability density function

f(x) = cγ

(
e−x2

1 + x2 1{x>0} + eγ2

1 + x2 1{x⩽0}

)
,

where γ > 0 is some fixed parameter and cγ is the normalizing constant. Since the negative
part of X has a half-Cauchy distribution, the variable X is not integrable. However, its
Laplace transform

L(t) = E(etX) = cγ

∫ ∞

0

e−txeγ2 + etxe−x2

1 + x2 dx

is finite and differentiable for all t > 0, and its derivative

L′(t) = cγ

∫ ∞

0
(e2tx−x2 − eγ2) xe−tx

1 + x2 dx

is negative for t ∈ (0, γ). Thus L reaches a minimum at some t0 > 0 (clearly L(t) → ∞
as t → ∞). Now taking a random vector Z = (X, Y ) with density f(x)f(y) gives a
two-dimensional example where Z is not integrable but its Laplace transform is finite in
the quadrant [0, ∞)2 and reaches a global minimum inside the quadrant.

Regarding the existence of a local minimum in K∗, hypothesis (A4) is discussed in [11]
(see its subsection 2.3; the condition is called (H2) there), where an equivalent geometric
condition is given: in the presence of all exponential moments, condition (A4) is satisfied
if and only if the support of the distribution µ is not included in any ‘bad’ half-space
{x ∈ Rd : ⟨x, u⟩ ⩽ 0}, with u in the dual cone K∗ \ {0}.

Under assumptions (A1)–(A4), we proved in [11] that the exponential rate ρ of the
survival probability is equal to L(t0), meaning that for all x ∈ K,

lim
n→∞Px(τ > n)1/n = L(t0).

Furthermore, L(t0) < 1 if and only if the drift m does not belong to the closed cone K.
Here, we shall prove a little bit more:

Theorem 1.3. Assume hypotheses (A1)–(A4) above. If m /∈ Ko, then

Px(τ > n) = ρnBn,

where ρ = L(t0) ∈ (0, 1], n
√

Bn → 1 and Bn → 0.

Regarding the interior drift case, we shall prove the following estimate, in the setting of
small step walks in orthants:

Theorem 1.4. For all d-dimensional weighted small step walks with a drift interior to the
orthant K = [0, ∞)d, not trapped and satisfying (A2), we have for all x ∈ Nd

Px(τ > n) − Px(τ = ∞) = Θ(ρnBn),

where ρ ∈ (0, 1) and Bn satisfies n
√

Bn → 1 and Bn → 0.
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A one-dimensional example. We now illustrate our previous results on the example of
the simple random walk on Z, with jump probabilities q to the left (−1) and p = 1 − q to
the right (+1) and let K = [0, ∞). In this setting,

τ = inf{n > 0 : Sn < 0} = inf{n > 0 : Sn = −1}. (1.6)
It is well known that, for any positive starting point x ∈ N, the series (1.1) equals

F (t) = 1 − ϕ(t)x+1

1 − t
, with ϕ(t) = 1 − √

1 − 4pqt2

2pt
. (1.7)

We may directly observe on (1.7) that, as stated in our Theorems 1.1 and 1.2, the function
F (t) is not rational. Indeed F (t) ∈ R(t) if and only if (1 − √

1 − 4pqt2)x+1 ∈ R(t). But
an expression like (1 −

√
P )n where P is a polynomial belongs to R(t) if and only if

√
P

belongs to R(t), as seen by a binomial expansion, and
√

P is rational if and only if P is
a square in R[t]. This is not the case here with P (t) = 1 − 4pqt2, unless p or q equals 0.
However, F (t) defines an algebraic function (as usual for one-dimensional random walks;
see [1]).

In the zero drift case (meaning that p = q = 1
2), expanding (1.7) at t = 1 and using

singularity analysis, one finds

Px(τ > n) ∼ (x + 1)
√

2
π

1
n1/2 (in particular ρ = 1).

If the drift is negative (q > p), the function F in (1.7) is analytic at 1 as ϕ(1) = 1, and
the singularities t = ± 1

2√
pq

will both contribute to the asymptotics, which reads

Px(τ > n) ∼ (x + 1)
(

q

p

)(x+1)/2

 1

1
2√

pq
− 1 + (−1)x+n

1
2√

pq
+ 1


 (2√

pq)n

√
2πn3/2

.

Finally, when the drift is positive (p > q), the probability of survival admits the following
two-term asymptotics (observe the similarity with the negative drift situation)

Px(τ > n) =
(

1 −
(

q

p

)x+1
)

+(x+1)
(

q

p

)(x+1)/2

 1

1
2√

pq
− 1 + (−1)x+n

1
2√

pq
+ 1


 (2√

pq)n

√
2πn3/2

+· · · .

The three asymptotics above, which illustrate our Theorems 1.3 and 1.4, are obtained by
studying the singularities of the generating function (1.7) and by using classical transfer
theorems on the coefficients.

2. Survival probability in the non-interior drift case:
proof of Theorem 1.3

2.1. Basics on the Laplace transform. Let us first recall some basic properties. The
Laplace transform of a random vector X = (X(1), . . . , X(d)) ∈ Rd with probability distri-
bution µ is the function L defined for t ∈ Rd by

L(t) = E
(
e⟨t,X⟩

)
=
∫

Rd
e⟨t,y⟩µ(dy).
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It is finite in some neighborhood of the origin if and only if E
(
eα∥X∥

)
is finite for some

α > 0. If L is finite in some neighborhood of the origin, say B(0, r), then L is infinitely
differentiable in B(0, r) and its partial derivatives are given there by

∂L(t)
∂ti

= E
(
X(i)e⟨t,X⟩

)
.

Therefore, the expectation EX = (EX(1), . . . ,EX(d)) of X is equal to the gradient of L at
the origin ∇L(0). Notice that X is centered (i.e., EX = 0) if and only if 0 is a critical
point of L. Since L is a convex function, this means that 0 is a minimum point of L in
B(0, r). Now suppose that L is finite in some ball B(t0, r), and define a new probability
measure µ∗ by

µ∗(dy) = e⟨t0,y⟩

L(t0)
µ(dy).

The Laplace transform L∗ of µ∗ is linked to that of µ by the relation L∗(t) = L(t0 +t)/L(t0),
and therefore L∗ is finite in some neighborhood of the origin. As a consequence, applying
the results above shows that any random vector X∗ with distribution µ∗ satisfies:

• E
(
eα∥X∗∥

)
< ∞ for some α > 0;

• EX∗ = ∇L(t0)/L(t0).
As we shall see later, the relevant value of L for our problem is its minimum on the dual

cone K∗ defined by (1.5).
We now investigate further properties of EX∗ when t0 satisfies the assumption (A4),

i.e., t0 is a local minimum point of L restricted to K∗. By convexity of L, the point t0 is
necessarily a global minimum on K∗; we don’t assume t0 to be a global minimum on Rd.
Define the two sets

S =
{
u ∈ Rd : ∃ε > 0, ∀s ∈ [−ε, ε], t0 + su ∈ K∗

}
,

S+ =
{
u ∈ Rd : ∃ε > 0, ∀s ∈ [0, ε], t0 + su ∈ K∗

}
.

Of course S ⊂ S+. Since K∗ is a convex cone, the set S contains at least t0, while the set
S+ contains at least K∗. Assuming (A4), we observe the following:

• if u belongs to S+, then the function ϕ(s) = L(t0 + su) defined on some small
interval [0, ε] reaches a minimum at s = 0, hence ϕ′(0) = ⟨∇L(t0), u⟩ ⩾ 0. This
holds for all u ∈ K∗ since K∗ ⊂ S+, therefore ∇L(t0) belongs to the dual cone (K∗)∗

associated with K∗;
• if u belongs to S, the function ϕ(s) defined on some small interval [−ε, ε] reaches

its minimum at s = 0, hence ϕ′(0) = 0. Therefore ∇L(t0) is orthogonal to S (and
so at least to t0 itself).

Translating these observations in terms of the expectation of X∗, we obtain:

Lemma 2.1. Assume (A1) and (A4). The expectation EX∗ of any random vector with
distribution µ∗ belongs to the cone K and is orthogonal to t0.

Proof. Since K is a closed convex cone, it is well known that (K∗)∗ = K (see Exercise 2.31
in [4] for example). Everything now follows from the relation EX∗ = ∇L(t0)/L(t0). □
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2.2. Proof of Theorem 1.3. We shall use the preceding t0 and µ∗ in order to perform an
exponential change of measure. For any non-negative and measurable function f : Rn →
[0, ∞), elementary algebraic manipulations give:

Ex
(
f(S1, . . . , Sn)

)
=
∫

Rn
f

(
x + x1, x +

2∑

i=1
xi, . . . , x +

n∑

i=1
xi

)
n∏

i=1
µ(dxi)

= ρn
∫

Rn
f

(
x + x1, x +

2∑

i=1
xi, . . . , x +

n∑

i=1
xi

)
e−⟨t0,

∑n

i=1 xi⟩
n∏

i=1
µ∗(dxi)

= ρne⟨t0,x⟩Ex
∗
(
f(S1, . . . , Sn)e−⟨t0,Sn⟩

)
,

where
• ρ = L(t0),
• Ex

∗ is the expectation with respect to Px
∗ , a probability distribution under which

(Sn)n⩾0 is a random walk with increment distribution µ∗ and started at S0 = x.
Taking f(s1, . . . , sn) = ∏n

i=1 1K(si) leads to

Px(τ > n) = ρne⟨t0,x⟩Ex
∗
(
e−⟨t0,Sn⟩, τ > n

)
,

so that Theorem 1.3 will follow from the two lemmas below:

Lemma 2.2. Assume (A1)–(A4). Then, for all x ∈ K,

lim
n→∞

n

√
Ex

∗
(
e−⟨t0,Sn⟩, τ > n

)
= 1.

Lemma 2.3. Assume (A1)–(A4). If the drift m = EX1 does not belong to Ko, then for
all x ∈ K,

lim
n→∞Ex

∗
(
e−⟨t0,Sn⟩, τ > n

)
= 0.

Lemma 2.2 is fully proved in [11]. However, to make our paper self-contained, we
propose here a short proof of it in a simplified setting. Instead of (A2) we will work under
the following hypothesis: there exist k > 0 and z ∈ Ko such that P(τ > k, Sk = z) > 0. In
the majority of classical lattice random walks, the previous hypothesis is satisfied, as for
instance for all 74 non-singular small step random walks considered in [3].

Proof of Lemma 2.2. First observe that on the event {τ > n}, we have Sn ∈ K, hence
⟨t0, Sn⟩ ⩾ 0 since t0 ∈ K∗. As a consequence Ex

∗
(
e−⟨t0,Sn⟩, τ > n

)
⩽ Px

∗(τ > n) ⩽ 1, and
what remains to prove is that

lim inf
n→∞

n

√
Ex

∗
(
e−⟨t0,Sn⟩, τ > n

)
⩾ 1.

By inclusion of events and basic properties of the n-th root limit, it suffices to prove the
result for x = 0, in which case we get rid of the x superscript on E∗ and P∗. We compute
a lower bound of the expectation as follows:

E∗
(
e−⟨t0,Sn⟩, τ > n

)
⩾ e−anP∗

(
|⟨t0, Sn⟩| ⩽ an, τ > n

)
,

with an = n3/4. The e−an term goes to 1 in the n-th root limit, thus we focus on the
probability in the right-hand side.



254 R. Garbit and K. Raschel

Using our hypothesis, we can use the first k⌊√
n⌋ steps to push the walk ⌊√

n⌋ times in
the direction z without leaving the cone: by inclusion of events and the Markov property,
we have

P∗
(
|⟨t0, Sn⟩| ⩽ an, τ > n

)
⩾ αbnPbnz

∗
(
|⟨t0, Sn−kbn⟩| ⩽ an, τ > n − kbn

)
,

where α = P(τ > k, Sk = z) > 0 and bn = ⌊√
n⌋. Here again, the αbn term will disappear

in the n-th root limit, and the −kbn does not play any significant role in n − kbn, so we
are left to consider the probability

Pbnz
∗
(
|⟨t0, Sn⟩| ⩽ an, τ > n

)
.

At this point, we take into account the “new drift” d = E∗X1 of the random walk under
P∗, and consider the centered random walk S̃n = Sn − nd. Lemma 2.1 asserts that:

• d is orthogonal to t0, so that ⟨t0, Sn⟩ = ⟨t0, S̃n⟩,
• d belongs to K, hence

{τ(S̃ℓ) > n} = {S̃1, . . . , S̃n ∈ K} ⊂ {S1, . . . , Sn ∈ K} = {τ > n}.

Due to these facts, our probability can be bounded from below by

Pbnz
∗
(
|⟨t0, S̃n⟩| ⩽ an, τ(S̃ℓ) > n

)
= P∗

(
|⟨t0, bnz + S̃n⟩| ⩽ an, τ(bnz + S̃ℓ) > n

)

= P∗
(
|⟨t0, z + S̃nb−1

n ⟩| ⩽ anb−1
n , τ(z + S̃ℓb

−1
n ) > n

)

⩾ P∗
(
∥S̃ℓb

−1
n ∥ < ε for all ℓ = 1, . . . , n

)
,

where we have used the homogeneity of the cone, namely K/bn = K on the second line, and
then chosen ε > 0 so that the ball B(z, ε) ⊂ K. Now recall that, under P∗, the increments
Xn of the random walk Sn have a distribution µ∗ with some exponential moments, hence
the Xn’s are in L2, and so do the increments Xn − d of the centered random walk S̃n.
Therefore, the functional central limit theorem [2, Thm 8.2] is in force and, in conjunction
with Portmanteau theorem [2, Thm 2.1], we obtain

lim inf
n→∞ Pbnz

∗
(
|⟨t0, S̃n⟩| ⩽ an, τ(S̃ℓ) > n

)
⩾ P∗

(
∥Bt∥ < ε for all t ∈ [0, 1]

)
> 0,

where (Bt)t∈[0,1] is the image of a standard Brownian motion started at 0 under a (possibly
degenerate) linear transformation. This concludes the proof of Lemma 2.2. □

Proof of Lemma 2.3. The proof will be done separately, according to whether t0 is zero
or not. First assume t0 ≠ 0. On the event {τ > n}, for all k = 1, . . . , n, we have that
Sk ∈ K, hence Rk = ⟨t0, Sk⟩ ⩾ 0 since t0 ∈ K∗. Therefore

Ex
∗
(
e−⟨t0,Sn⟩, τ > n

)
⩽ Px

∗
(
Rk ⩾ 0 for all k = 1, . . . , n

)
.

Now, under Px
∗ , the process Rk = ⟨t0, Sk⟩ is a random walk with increments Yk = ⟨t0, Xk⟩

having mean ⟨t0,E∗X1⟩ = 0 (see Lemma 2.1). Since the initial distribution µ is truly
d-dimensional and µ∗ is absolutely continuous with respect to µ, the new distribution µ∗
is also truly d-dimensional.

Thus, under Px
∗ , the increments Yk are non-degenerate (i.e., it does not hold that

Yk = 0 almost surely). It is well known (see [9, Thm 1 & 2 of XII,2]) that for such a
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one-dimensional random walk, almost surely,
−∞ = lim inf Rn < lim sup Rn = +∞.

Accordingly,
lim

n→∞Px
∗
(
Rk ⩾ 0 for all k = 1, . . . , n

)
= Px

∗
(
Rk ⩾ 0 for all k ⩾ 1

)
= 0.

We now turn to the case t0 = 0. This time ⟨t0, Sn⟩ = 0, so we don’t learn anything by
considering this specific one-dimensional random walk. The idea is to replace t0 with an
appropriate t̃0 and apply the same argument as before. To do this, observe that we know
from Lemma 2.1 that E∗X1 belongs to the cone K, but when t0 = 0 the change of measure
has no effect: µ∗ = µ. Hence the original drift m = EX1 belongs to K. Since we assumed
m /∈ Ko, we are left with a drift m on the boundary ∂K of the cone K.

If C is a closed cone, the interior of its dual cone has the following description:
(C∗)o =

{
x ∈ Rd : ⟨x, y⟩ > 0 for all y ∈ C \ {0}

}

(see Exercise 2.31(d) in [4] for example). As a consequence, the boundary is given by

∂C∗ =
{
x ∈ C∗ : ⟨x, y⟩ = 0 for some y ∈ C \ {0}

}
,

and applying this to the closed convex cone C = K∗ gives
∂K =

{
x ∈ K : ⟨x, y⟩ = 0 for some y ∈ K∗ \ {0}

}
,

since (K∗)∗ = K. Going back to our drift m ∈ ∂K, there exists some t̃0 ∈ K∗ \ {0}
such that ⟨t̃0, m⟩ = 0. Setting R̃k = ⟨t̃0, Sk⟩, we obtain a centered and non-degenerate
one-dimensional random walk such that Sk ∈ K implies R̃k ⩾ 0. Therefore

Ex
∗
(
e−⟨t0,Sn⟩, τ > n

)
= Px(τ > n) ⩽ Px

∗
(
R̃k ⩾ 0 for all k = 1, . . . , n

)
,

and the conclusion follows as in the first case. □
The proof of Theorem 1.3 is complete.

3. Survival probability in the interior drift case: proof of Theorem 1.4

In this section, we restrict our attention to the cone K = [0, ∞)d and small step walks,
i.e., random walks on Zd with increments Xk satisfying Xk ∈ {−1, 0, 1}d almost surely.
For such walks, we investigate the case of a drift m = EXk interior to the cone K, i.e.,
such that ⟨m, ei⟩ > 0 for i = 1, . . . , d, where (e1, . . . , ed) denotes the standard basis of Rd.
We will use the notation X

(i)
k = ⟨Xk, ei⟩. Since the drift is in the interior of K, we know

that
lim

n→∞Px(τ > n) = Px(τ = ∞) > 0
for all x ∈ K; see Lemma 3.1 for a precise statement and a proof.

Here we wish to estimate the error term δn = Px(τ > n) − Px(τ = ∞). We exclude the
case where δn = 0 for all n by assuming that the random walk is not trapped, i.e., the
increments satisfy P(Xk /∈ K) > 0. Under this assumption we will prove Theorem 1.4,
namely that

Px(τ > n) − Px(τ = ∞) = Θ (ρnBn) .

Before going into the proof, we collect preliminary estimates on Px(τ = ∞).
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3.1. Exact formula for a one-dimensional small step walk. First of all, we consider
the one-dimensional setting with p = P(Xk = 1), r = P(Xk = 0), q = P(Xk = −1),
p + r + q = 1. Let τ be as in (1.6) and assume m = p − q > 0. Then it is known that, for
all x ∈ N,

Px(τ = ∞) = 1 −
(

q

p

)x+1

.

If q > 0, this can be rewritten as

Px(τ = ∞) = 1 − γe−sx, (3.1)

where γ = q/p and s > 0 is the unique solution to e−s = q/p.
One way to obtain the formula above is to use the discrete harmonicity of the function

ux = Px(τ = ∞): by the Markov property, we have ux = qux−1 + rux + pux+1 for all x ⩾ 1,
which is solved in ux = a + b

(
q
p

)x
. Then a and b are determined through initial and limit

behaviors of ux.
For future use, we notice the following fact: let

L(t) = E
(
etXk

)
= pet + r + qe−t

be the Laplace transform associated with the random walk increments. Its derivative is
given by L′(t) = pet − qe−t. Evaluating at t = −s, where s is as above the solution to
e−s = q/p, leads to

L(−s) = 1 and L′(−s) = q − p = −m < 0. (3.2)

The last value is exactly the opposite of the drift.

3.2. Estimate for Px(τ < ∞) in the d-dimensional small step case. Let us go back
to our d-dimensional small step walk (Sn)n with drift m interior to the cone K = [0, ∞)d

and such that P(Xk ̸∈ K) > 0. The simple inclusion of events

{
∃n > 0, ⟨Sn, ei⟩ < 0

}
⊂
{
τ < ∞

}
⊂

d⋃

i=1

{
∃n > 0, ⟨Sn, ei⟩ < 0

}

leads to the bounds
g(x)

d
⩽ Px(τ < ∞) ⩽ g(x), (3.3)

where g(x) = ∑d
i=1 Px(∃n > 0, ⟨Sn, ei⟩ < 0). Now, for each i, the one-dimensional

small step walk (⟨Sn, ei⟩)n with increments X
(i)
k has a drift EX

(i)
k = ⟨m, ei⟩ > 0. Since

P(Xk ̸∈ K) > 0, the set I of indices i for which P(X(i)
k = −1) > 0 is non-empty, and

applying the exact formula (3.1) of the preceding paragraph, we obtain:

g(x) =
∑

i∈I

γie
−si⟨x,ei⟩,

where γi = P(X(i)
k = −1)/P(X(i)

k = 1) ∈ (0, 1) and si > 0 is the unique solution to
e−si = γi.



Survival probabilities in a cone 257

3.3. Proof of Theorem 1.4. Fix x ∈ Nd and set

δn = Px(τ > n) − Px(τ = ∞) = Px(τ > n, but Sm /∈ K for some m > n).

By the Markov property of the random walk, we can express δn as follows:

δn = Ex
(
τ > n,PSn(τ < ∞)

)
,

so that inequality (3.3) leads to δn = Θ(gn), where gn = Ex(τ > n, g(Sn)). It remains to
estimate

gn =
∑

i∈I

γiEx
(
τ > n, e⟨Sn,−siei⟩

)
.

To do this, we apply to each term in the sum a specific exponential change of measure. Set

µ∗i(dy) = e⟨−siei,y⟩

L(−siei)
µ(dy),

where µ is the common distribution of the increments Xk of the random walk, and
L(t) = E(e⟨t,Xk⟩) is their Laplace transform. Then basic algebraic manipulations as in
Section 2.2 lead to

Ex
(
τ > n, e⟨Sn,−siei⟩

)
= L(−siei)ne⟨−siei,x⟩Px

∗i (τ > n) .

Now observe that t 7→ L(tei) = E
(
etX

(i)
k

)
is the one-dimensional Laplace transform of the

increments X
(i)
k . Since si is the solution to e−si = γi = P(X(i)

k
=−1)

P(X(i)
k

=1)
, we are in the same

situation as in (3.2), so that

L(−siei) = 1 and ∂L

∂ti

(−siei) = −⟨m, ei⟩ < 0.

Therefore, equation (3.3) reads

Ex
(
τ > n, e⟨Sn,−siei⟩

)
= e⟨−siei,x⟩Px

∗i (τ > n) ,

and the new drift under Px
∗i, which is given by the gradient of L at the point −siei, has

a strictly negative i-th coordinate. As a consequence, this drift does not belong to the
cone K = [0, ∞)d, and it follows from Theorem 1.3 that

Px
∗i(τ > n) = ρn

i Bi,n,

where ρi ∈ (0, 1), n

√
Bi,n → 1 and Bi,n → 0 as n → ∞. Finally, we get

gn =
∑

i∈I

γiρ
n
i Bi,n,

which can be rewritten in the form gn = ρnBn, by selecting

ρ = max{ρi : i ∈ I} < 1.

It is then clear that n
√

Bn → 1 and Bn → 0, and the proof is complete.
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3.4. Positivity of the escape probability.

Lemma 3.1. Assume (A1) and (A2). If the drift m = EX1 belongs to Ko, then the
function h(x) = Px(τ = ∞) satisfies:

(1) h is harmonic for the killed random walk, i.e.,
h(x) = Ex(h(Sn), τ > n).

(2) h(x) > 0 for all x ∈ K.
(3) limt→∞ h(tu) = 1 for all u ∈ Ko.

Proof. Item (1) is just the Markov property applied at time n. The relation is valid
disregarding the position of the drift. We now prove (2).

First step. We begin with a simple geometric fact. For any z ∈ Ko, the non-decreasing
sequence of sets K − kz will ultimately cover the whole space, i.e., ∪k⩾0(K − kz) = Rd. To
see this, select ε > 0 such that B(z, ε) ⊂ K. For any x ∈ Rd, there exists k > 0 such that
∥x/k∥ < ε, hence z + x

k
belongs to K. By homogeneity of K, it follows that kz + x ∈ K,

i.e., x ∈ K − kz.
Second step. Let us consider the random walk (Sn) with drift m ∈ Ko and select ε > 0

such that B(m, ε) ⊂ K. By the strong law of large numbers Sn/n → m almost surely,
therefore, for almost all ω, there exists n0 = n0(ω) such that

n ⩾ n0 ⇒
∥∥∥∥

Sn(ω)
n

− m

∥∥∥∥ < ε ⇒ Sn(ω) ∈ K.

Considering now the first positions S1(ω), S2(ω), . . . , Sn0−1(ω), the first step of the proof
ensures that there exists k ⩾ 0 such that they all belong to K − kz, where z ∈ K0 is to be
fixed in the last step of the proof. Since one has

K ⊂ K − kz (recall that K + K ⊂ K),

all positions Sn(ω), n ⩾ n0, also belong to K − kz and we obtain the following:

P
(
∪k⩾0{Sn ∈ K − kz for all n ⩾ 0}

)
= 1.

Since the events inside the probability above form a non-decreasing sequence, it follows
that

lim
k→∞

P
(
Sn ∈ K − kz for all n ⩾ 0

)
= 1. (3.4)

Last step. To conclude, we invoke hypothesis (A2), that claims the existence of an
integer ℓ ⩾ 1 such that

P(τ > ℓ, Sℓ ∈ Ko) > 0.

Fix some u ∈ Ko. Since Ko = ∪λ>0(K + λu), there is a z = λu ∈ Ko such that

P(τ > ℓ, Sℓ ∈ K + z) = p > 0.

By the Markov property, a concatenation of m such ℓ-steps paths leads to

P(τ > mℓ, Smℓ ∈ K + mz) ⩾ pm > 0.

On the other hand, it follows from (3.4) that there exists k ⩾ 0 such that

P(Sn ∈ K − kz for all n ⩾ 0) ⩾ 1/2.
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Now choose m ⩾ k. Since Smℓ ∈ K + mz and Sn − Smℓ ∈ K − kz imply Sn ∈ K, we obtain

P(τ = ∞) ⩾ P(τ > mℓ, Smℓ ∈ K + mz) × P(Sn ∈ K − kz for all n ⩾ 0) > 0.

We have just proved that g(0) > 0. The result follows since g(x) ⩾ g(0) for all x ∈ K, by
inclusion of events.

We conclude with the proof of (3). The limit (3.4) obtained in the second step of Item (2)
can be recast as:

lim
k→∞

Pkz(τ = ∞) = 1,

where z is any vector in Ko. Since g(x) = Px(τ = ∞) is non-decreasing in every direction,
the proof is completed. □

4. Proof of Theorems 1.1 and 1.2

In this section, we show that our estimates on an = Px(τ > n) given in Theorems 1.3
and 1.4 are not compatible with the generating function F (t) = ∑

n⩾0 antn being rational,
using classical singularity analysis for rational functions. The starting point is Theorem
IV.9 in [10], which asserts the following:

Theorem 4.1. If F (z) = ∑
n⩾0 anzn is a rational function that is analytic at 0 and has

poles at points α1, α2, . . . , αk, then its coefficients are sums of exponential-polynomials:
there exist k polynomials Pj such that, for n larger than some fixed n0,

an =
k∑

j=1
Pj(n)α−n

j .

Both estimates in Theorems 1.3 and 1.4 have the following form:

an = a + Θ(ρnBn),

where a ⩾ 0, ρ ∈ (0, 1], n
√

Bn → 1 and Bn → 0. Therefore Theorems 1.1 and 1.2 asserting
the non-rationality of F will follow in both cases from the following elementary lemma.

Lemma 4.2. Let c1, . . . , ck be distinct non-zero complex numbers and P1, . . . , Pk be non-
zero complex polynomials. Set an = ∑k

j=1 Pj(n)cn
j . If an = a + Θ(ρnBn) for some a ⩾ 0,

ρ > 0 and Bn > 0 such that n
√

Bn → 1, then necessarily Bn ̸→ 0.

Proof. If an = ∑k
j=1 Pj(n)cn

j , then an − a has the same form, thus, without loss of
generality, we can assume a = 0. Write cj = rjzj with rj > 0 and |zj| = 1. Let
r = max{rj : j = 1, . . . , k} and let J be the subset of indices j such that rj = r. Then

an =
k∑

j=1
Pj(n)cn

j = rn


∑

j∈J

Pj(n)zn
j + o(tn)


 ,

where 0 < t < 1. For future use, note that the numbers zj, j ∈ J are all distinct (this is so
since we kept at most one cj in any fixed “direction” zj : the one with maximum modulus).

We first show that r = ρ. Since an = Θ(ρnBn) and n
√

Bn → 1, it follows that an/ρn

goes to one in the n-th root limit. Thus, for any ε > 0,
(
(1 − ε)ρ

)n
⩽ an ⩽

(
(1 + ε)ρ

)n
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for n large enough. Therefore
(

(1 − ε)ρ
r

)n

⩽
∣∣∣∣∣∣
∑

j∈J

Pj(n)zn
j + o(tn)

∣∣∣∣∣∣
⩽
(

(1 + ε)ρ
r

)n

(4.1)

for n large enough. If ρ > r then we can choose ε > 0 such that the lower bound is An for
some A > 1.
But then we would have

An ⩽
∣∣∣∣∣∣
∑

j∈J

Pj(n)zn
j + o(tn)

∣∣∣∣∣∣
⩽
∑

j∈J

|Pj(n)| + |o(tn)|

and this is impossible since ∑j∈J |Pj(n)| grows polynomially. On the other hand, if ρ < r
then we can choose ε > 0 such that the upper bound in (4.1) is An for some A < 1. This
implies ∑

j∈J

Pj(n)zn
j → 0.

Dividing this by np, where p stands for the maximum degree of polynomials Pj, leads to
the convergence ∑

j∈J ′
ajz

n
j → 0,

where J ′ ⊂ J is a non-empty subset of indices (those j for which Pj has degree p) and the
aj’s are non-zero complex numbers. Since the numbers zj are distinct complex numbers
with modulus 1, this contradicts Lemma 4.3 below. The assertion r = ρ is now established,
hence we have ∣∣∣∣∣∣

∑

j∈J

Pj(n)zn
j + o(tn)

∣∣∣∣∣∣
= an

ρn
= Θ(Bn).

We have seen just before that this expression cannot go to zero as n → ∞, thus Bn ̸→ 0. □

Lemma 4.3. Let z1, . . . , zk be distinct complex numbers with modulus ⩾ 1. If

lim
n→∞

k∑

j=1
ajz

n
j = 0,

then necessarily a1 = · · · = ak = 0.

Proof. Denote by An the quantity ∑k
j=1 ajz

n
j . Clearly, given any complex numbers

α0, . . . , αk−1,
k−1∑

i=0
αiAn+i =

k∑

j=1
ajP (zj)zn

j , (4.2)

where P (z) = ∑k−1
i=0 αiz

i. We can choose the polynomial P so as to have P (z1) = 1 and
all other P (zj) = 0. We then take the limit of (4.2) as n → ∞, using the assumption of
Lemma 4.3. We find that the term a1z

n
1 should go to zero, which implies that a1 = 0, since

|z1| ⩾ 1. A similar reasoning gives that all aj = 0, and thus Lemma 4.3 is proved. □
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5. The excursion generating function

In this section, we look at lattice random walks in convex cones. Besides the generating
function of the survival probabilities (1.1), it is natural to ask whether the excursion
generating function

E(t) =
∑

n⩾0
Px(τ > n, Sn = y)tn (5.1)

can be rational, for given starting and ending points x, y ∈ K. When the cone K is an
orthant Nd and x = y = (0, . . . , 0), the function E(t) reduces to the series F (0, . . . , 0; t)
of (1.4). In order to state the result of this section, we introduce the following assumption:
(A4’) There exists a point t̃0 ∈ Rd and a neighborhood V of t̃0 such that the Laplace

transform L of µ is finite in V and t̃0 is a minimum point of L restricted to V .
Since L is a convex function, the point t̃0 above is necessarily a global minimum. If µ is
truly d-dimensional (as assumed in (A2)), the function L is strictly convex and a necessary
and sufficient condition for the existence of a global minimum is that the support of µ is
not included in any closed half-space.

Theorem 5.1. For any distribution satisfying to (A1)–(A3), (A4’) and such that the
random walk takes its values on a lattice, the generating function E(t) in (5.1) is not a
rational function.

Contrary to our elementary and self-contained proof of Theorem 1.1, we don’t have any
elementary argument to prove Theorem 5.1. Instead, we may give a one-line proof based
on earlier literature. Indeed, Denisov and Wachtel provide the following estimate in [5,
Eq. (10)] (we use the generalization to convex cones as in [6, Cor. 1.3]): Px(τ > n, Sn = y)
is either 0 (for periodicity reasons) or asymptotic to

C(x, y)ρ̃ nn−p−d/2,

where ρ̃ = L(t̃0) with t̃0 as in (A4’), d is the dimension and p > 0 is a geometric quantity
related to the cone. One immediately concludes because the exponent of n is negative.
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Abstract. In this article, we consider several models of random walks in one or several
dimensions, additionally allowing, at any unit of time, a reset (or “catastrophe”) of
the walk with probability q. We establish the distribution of the final altitude. We
prove algebraicity of the generating functions of walks of bounded height h (showing
in passing the equivalence between Lagrange interpolation and the kernel method). To
get these generating functions, our approach offers an algorithm of cost O(1), instead
of cost O(h3) if a Markov chain approach would be used. The simplest nontrivial
model corresponds to famous dynamics in population genetics: the Moran model.

We prove that the height of these Moran walks asymptotically follows a discrete
Gumbel distribution. For q = 1/2, this generalizes a model of carry propagation over
binary numbers considered e.g. by von Neumann and Knuth. For generic q, using a
Mellin transform approach, we show that the asymptotic height exhibits fluctuations
for which we get an explicit description (and, in passing, new bounds for the digamma
function). We end by showing how to solve multidimensional generalizations of these
walks (where any subset of particles is attributed a different probability of dying) and
we give an application to the soliton wave model.

Keywords: Random walks, renewal process, Moran model, analytic combinatorics,
discrete Gumbel distribution, Mellin transform, kernel method, digamma function.
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1. Introduction

The height of random walks is a fundamental parameter which occurs in many domains:
in computer science (evolution of a stack, tree traversals, or cache algorithms [39]), in
reliability or failure theory (maximal age of a component and inference statistics on the
longevity before replacement [24]), in queueing theory (maximal length of the queue,
with e.g. applications to traffic jam analysis [37]), in mathematical finance (e.g. in risk
theory [28]), in bioinformatics (pattern matching and sequence alignment [2]), etc.

In combinatorics, random walks are studied via the corresponding notion of lattice paths,
which play a central role, not only for intrinsic properties of such paths, but also as they
are in bijection with many fundamental structures (trees, words, maps, . . . ). We refer to
the nice magnum opus of Flajolet and Sedgewick on analytic combinatorics [22] for many
enumerative and asymptotic examples.

While the behavior of an extremal parameter such as the height is well understood for
walks corresponding to Brownian motion theory, it becomes more subtle when a notion
of reset/renewal/resetting/catastrophe [8,9,14,29,33,40,42] is introduced in the model:
indeed, typical behaviors in this model are often established by conditioning on events of
probability zero in the model without reset, leading to possibly counterintuitive results.
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In this article, we give several enumerative and asymptotic results on different statistics
(final altitude, waiting time, height) of walks with resets, focusing on the so-called Moran
walks (walks related to biological/population models considered by Moran in 1958; see
Section 5 for more on this).

Plan of the article.
In Section 2, we consider a generic model of walks with resets (allowing any finite set of

steps and a reset step). We describe the behavior of their final altitude (at finite time, and
asymptotically). We obtain an algebraic closed form for the bivariate generating function
(length/final altitude) for walks of bounded height h. Our approach uses a variant of the
so-called kernel method, which has the advantage to avoid any case-by-case computation
based on Markov chains/transfer matrices of size h× h. In passing, we show the intimate
link between Lagrange interpolation and the kernel method.

In Section 3, we consider Moran walks, a model described in Figure 1, for which we
generalize an enumerative formula due to Pippenger [45]. We show that their height
asymptotically follows a distribution which involves non-trivial fluctuations. We prove
that this distribution is a discrete Gumbel distribution, and we clarify its links with the
continuous Gumbel distribution. We give an application to the waiting time for reaching
any given altitude.

In Section 4, we begin with a brief presentation of the Mellin transform method, and
then use it to derive a precise analysis of the asymptotic average and variance of the height.
The second asymptotic term involves some O(1) fluctuations given by a Fourier series
(which we prove to be infinitely differentiable, and for which we also derive generic bounds
of independent interest). This extends (and fixes some error terms) in earlier analyses by
von Neumann, Knuth, Flajolet and Sedgewick [13,22,38].

In Section 5, we tackle some multidimensional generalizations of Moran walks, with
applications to a model in population genetics and to a wave propagation model (a soliton
model), as considered by Itoh, Mahmoud, and Takahashi in [34,35].

In Section 6, we conclude with a few possible extensions for future work.

Figure 1. A Moran walk is a random walk which makes a jump +1 with
probability p, and a reset (a jump to 0) with probability 1 − p. Above, one
sees such a walk of length n = 30. Its final altitude is Yn = 1, the height
is Hn = 5 (reached twice, in red), having 7 resets (the 7 blue dots). In
this article, we tackle the enumeration and asymptotics of such paths (and
of generalizations involving more general step sets and higher dimension).
We also prove that this simple model of walks leads to some noteworthy
nontrivial asymptotic behavior of their height Hn.
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2. Walks with resets: final altitude and height

We consider walks with steps in S (where S is a nonempty finite subset of Z), which
can additionally have a reset at any altitude. That is, we have the following process on Z:

Y0 = 0

Yn+1 =





Yn + k, with probability pk (for each k ∈ Z, with pk := 0 if k ̸∈ S),

0, with probability q (with q +∑
k∈S pk = 1).

(So if Yn = 0 we have Yn+1 = 0 with probability p0 + q.)
Thus, Yn is the altitude of the process after n steps and Hn := max(Y0, . . . , Yn) is its height.
It is convenient to encode the steps and their probabilities by the Laurent polynomial

P (u) :=
d∑

k=c

pku
k (with c := min S and d := max S). (2.1)

We assume 0 < q < 1 to avoid degenerate cases. We do not require that c < 0 or d > 0.
Of course, if c ≥ 0, the walk will live by design in N (it is e.g. the case for Moran walks of
Figure 1). In Section 2.1, we determine the distribution of the final altitude (as illustrated
in Figure 2 for different families of steps) and we investigate the height in Section 2.2.

Figure 2. Plot of P(Yn = k), the distribution of the altitudes of walks
with resets, for n = 100 and different P (u). It has its support in the N-
linear combinations of steps from S. The final altitude is of order O(1) and
the probability to end at higher altitudes decreases exponentially fast (see
Theorem 2.1 for closed-form expressions of the mean and the distribution).
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2.1. Final altitude Yn. Let us start with a simple result which paves the way for the more
subtle generating function manipulations for the height that we tackle later in Section 2.2.

We use the classical convenient notations:
• [zn]G(z) stands for the coefficient of zn in the power series G(z),
• ∂j

uF (z, 1) is the j-th derivative of F (z, u) with respect to u, evaluated at u = 1.
Theorem 2.1 (Final altitude at finite time). The final altitude of walks with resets follows
a discrete law with probability generating function

F (z, u) =
∑

n≥0
E[uYn ]zn = 1 + qz/(1 − z)

1 − zP (u) , (2.2)

where P (u) is the Laurent polynomial encoding the allowed steps (a finite subset of Z).
Equivalently, for k ∈ Z, we have

P(Yn = k) = [uk]P (u)n + q[uk]
n−1∑

j=0
P (u)j. (2.3)

Let δ := P ′(1) be the drift1 of the walk without reset, and V := P ′′(1) its second factorial
moment. The mean and the variance of the final altitude of the walk with resets are given by

E[Yn] = δ/q + (1 − q)n−1(δ − δ/q),

Var[Yn] = (V + δ) q + δ2

q2 + (1 − q)n

(
2 δ2n

(q − 1)q − V + δ

q

)
− (1 − q)2n δ

2

q2 .

For Moran walks (i.e., P (u) = pu and p = 1 − q), the mean and the variance simplify to

E[Yn] = p

q

(
1 − pn

)
and Var[Yn] = p

q2

(
1 − pn

(
pn+1 + (1 + 2n)q

))
.

Proof. The probability generating function can be written as

F (z, u) =
∑

n≥0




n∑

k∈Z
P(Yn = k)uk


 zn =

∑

n≥0
fn(u)zn,

where the fn(u)’s are Laurent polynomials encoding the location of the walk at time n;
thus we have fn+1(u) = P (u)fn(u) + qfn(1), with f0(u) = 1. Multiplying both sides of
this recurrence by zn+1, and summing over n, one gets

F (z, u)(1 − zP (u)) = 1 + qzF (z, 1).
As F (z, 1) = 1/(1 − z), one obtains Formula (2.2). Note that the generating function can
also be obtained by using a regular expression encoding these walks (by factorizing the
walk in factors ending by a reset): (S∗q)∗(S)∗, which translates to

F (z, u) = 1
1 − qz 1

1−zP (1)

1
1 − zP (u) ,

where the occurrences of P (1) and P (u) reflect that only the altitudes after the last reset
contribute to the final altitude of the full walk. Using P (1) = 1 − q, we get Formula (2.2).

The mean of Yn is then obtained via µn := E[Yn] = [zn]∂uF (z, 1), while its variance is
obtained via a second-order derivative: Var[Yn] = [zn]∂2

uF (z, 1) + µn − µ2
n. □

1We recall that P (1) = 1 − q, so another convention could have been to call drift the quantity
P ′(1)/(1 − q), i.e., we would then condition on having no reset (instead of considering walks without reset,
weighted by the initial model (2.1)). This alternative convention does not simplify the subsequent formulas.
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We can now establish the corresponding limit distribution.
Theorem 2.2 (Final altitude: asymptotics). Consider walks with 0 ̸∈ S, gcd S = 1,
and d = max S > 0 (these three constraints bring no loss of generality2). Therefore the
support of the walk is either Z (with all altitudes being reachable), or N (with a finite set
of altitudes impossible to reach, known as the unreachable set in the coin-exchange problem
of Frobenius). The final altitude of these walks with resets behaves asymptotically according
to these two cases.

a) For walks with min S ≥ 0, we have for k ∈ N (not in the Frobenius unreachable
set):

q · (min
i∈S

pi)k ≤ lim
n

P(Yn = k) ≤ q · (max
i∈S

pi)k/d.

In particular, for Moran walks, we have P(Yn = k) = qpk for 0 ≤ k < n and
P(Yn = n) = pn so lim Yn = Geom(q) − 1.

b) For walks with min S < 0 and max S > 0, we have for k ∈ Z:

P(Yn = k) = qWk(1 − q) + (1 − q) 1
τ k+1

1√
2πnP ′′(τ)

+O
( 1
n

)
.

Moreover, both in Case a) and in Case b), P(Yn = k) has a geometric decay for large k.
Proof. In Case a), we have min S ≥ 1; the definition of P (u) in (2.1) then entails
[uk]P (u)j = 0 for large j. The limit of Equation (2.3) thus gives

lim
n→+∞

P(Yn = k) = q[uk]
k∑

j=0
P (u)j.

In particular, when it is not 0, this quantity is lower bounded by q · (mini∈S pi)k and upper
bounded by q · (maxi∈S pi)k/d, and therefore decreases geometrically.

In Case b), the proof is more complicated and will recycle ingredients of the asymptotics
of walks without reset. To this aim, first set P̃ (u) := P (u)/P (1), i.e., the step set
probabilities are renormalized to have global mass P̃ (1) = 1. Let Wk(z) be the probability
generating function of walks without reset, i.e., Wk(z) = [uk] 1

1 − zP̃ (u)
= ∑

n≥0 wn,kz
n. We

then rewrite Equation (2.3) as

P(Yn = k) = P (1)n[uk]P̃ (u)n + q[uk]
n−1∑

j=0
P (1)jP̃ (u)j

= (1 − q)P (1)nwn,k + q
n∑

j=0
P (1)jwj,k

= (1 − q)P (1)nwn,k + qP (1)n[zn] 1
1 − z/P (1)Wk(z). (2.4)

If min S < 0 and max S > 0, then there is a unique real τ > 0 such that P̃ ′(τ) = 0.
It is proven in [5] that ρ = 1/P̃ (τ) is the radius of convergence of Wk(z) and that
wn,k ∼ τ−kCP̃ (τ)n/

√
2πn, where C := 1

τ

√
P̃ (τ)/P̃ ′′(τ).

2There is no loss of generality. Indeed, if the walk as a periodic support (i.e., if gcd(S) = g with g > 1)
we rescale (without loss of generality) the step set S by dividing each step by g. Now, if max S < 0, then
we multiply each step by −1. Last, if 0 ∈ S we consider instead the equivalent model S := S \ {0} and
q := q + p0.
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Note that, as we have a probability generating function, we have ρ = P̃ (τ) = 1. The
asymptotics of (2.4) then follows by singularity analysis, as 1/(1 − z/P (1)) is singular at
z = P (1) = 1 − q, that is, before Wk(z) which is singular at z = 1:

P(Yn = k) = qWk(1 − q) + (1 − q)τ−kC
P (τ)n

√
2πn

+O
( 1
n

)
.

Note that Formulas (10) and (11) in [5, Theorem 1] give a closed form for Wk(z). It
implies in particular

0 < Wk(1 − q) < (1 − q)(c+ d)C1/C
|k|+1
2 ,

where C1 > 0 and C2 > 1 are constants independent of k; thus Wk(1 − q) decays
geometrically for k → ±∞. This concludes our analysis of Case b) and gives the theorem.

□

These limiting behaviors are thus in sharp contrast with the asymptotic behavior of the
final altitude of walks on Z with no resets, which is δn±O(

√
n), with fluctuations given

by a continuous distribution (Rayleigh or Gaussian; see [5]).

2.2. The height Hn. In order to study the height of these walks with resets, one considers
the subset of them made of walks conditioned to have a height smaller than h. We want
to obtain an explicit formula for their generating function

F≤h(z, u) :=
+∞∑

n=0
E
(
uYn1I{Y1≤h,Y2≤h,...,Yn≤h}

)
zn.

If these walks are generated by a step set S having only positive jumps, a natural but
naive approach to enumerate them would be to create a deterministic finite automaton (a
finite discrete Markov chain) with h states encoding the possible altitudes of the process.
It leads to a system of linear equations which would allow us to get the corresponding
rational generating function. However, this approach to obtain the generating function
(given h and the transition probabilities) suffers from three drawbacks:

• it would be of complexity h3 (computing determinants of h× h matrices),
• it would be a case-by-case approach (new computations are needed for each h),
• it would fail if the step set S has some negative steps (then the support of the walk

is [−∞,+h], and thus one would need an automaton with an infinite number of states).
So, we prefer here to use a more efficient approach, which relies on a powerful method

(namely, the kernel method [7]): the complexity to obtain a closed-form formula for
F≤h(z, u) then drops3 from O(h3) to O(1) for any finite step set S ⊂ Z ! This leads to the
following theorem.

3The PhD thesis of Louis Dumont [17] compares the cost of different methods to compute the coefficients
of such generating functions (which can be related to diagonals of rational functions); the full analysis
has to take into account the space and time complexities, and some precomputation steps, of cost of
course higher than O(1), but in all cases it is more efficient than a Markov chain approach (see however
Bacher [3] for a clever use of a transfer matrix point of view).
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Theorem 2.3. Let F≤h(z, u) be the probability generating function of walks on Z of
height ≤ h with resets, where the length and the final altitude of the walks are respectively
encoded by the exponents of z and u. Let P (u) encode the allowed jumps as in (2.1). One has

F≤h(z, u) =
+∞∑

n=0
E
(
uYn1I{Y1≤h,Y2≤h,...,Yn≤h}

)
zn = W≤h(z, u)

1 − zqW≤h(z, 1) , (2.5)

where

W≤h(z, u) :=
1 −

d∑

i=1

(
u

ui

)h+1 ∏

1≤j≤d,j ̸=i

uj − u

uj − ui

1 − zP (u) (2.6)

is the generating function of walks of height ≤ h without reset, and where u1, . . . , ud are
the roots of 1 − zP (u) = 0 such that limz→0 |ui(z)| = +∞.

Remark 2.4 (A rational simplification). These generating functions are algebraic, as they
rationally depends on the roots ui(z), which are themselves algebraic functions. Now,
when the step set S has only positive steps, W≤h is a polynomial and F≤h simplifies to a
rational function (despite the fact that their closed forms (2.6) and (2.5) involve algebraic
functions!). This simplification can be seen either by the automaton point of view and the
Kleene theorem, or by using the Vieta formulas on Newton sums (as, when one has only
positive jumps, the ui’s are then all the roots of the kernel 1 − zP (u)). For example, for
P (u) = u/3 + u2/2 and h = 3, we have

u1(z) = −z +
√
z2 + 18z

3z and u2(z) = −z −
√
z2 + 18z

3z
(the Vieta formulas are here: u1(z) + u2(z) = −2/3 and u1(z)u2(z) = −2/z); then, the
quotient (2.5) involving these algebraic functions u1 and u2 simplifies, leading to

W≤3(z, u) = 1
1 − zP (u)


1 −

(
u

u1(z)

)4
u2(z) − u

u2(z) − u1(z)
−
(

u

u2(z)

)4
u1(z) − u

u1(z) − u2(z)




= 1 + z

(
u2

2 + u

3

)
+ z2

(
u3

3 + u2

9

)
+ z3u3

27 ,

F≤3(z, u) =

(
1 + z

(
u2

2 + u
3

)
+ z2

(
u3

3 + u2

9

)
+ z3u3

27

)

1 − zq
(
1 + 5z

6 + 4z2

9 + z3

27

) .

Proof of Theorem 2.3. The probability generating function can be written as

F≤h(z, u) =
∑

n≥0
f≤h

n (u)zn =
h∑

k=0
F≤h

k (z)uk,

where f≤h
n (u) encodes the possible values of Yn (constrained to be bounded by h over the

full process), and where

F≤h
k (z) =

+∞∑

n=0
f≤h

n,kz
n =

+∞∑

n=0
P
(
Y1 ≤ h, Y2 ≤ h, . . . , Yn−1 ≤ h, Yn = k ≤ h

)
zn

is the probability generating function of bounded walks ending at altitude k.
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The dynamics of the process then entails the recurrence

f≤h
n+1(u) = P (u)f≤h

n (u) − {u>h}P (u)f≤h
n,hu

h + qf≤h
n (1),

where {u>h} extracts monomials having a degree in u strictly larger than h. This mimics
that at time n+ 1, either, with probability pk, we increase by k the altitude of where we
were at time n (that is, we multiply by uk, and this is allowed as long as the walk stays
at some altitude ≤ h, thus we removed here the cases corresponding to the walks which
would reach an altitude > h at time n + 1); or, with probability q, we have a reset to
altitude 0 (i.e., all the mass of the walks at any altitude k, corresponding to the coefficient
of uk, is sent back to u0; this is thus captured by the substitution u = 1).

This directly translates to the functional equation

F≤h(z, u) = 1 + zP (u)F≤h(z, u) −
d−1∑

k=0
F≤h

h−k(z)uh−k


z

d∑

j=k+1
pju

j


+ zqF≤h(z, 1).

Setting q = 0, we get the functional equation for the generating function W≤h of walks
of height ≤ h without reset:

W≤h(z, u) = 1 + zP (u)W≤h(z, u) −
d−1∑

k=0
W≤h

h−k(z)uh−k


z

d∑

j=k+1
pju

j


 . (2.7)

Of course, the factorization of walks with resets into (S∗q)∗(S)∗ entails F≤h(z, u) =
Seq(W≤h(z, 1)q)W≤h(z, u), which is Formula (2.5). So if we find a closed form for W≤h,
we are happy as this also solves the initial problem for F≤h. Now, on the right-hand side
of (2.7), the sum for k from 0 to d−1 is a polynomial in u, which we conveniently rewrite as

W≤h(z, u)(1 − zP (u)) = 1 − uh
d∑

k=1
Gk(z)uk. (2.8)

It is possible to solve such an equation via the kernel method: the kernel is the factor
1−zP (u) in (2.8), and if one considers the equation on the variety defined by 1−zP (u) = 0,
this brings additional equations which will allow us to get a closed form for W≤h(z, u).
First, observe that this kernel is a (Laurent) polynomial in u of “positive” degree d. Then,
from an analysis of its Newton polygon, one gets that it has d roots u1(z), . . . , ud(z) such
that ui(z) ≈ z−1/d for z ∼ 0+ (the other roots being convergent at z ∼ 0+; see [5] for more
on this issue). Thus, setting u = ui(z) (for i = 1, . . . , d) in the functional equation (2.8)
gives d new equations. Some care is required in this step: we have to check that one does
not create series involving an infinite number of monomials with negative exponents4.

4Let R be the ring of series
∑

n∈Z anz
n. The Cauchy product of two series in R is well defined only

with some additional convergence conditions, and, even if we restrict ourselves to series for which the
product is well defined, we have to take care to the fact that they do not form an integral ring: indeed,
we have many divisors of zero (e.g. for S(z) :=

∑
n∈Z z

n, we have zS = S and thus (z − 1)S = 0). Most
algebraic manipulations in this ring, if they are temporarily handling quantities which are not in the
subring of power series (or Laurent/Puiseux/Fourier series), would lead to invalid identities in C[[z]].
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In fact, in our case, the substitution u = ui is legitimate as W≤h(z, ui) becomes a
well-defined Puiseux series in z: this follows from the fact that the coefficients f≤h

n (u) are
(Laurent) polynomials with “positive” degree bounded by h (and “negative” degree lower
bounded by −cn), so f≤h

n (ui(z)) is a Puiseux series with exponents from −h/d to +∞.
Then, multiplying by zn and summing over n, only a finite number of summands contribute
to each monomial of W≤h(z, ui), which is thus well defined. Via these substitutions u = ui,
we obtain a linear system of d equations (which only contains the Gk’s as unknowns).
Then, by Cramer’s rule, we get Gk = det(Vk)/ det(V ), where

V =




uh+1
1 uh+2

1 . . . u1
h+d

uh+1
2 uh+2

2 . . . u2
h+d

... ... ... ...
uh+1

d uh+2
d . . . ud

h+d




and Vk =




uh+1
1 . . . uh+k−1

1 1uh+k+1
1 . . . u1

h+d

uh+1
2 . . . uh+k−1

2 1uh+k+1
2 . . . u2

h+d

... ... ... ...
uh+1

d . . . uh+k−1
d 1uh+k+1

d . . . ud
h+d



,

that is, Vk is the matrix V with its k-th column entries replaced by 1. Thus, as V is a
Vandermonde matrix, its determinant is

det(V ) =
(

d∏

i=1
uh+1

i

) ∏

1≤i<j≤d

(uj − ui).

Now, to compute det(Vk), one first proves that

∆ = det




u1
1 . . . u

k−1
1 1uk+1

1 . . . u1
d

u1
2 . . . u

k−1
2 1uk+1

2 . . . u2
d

... ... ... ...
u1

d . . . u
k−1
d 1uk+1

d . . . ud
d




= ed−k(u1, . . . , ud)
∏

1≤i<j≤d

(uj − ui), (2.9)

where we used the classical notation for the elementary symmetric polynomials:

ek(x1, . . . , xd) := [tk]
d∏

i=1
(1 + txi), (2.10)

e.g., e3(x1, . . . , x5) = x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5 + x1x4x5 + x2x3x4 +
x2x3x5 + x2x4x5 + x3x4x5. Formula (2.9) follows from 2 facts:

• If ui = uj, then two rows of Vk are equal and thus the determinant is 0; this
explains the Vandermonde product Π := ∏

1≤i<j≤d(uj − ui) on the right-hand side
of Formula (2.9).

• Now writing the determinant as a sum over the d! permutations of the entries
gives a sum of monomials, each of total degree (1 + 2 + ...+ d) − k in the ui’s. Π
being of total degree

(
d
2

)
= d(d− 1)/2, it implies that ∆/Π is a polynomial which

is symmetric and homogeneous of total degree d − k. Up to a constant factor
(determined to be 1, by comparing any monomial), this polynomial has to be ed−k,
which captures exactly the missing ui’s in each of the d! summands.

Then, performing a Laplace expansion of det(Vk) on its k-th column and using For-
mula (2.9), one gets (after simplification in the Cramer formula):

Gk(z) =
d∑

ℓ=1
u−h−1

ℓ (−1)k+ded−k(u1, . . . , ud)|uℓ=0
∏

1≤j≤d
j ̸=ℓ

1
uℓ − uj

.
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Now, using ∑d
k=0(−1)d−ked−k(u1, . . . , ud)uk = ∏d

i=1(u− ui) (which is equivalent to the
definition (2.10)), and regrouping the powers u−h−1

k , we get

d∑

k=1
Gk(z)uk−1 =

d∑

k=1
u−h−1

k

∏

1≤j≤d,j ̸=k

uj − u

uj − uk

. (2.11)

Combining Equations (2.11) and (2.7), we get Formula (2.6) for W≤h(z, u), and thus the
closed form for F≤h(z, u). □

Remark 2.5 (Link with Lagrange interpolation). As we know the evaluation of the right-
hand side of (2.8) in each of the uk, Formula (2.11) is also equivalent to the Lagrange
interpolation formula (which we thus reproved en passant). Moreover, this Lagrange
interpolation approach offers a nice advantage: it is circumventing the fact that the
factorization argument used to get the closed forms for the generating functions in [5, 12]
works only if the walks start at altitude 0.

Now, if we go back to Moran walks (i.e., for P (u) = pu; see Figure 1), the generating
function simplifies to the following noteworthy shape.

Corollary 2.6. The probability generating function of Moran walks of height ≤ h is

F≤h(z, u) = (1 − pz)(1 − (pzu)h+1)
(1 − puz)(1 − z + (pz)h+1zq) , (2.12)

where, in the power series, the length and the final altitude of the walks are respectively
encoded by the exponents of z and u. Accordingly,

P(Hn ≤ h) = [zn]F≤h(z, 1) = [zn] 1 − (pz)h+1

1 − z + (pz)h+1zq
(2.13)

=
⌊ n

h+1⌋∑

k=0
(−qph+1)k

((
n− k(h+ 1)

k

)
− ph+1

(
n− (k + 1)(h+ 1)

k

))
, (2.14)

with the convention that
(

m
k

)
= 0 if m < 0.

Proof. The closed form (2.14) is obtained via the power series expansion 1/(1 −T ) = ∑
T j

by applying the binomial theorem to each term T j, with T = z + (pz)h+1zq. □

The binomial sum (2.14) generalizes a formula obtained (for p = 1/2) by Pippenger in [45].
Therein, it is derived by an inclusion-exclusion principle (guided by the combinatorics of
the carry propagation in binary words); for his problem, the generating function, and thus
the corresponding binomial sum, are a little bit simpler than (2.13) and (2.14), and are
then used to perform some real analysis for the asymptotics of the expected length.

In our case, equipped with this explicit expression for the probability generating function
of Moran walks of bounded height, we can now tackle the question of the asymptotic
distribution of this extremal parameter.
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3. Asymptotic height of Moran walks

In this section, we establish a local limit law for the distribution of the height of Moran
walks. One noteworthy consequence of the generating function explicit formula that we
get in the previous section is that it allows us to have very efficient computations and
simulations of the process at time n, for large n, as stressed by the following remark.

Remark 3.1 (Fast computation scheme for any given n and h). One does not need to run
the process for n steps to have the exact distribution of Hn. Indeed, using the rational
generating function from Corollary 2.6, for any p, h, and n, it is possible to get the
exact value of P (Hn = h) = [zn]

(
F≤h(z, 1) − F≤h−1(z, 1)

)
in time O(ln(n)) via binary

exponentiation.

This allows us to plot the distribution Hn, for quite large values of n (as an example, see
Figure 3). Note that for our other generating functions, which are algebraic, there exists
a fast algorithm of cost

√
n ln(n) to compute their n-th coefficient (this algorithm works

more generally for all D-finite functions). This algorithm due to the brothers Chudnovsky
is e.g. implemented in the Maple computer algebra system via the package Gfun; see [49]

Figure 3. The distribution of Hn, for n = 225 (for p = 1/2 on the left and
p = 1/4 on the right). One observes a sharp concentration around the height
25 for p = 1/2 and 12.5 for p = 1/4, suggesting a logarithmic link in base 1/p
between n and Hn. We prove and refine this claim in the next pages.

P(Hn = h)
(for p = 1

2)
P(Hn = h)
(for p = 1

4)

3.1. Localization of the dominant singularity. As F≤h(z, 1) (as given by Equa-
tion (2.12)) is a rational function, all its singularities are poles. The asymptotic behavior
of the coefficients of F≤h(z, 1) is governed by the closest pole(s) to zero (also called “domi-
nant singularities” of F≤h). A natural candidate for being such a dominant singularity of
F≤h(z, 1) would be z = 1/p, but it is in fact a removable singularity, as one has (e.g. via
L’Hôpital’s rule) F≤h(1/p, 1) = p(h+1)

2p−1−qh
. Thus, we can focus on the other roots of the

denominator D(z) of F≤h(z, 1).
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Lemma 3.2 (Localization of the singularities of F≤h). For p ∈ (0, 1), the h + 2 roots
z1(h), . . . , zh+2(h) of D(z) = 1 − z + qph+1zh+2 are such that we have for h large enough:

(i) z1(h) is the unique root strictly between 1 and 1/p;
(ii) z2(h) = 1/p is the unique root of modulus 1/p;
(iii) the remaining h roots z3(h), . . . , zh+2(h) are all of modulus > 1/p, and arbitrarily

close (in modulus) to 1/p (for h → +∞);
(iv) all the roots are simple.
Accordingly, z1(h) is the dominant singularity of F≤h(z, 1).

Proof. Let z∗(h) be the unique positive zero of D′(z) = −1 + (h+ 2)qph+1zh+1 given by

z∗(h) = 1
p

(
1

q(h+ 2)

) 1
h+1

.

As z∗(h) tends to 1
p

from the left, we thus have 0 < z∗(h) < 1/p for h large enough.
Moreover, D(z) is decreasing for all z in the interval [0, z∗(h)] and increasing in the interval
[z∗(h),+∞]. As D(1/p) = 0, one thus has D(z∗(h)) < 0. And since D(1) > 0, the
intermediate value theorem implies the existence of (at least) one zero of D between 1
and z∗(h). Combined with the (non)decreasing properties of D, this entails the unicity of
this zero; let us call it z1(h). Then, Pringsheim’s theorem (see e.g. [22]) asserts that F≤h

has a real positive dominant singularity which is thus z1(h), the first real positive zero of D.
As F≤h(z) is a probability generating function, all its singularities are of modulus ≥ 1. So
we have 1 < z1(h) < z∗(h) < 1/p and thus proved (i).

We now prove (ii). The fact that z2(h) = 1/p is a root follows from 1 − 1/p+ q/p = 0.
Is there any other root of the same modulus? If z = exp(iθ)/p (with θ ∈ [0, 2π]) would
be a root of D(z), then this would imply p = exp(iθ) − q exp(i(h+ 2)θ). By the reverse
triangle inequality

∣∣∣∣|x| − |y|
∣∣∣∣ ≤ |x − y| (with equality only if xy = 0 or x/y ∈ R+), this

would entail θ = 0.
To prove (iii), we use the following version of Rouché’s theorem: if |D − g| < |g| on the

boundary of a disk D, then D and g have the same number of roots inside D. We can
apply this theorem to D with g(z) := 1 − z, for the disk D(0, 1−ϵ

p
): on its boundary, one

indeed has |D(z) − g(z)| = q
p
|pz|h+2 ≤ q

p
|1 − ϵ|h+2 < q

p
|1 − ϵ|2/q < q−ϵ

p
≤ |g(z)|, where the

first strict inequality holds for h ≥ 2/q and the next strict inequality holds for any small
enough ϵ (independently of h), as we have then ln(1−ϵ/q)

ln(1−ϵ) < 2/q. As the constraint on h is
independent of ϵ, letting ϵ → 0, we infer that D has only one root strictly inside D(0, 1

p
).

Now we can also apply this theorem to D with g(z) := 1 + zh+2: on the boundary of
the disk D(0, 1+ϵ

p
), one indeed has, for h large enough (depending on ϵ),

|D(z) − g(z)| ≤
(

1 + ε

p

)h+2 (
1 − qph+1

)
+ 1 + ε

p
<

(
1 + ε

p

)h+2

− 1 ≤ |g(z)|,

where the last −1 is just a crude bound of the term − q
p
(1 + ε)h+2 + 1+ε

p
which converges

to −∞ for h → +∞. So D, like g, has h+ 2 roots inside this disk.
To prove (iv), note that the equation D(z) = D′(z) = 0 is forcing z = 1 + 1

h+1 , but
D′(1 + 1

h+1) → −1 for h → +∞, therefore all the zeros are simple for h large enough. □
See Figure 5 on page 277 for an illustration of the location of the roots.
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3.2. Limit distribution of the height: the discrete Gumbel distribution. The
height distribution exhibits some a priori surprising asymptotic aspects, having a flavor
of number theory/Diophantine approximation. Such phenomena, however, appear for a
few other probabilistic processes where some statistics could have different asymptotic
behaviors depending on some resonance between ln p and ln q (see e.g. Janson [36] or
Flajolet, Vallée, and Roux [21] for some examples related to tries or binary search trees).
In our case, it appears that a resonance between ln p and lnn plays a role.
Theorem 3.3 (Distribution of the height of Moran walks). We have

P (Hn ≤ h) = exp
(
−qnph+1

)(
1 +O

(
(lnn)3

n

))
, (3.1)

where the error term is uniform for h ∈ [0, n]. Accordingly, P(Hn = h) is unimodal, with a
peak at h = h∗(n), the closest integer to c∗(n) ln(n)

ln(1/p) , where c∗(n) := 1 − ln(ln(1/p)/q2)
ln(n) , and

we have
P(Hn = h∗(n)) ∼ pp/q − p1/q.

Moreover, the mass is sharply concentrated around ln n
ln(1/p) , as better seen by the following

result, with a uniform error term in k:

P
(
Hn ≤

⌊
lnn

ln(1/p)

⌋
+ k

)
= exp

(
−qα(n)pk+1

)(
1 +O

(
(lnn)3

n

))
,

with α(n) := p−{ ln n
− ln p

} (where {x} stands for the fractional part of x, and where ⌊x⌋ stands
for the floor function of x). [See Figure 3 on page 274 for an illustration of the distribution
of Hn and Figure 4 for the behavior of the function α(n).]

Figure 4. Plot of the function α(n) = p−{ ln n
− ln p

} (for p = 1/2), which occurs
in the fluctuations of the height of Moran walks (as stated in Theorem 3.3).
The function α(n) is taking values in [1, 1/p) for integers n ≥ 1. It has a
sawtooth wave shape, with frequencies getting larger and larger (with peaks
at powers of 1/p).
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Proof. In the sequel, as the context is explicit, we simply denote by z1, . . . , zh+2 the zeros
z1(h), . . . , zh+2(h) of D(z) = 1 − z + qph+1zh+2. From Lemma 3.2, for h large enough, all
these zeros zi are simple; the partial fraction decomposition of 1/D is then

1
D(z) =

h+2∑

i=1

1
D′(zi) (z − zi)

and as D′(zi) = −1 + (h+ 2)(zi − 1)/zi, one thus gets

F≤h(z, 1) = 1 − (pz)h+1

D(z) =
h+2∑

i=1

1 − (pz)h+1

D′(zi) (z − zi)

=
h+2∑

i=1


 1
zi − (zi − 1) (h+ 2)

(+∞∑

n=0
z−n

i zn

)
− ph+1

zi − (zi − 1) (h+ 2)

+∞∑

n=h+1
z−n+h+1

i zn




=
h+2∑

i=1


 1
zi − (zi − 1) (h+ 2)

(
h∑

n=0
z−n

i zn

)
+ 1 − (pzi)h+1

zi − (zi − 1) (h+ 2)

+∞∑

n=h+1
z−n

i zn


 .

It is combinatorially obvious that P (Hn ≤ h) = 1 for all n ≤ h. So we now focus on n > h,
for which we have, as (pzi)h+1 = zi−1

qzi
and 1 − zi−1

qzi
= 1−pzi

qzi
:

P (Hn ≤ h) = [zn]F≤h(z, 1) =
h+2∑

i=1

1 − (pzi)h+1

zi − (zi − 1) (h+ 2)z
−n
i

=
h+2∑

i=1

1 − pzi

q (1 + (1 − zi) (h+ 1))z
−n−1
i

= Z1(n, h) +O
(
hMpn+1

)
, (3.2)

where M = maxi=3,...,h+2
∣∣∣ 1−pzi

q(1+(1−zi)(h+1))

∣∣∣ = O(1) (note that the summand involving
z2 = 1/p cancels), and where Z1(n, h) := 1−pz1

q[1+(1−z1)(h+1)]z
−n−1
1 is the contribution coming

from the pole z1.

Figure 5. The roots of D(z) = 1 − z + qph+1zh+2 (here, with p = 1/3
and h = 51). For large h, D(z) has one dominant root z1 just after 1, one
root at z = 1/p, and the other roots have a slightly larger modulus, all
asymptotically close to the circle |z| = 1/p; see Lemma 3.2.
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Set z1 := 1 + εh. Then D(z1) = 1 − (1 + εh) + qph+1 (1 + εh)h+2 = 0, thus this implies
εh = qph+1 (1 + εh)h+2; therefore we have z1 = 1 + εh = 1 + qph+1 + O(hp2h). Now, for
h = h(n) tending to +∞, this entails that the contribution Z1(n, h) of the pole z1 (as
given by Equation (3.2)) satisfies

Z1(n, h) =
1 − ph+2 +O

(
hp2h

)

1 − (h+ 1)qph+1 +O(h2p2h)(1 + εh)−n−1

=
(

1 + q(h+ 1)ph+1 − ph+2 +O(h2p2h)
)

exp
(

(n+ 1) ln
( 1

1 + εh

))

=
(
1 + q(h+ 1)ph+1 − ph+2 +O(h2p2h)

)
exp

(
−(n+ 1)εh + Θ((n+ 1)ε2

h)
)
. (3.3)

Observe that

if h = c
ln(n)

ln(1/p) + c′ ln(ln(n))
ln(1/p) then ph = 1

nc ln(n)c′ . (3.4)

(Here and in the sequel we always consider c > 1/2 and c′ ≥ 0. In fact, c′ > 0 is not needed
right now, but this will be required for the asymptotics of the mean of Hn in Section 4.)

For such values of h, the asymptotics of the first factor in Equation (3.3) is

1 + q(h+ 1)ph+1 − ph+2 +O(h2p2h) = 1 +O

(
1

nc ln(n)c′−1

)
, (3.5)

and the asymptotics of the second factor in Equation (3.3) is
exp

(
−(n+ 1)εh +O((n+ 1)ε2

h)
)

= exp
(
−nqph+1 +O(nhp2h) − εh + Θ(n1−2c/ ln(n)2c′)

)

= exp
(
−nqph+1

) (
1 +O(n1−2c ln(n)1−2c′) −O(n−c ln(n)−c′) + Θ(n1−2c/ ln(n)2c′))

)
.

In this expansion, one now has to check which error term dominates. It is the big-oh term
with n−c if c > 1 and the big-oh with n1−2c if c ≤ 1. Multiplying with the asymptotic
expansion from Equation (3.5) and using the approximation (3.2), we get the following
result (in which we simplified the ln part of the error term in a non-optimal way which
will be enough for our purpose):

P (Hn ≤ h) = exp
(
−nqph+1

)(
1 +O

(
lnn

nmin(c,2c−1)

))
. (3.6)

Moreover, this approximation holds for all h ∈ [0, n]: first, for h ≪ 1
2 ln(n)/ ln(1/p)

this follows from the fact that P (Hn ≤ h) is increasing with respect to h, and then for
h ≫ c ln(n) this follows from the bound (4.8) hereafter.

In conclusion, for h =
⌊

ln n
ln(1/p)

⌋
+ k, for any k such that h ∈

[
c1

ln(n)
ln(1/p) , c2

ln(n)
ln(1/p)

]
(with

1/2 < c1 < c2), we have uniformly in k (when n → +∞):

P (Hn ≤ h) = exp
(

−nqp⌊ ln n
ln(1/p)⌋+k+1

)(
1 +O

(
(lnn)3

n

))

= exp
(

−qp−{ ln n
− ln p

}+k+1
)(

1 +O

(
(lnn)3

n

))
,

and we get Theorem 3.3 by setting α(n) := p−{ ln n
− ln p

}. □
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If p = q = 1/2, we have α(n) = 2{lg(n)} (where the symbol lg stands for the binary
logarithm, lg(x) = log2(x)). This subcase of particular interest corresponds to a problem
initially considered in 1946 by Burks, Goldstine, and von Neumann [13]: the study of carry
propagation in computer binary arithmetic; it constitutes one of the first analyses of the cost
of an algorithm! They gave crude bounds which were deeply improved by Knuth in 1978 [38].
This problem can also be seen as runs in binary words, and, as such, is analyzed by Flajolet
and Sedgewick [22, Theorem V.1]. Therein, the analysis unfortunately contains a few
typos which affect some of the error terms. Our proofs are incidentally fixing this issue.

These extremal parameters (runs, longest carry) are archetypal examples of problems
leading to a Gumbel distribution (or a discrete version of it). This distribution indeed
often appears in combinatorics as the distribution of parameters encoding a maximal
value: e.g., maximum of i.i.d. geometric distributions [51], longest repetition of a pattern
in lattice paths [46], runs in integer compositions [23], carry propagation in signed digit
representations [30], largest part in some integer compositions, longest chain of nodes
with a given arity in trees, maximum degree in some families of trees [47], the maximum
protection number in simply generated trees [31]. For some of these examples, it was
proven only for some specific families of structures, but there is no doubt that it holds
generically. A general framework leading to such double exponential laws is given by
Gourdon [26, Theorem 4] for the largest component in supercritical composition schemes
(see also Bender and Gao [10]). We refer to Figure 6 for an illustration of some of these
parameters.

Longest up run
in Dyck paths

Longest chain of unary nodes

Largest part in
integer compositions:
100 = 11 + 1 + 11 + 9

+39 + 14 + 15.

Longest plateau
in Motzkin paths

Maximal protection
number in trees

Longest run in
integer compositions:
20 = 1 + 4 + 4 + 1

+3 + 3 + 3 + 1.

Figure 6. Many combinatorial structures have some parameters which
asymptotically follow a discrete Gumbel distribution.

The Gumbel distribution is also called the “double exponential distribution”, or the
“type-I generalized extreme value distribution”, and can also be expressed as a subcase of
the Fisher–Tippett distribution. Let us give a formal definition.
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Definition 3.4 (Gumbel distribution). A continuous random variable X with support
[−∞,+∞] follows a Gumbel distribution (of parameters µ and β), denoted by Gumbel(µ, β),
if

P(X ≤ x) = exp
(

− exp
(

−x− µ

β

))
.

Its mean satisfies E[X] = µ + γβ (where γ = 0.5772 . . . is Euler’s constant) and its
variance satisfies Var[X] = π2

6 β
2. It is unimodal with a peak at x = µ and its median is at

x = µ− β ln(ln(2)).
Definition 3.5 (Discrete Gumbel distribution). A discrete random variable Y follows a
discrete Gumbel distribution of parameters µ and β, which we denote Gumbel(µ, β)5, if

P(Y ≤ h) = exp
(

− exp
(

−h− µ

β

))
, for all h ∈ Z. (3.7)

In particular, one can always write Y = ⌈X⌉, where X follows a continuous Gumbel(µ, β);
note on the other side that ⌊X⌋ follows a discrete Gumbel(µ− 1, β).

To obtain a nice formula for the mean and variance of a discrete Gumbel distribution
remains an open problem: for example, for Y d= Gumbel(0, 1), we have

E[Y ] =
∞∑

h=−∞
h (exp(− exp(−h)) − exp(− exp(−h+ 1)) = 1.077240905953631072609 . . .

(and it takes 5 seconds to get thousands of digits, as the terms decrease doubly exponentially
fast), but will anybody find a closed form for this mysterious constant? Some insight on the
variance of the discrete distribution Y can be obtained from the continuous distribution X
via the following trivial but useful bounds which hold more generally as soon as |X−Y | < 1:

|E[Y ] − E[X]| < 1 and |Var[Y ] − Var[X]| < 2 + 4|E[X]|. (3.8)
We can now restate our previous theorem in terms of this discrete Gumbel distribution.

Corollary 3.6 (Gumbel limit law). The sequence of random variables ⌈Hn − ln(pqn)
ln(1/p) ⌉

converges for n → +∞ (in distribution and in moments) to the discrete Gumbel(0, β)
distribution with β = 1

ln(1/p) . Accordingly, it implies that

E[Hn] ∼ ln(pqn)
ln(1/p) + γβ + an error smaller than 1,

Var[Hn] ∼ π2

6 ln(p)2 + an error smaller than 2 + 4γβ.

Proof. Consider the sequence of random variables Yn := ⌈Hn − µn⌉. Then, the change of
variable h 7→ h+ µn in Equation (3.1), with µn = ln(pqn)

ln(1/p) allows us to match Y := limn Yn

(where the limit is in distribution) with the discrete Gumbel defined in (3.7), for µ = 0
and β = 1

ln(1/p) . Due to the exponentially small uniform error term in (3.1) on the support
[0, n] of Hn, we have a convergence in moments of Yn to Y . Then, the asymptotics of the
moments follow by applying the bounds (3.8) on the link between the mean/variance of
the discrete and continuous Gumbel distribution. □

5With a slight abuse of notation, we use the same notation Gumbel(µ, β) for both the continuous
distribution and the discrete distribution, adding the right adjective if needed to remove any ambiguity.
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These moment asymptotics already constitute a notable result (falling as a good ripe
fruit!), but a very interesting phenomenon is hidden in these imprecise errors terms: some
bodacious fluctuations, that we fully describe in Section 4.

3.3. Waiting time. Let us end this section with an application to a natural statistic: the
waiting time τh, i.e., the number of steps spent by the random walk when it reaches a
given altitude h for the first time. There is an intimate relationship between height and
waiting time (stated more formally in Equation (3.11) hereafter); it is thus natural that
they have enumerative and asymptotic formulas of a similar nature, as better shown by
the following corollary.

Corollary 3.7. The waiting time τh for reaching height h satisfies

P(τh = n) = [zn] (1 − pz)phzh

1 − z + qph−1zh
. (3.9)

The distribution function of τh satisfies

P(τh ≤ n) = 1 − exp
(
−qα(n)2nph

)
+O

(
(lnn)3

n

)
. (3.10)

Proof. Consider a walk reaching for the first time altitude h at time n. Cut it after each
reset. It gives a sequence of factors of length k ≤ h, followed by a last factor with h up
steps. This translates into the combinatorial formula

P(τh = n) = [zn] phzh

1 −∑h−1
k=1 p

k−1qzk
,

which simplifies to Formula (3.9). Now, for the distribution function, instead of redoing a
full analysis based on a partial fraction decomposition of this generating function, it is
more convenient to use the relation

P(τh = n) = P(Hn = h and Hn−1 < h), (3.11)

thus this waiting time also satisfies

P(τh ≤ n) = P(Hn ≥ h) = 1 − P(Hn ≤ h− 1). (3.12)

Then, using Theorem 3.3, we also have

P(Hn ≤ h− 1) = P
(
Hn ≤

⌊
lnn

ln(1/p)

⌋
+ h− 1 −

⌊
lnn

ln(1/p)

⌋)

= exp
(

−qα(n)ph−⌊ ln n
ln(1/p)⌋

)
+O

(
(lnn)3

n

)

= exp
(

−qα(n)2ph+ ln n
ln p

)
+O

(
(lnn)3

n

)
.

Via Formula (3.12) linking the waiting time τh and the height Hn, this entails (3.10). □

We now turn to a finer analysis of the mean and variance of Hn.
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4. Mean and variance of the height

4.1. Fundamental properties of the Mellin transform. In order to get a fine estima-
tion of the average height, we use a Mellin transform, which, as we shall see, is the key
tool to handle the corresponding asymptotics. We now present the needed definitions and
formulas. We refer e.g. to Flajolet, Gourdon, and Dumas [19] or to the book Analytic Com-
binatorics [22, Appendix B.7] for more on the Mellin transform and numerous applications
to asymptotics of harmonic sums, digital sums, and divide-and-conquer recurrences.
Definition 4.1 (Mellin transform). Let f(t) be a continuous function defined on the
positive real axis 0 < t < +∞. The Mellin transform f ∗ of f is the function defined by

f ∗(s) :=
∫ +∞

0
f(t)ts−1dt.

This integral exists only for s such that the function f(t)ts−1 is integrable on (0, +∞).
Thus, if there exist two real numbers a and b, such that a > b and

f(t) =



O(ta), if t → 0
O(tb), if t → +∞

, (4.1)

then the function f ∗ is well defined for any complex number s with real part such that
−a < ℜ(s) < −b; this domain is called the fundamental strip of f ∗. Moreover, for all c in
this domain, if f ∗(s) converges uniformly to 0 for s = c± i∞, then the function f can be
expressed for t ∈ (0,+∞) as the following inverse Mellin transform:

f(t) = 1
2iπ

∫ c+i∞

c−i∞
f ∗(s)t−sds. (4.2)

As an example, let us consider the gamma function, which illustrates well the role of
the fundamental strip (and this example will also play a role in the next pages).
Example 4.2 (The gamma function as a Mellin transform). The gamma function satisfies

Γ(s) =
∫ +∞

0
exp(−t)ts−1dt (for 0 < ℜ(s) < +∞),

Γ(s) =
∫ +∞

0
(1 − exp(−t)) ts−1dt (for −1 < ℜ(s) < 0). (4.3)

An important consequence of Formula (4.2) is that, if f is a meromorphic function on C,
and if limc→+∞

∫ c+i∞
c−i∞ f ∗(s)t−sds = 0, then one can push the integration contour of For-

mula (4.2) to the right (taking limc→+∞) and one then collects in passing the contributions
from the residue at each pole sk to the right of the fundamental strip. Now, for t > 0 and
a∈C, multiplying t−s = t−a∑

ℓ≥0 ln(t)ℓ(a− s)ℓ/ℓ! by the Laurent series of f ∗(s) at s=sk,
we see that Res[f ∗(s)t−s, sk] can be expressed6 as a sum of order(sk) terms, and one gets

f(t) =
∑

sk pole of f∗(s)t−s

ℜ(sk) ≥ −b

Res[f ∗(s)t−s, sk]

=
∑

sk pole of f∗
ℜ(sk) ≥ −b

order(sk)∑

j=1
Res[(s− sk)j−1f ∗(s), sk] t−sk

(−1)j

(j − 1)! (ln t)j−1. (4.4)

6The notation Res[g(s), sk] stands for the residue of g(s) at s = sk.
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4.2. Average height of Moran walks. We now state the main result of this section.
Theorem 4.3 (Average height). The average height of Moran walks of length n is given by

E[Hn] = lnn
ln(1/p) − γ

ln p − 1
2 − ln q

ln p + Q(ln(qn))
ln p +O

(
(lnn)4

n

)
, (4.5)

where γ = .57721 . . . is Euler’s constant, and where Q is an oscillating function (a Fourier
series of period ln(1/p)) given by

Q(x) :=
∑

k∈Z\{0}
Γ(sk) exp(−skx) where sk := 2ikπ

ln p . (4.6)

Remark 4.4 (Fourier series representation). The fact that Q is a Fourier series of period
ln(1/p) and is real for x ∈ R is better seen via the alternative equivalent expression

Q(x) = 2
∑

k≥1

(
ℜ(Γ(sk)) cos

(
2kπx
ln(p)

)
+ ℑ(Γ(sk)) sin

(
2kπx
ln(p)

))
,

where ℜ and ℑ stands for the real and imaginary parts. This is illustrated in Figure 7.
Remark 4.5 (Fourier series differentiability). Such asymptotics involving fluctuations
dictated by a Fourier series are typical of results obtained via Mellin transforms. They
often appear in the asymptotic cost of divide-and-conquer algorithms, or of expressions
involving digital sums, harmonic sums, or finite differences (see the work of de Bruijn,
Knuth, and Rice [15, 38], or Flajolet, Gourdon, and Dumas [19]). It is sometimes also
possible to get them via some real analysis (like Pippenger did [45]), or like in the
seminal work of Delange [16] on the sum of digits. Note that the Delange series is nowhere
differentiable, while our Fourier series is infinitely differentiable, as proven in Theorem 4.10.

Q(x) (for p = 1/2) Q(ln(px)) (for p = 1/2)
Figure 7. The height of Moran walks involves asymptotic fluctuations
encoded by a Fourier series Q(x), of period ln(1/p), and weak amplitude.
More precisely, it involves Q(ln(px)) which thus oscillates an infinite number
of times for x → 0+, and these oscillations get larger and larger for x → +∞.
Moreover, Q oscillates faster when p tends to 1. We shall encounter later
another Fourier series, R(x), which shares all these properties.
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Proof of Theorem 4.3. The proof exploits the fact that the mean E[Hn] asymptotically
behaves like ∑+∞

h=0

(
1 − exp(−nqph+1)

)
; this is proven by rewriting E[Hn] as follows:

E[Hn] =
n∑

h=0
(1 − P (Hn ≤ h)) = Σ0 + Σ1 + Σ2 + Σ3 − Σ4 + Σ∞, (4.7)

with
Σ0 :=

∑

0≤h<h1

(
exp(−nqph+1) − P (Hn ≤ h)

)
,

Σ1 :=
∑

h1≤h<h2

(
exp(−nqph+1) − P (Hn ≤ h)

)
,

Σ2 :=
∑

h2≤h<h3

(
exp(−nqph+1) − P (Hn ≤ h)

)
,

Σ3 :=
∑

h3≤h≤n

(
1 − P (Hn ≤ h)

)
,

Σ4 :=
+∞∑

h=h3

(
1 − exp(−nqph+1)

)
,

Σ∞ :=
+∞∑

h=0

(
1 − exp(−nqph+1)

)
.

The key is to prove that, for some h1, h2, and h3 adequately chosen, the sums Σ0,Σ1,Σ2,
Σ3, and Σ4 are asymptotically negligible, while the main contribution to E[Hn] comes from
the last sum (namely, Σ∞), which we will evaluate via a Mellin transform approach.

The reader not enjoying delta-epsilon proofs could have the feeling that “cutting epsilons
into 5 parts” like above is a little bit discouraging but this is the price to pay to get
the O((ln(n)4/n) error term in Formula (4.5). In fact, in Equation (4.7) for E[Hn], it
is possible to cut the sum into only 4 parts, but then this would lead to a final weaker
O(1/

√
n) error term.

So let’s be brave and begin with Σ0. Here, for the range 0 ≤ h < h1, with h1 := 3
4

ln(n)
ln(1/p) ,

we get
|Σ0| ≤ h1 ×

(
max

0≤h<h1

(
exp(−nqph+1) + max

0≤h<h1
P (Hn ≤ h)

))

= h1 ×
(
exp(−nqph1+1) + P (Hn ≤ h1)

)

= h1 ×
(

2 exp(−qpn1/4) +O

(
(lnn)3

n

))

= O

(
(lnn)4

n

)
,

where, for the second line we used that the sequences are increasing with respect to h,
and for the third line we used Formula (3.4) for ph and the approximation of Theorem 3.3.
Note that this bound for |Σ0| also implies the uniform bound

P(Hn ≤ h) = O

(
(lnn)4

n

)
(for h < h1).

Now, for Σ1, in the range h1 ≤ h < h2, with h2 := ln(n)
ln(1/p) + ln(ln(n))

ln(1/p) , we rewrite h as
h := (1 − t)h1 + th2. Such values of h correspond to using c = (t+ 3)/4 and c′ = t in the
Formula (3.4) for ph.



Height of walks with resets, the Moran model, and the discrete Gumbel distribution 285

Via the exponential bound on Hn from Formula (3.6), we get

|Σ1| ≤ (h2 − h1) ×
(

max
h1≤h<h2

(
exp(−nqph+1) + max

h1≤h<h2
P (Hn ≤ h)

))

≤ h2 ×
(
exp(−nqph2+1) + P (Hn ≤ h2)

)
= O((lnn)4/n).

Then, for Σ2, in the range h2 ≤ h3, with h3 := 4 ln(n)
ln(1/p) , we rewrite h as h := (1− t)h2 + th3.

Such values of h correspond to using c = 1 + 3t and c′ = 1 − t in the Formula (3.4) for ph.
Via Formula (3.6), we get |Σ2| = O((lnn)3/n).

For the next sum, using the power series expansion of the exponential in Equation (3.3)
(and keeping in mind that our choice of h3 implies ph3 = 1/n4), we get

Σ3 =
n∑

h=h3

(1 − P (Hn ≤ h)) ≤ (n+ 1 − h3) (1 − P (Hn ≤ h3))

≤ n(1 − exp(−(n+ 1)qph3+1))(1 + o(1)) = O
( 1
n2

)
. (4.8)

Finally, for the sum Σ4, we use the power series expansions of exp(x) and of 1/(1 − p)
and we get:

Σ4 =
∑

h≥h3

(1 − exp(−nqph+1)) = nqph3+1

1 − p
−
∑

h≥h3

∑

k≥2

(−nqph+1)k

k! < nph3+1 = O
( 1
n3

)
.

We got that Σ0, Σ1, Σ2, Σ3, and Σ4 are o(1). It remains to evaluate Σ∞ = ∑
h≥0(1−e−nqph+1).

Such a sum is typical of expressions which can be evaluated by Mellin transform techniques.
To this aim, let ϕ(t) = ∑

h≥0(1 − e−tqph+1) and set f(t) := 1 − e−tpq and µh := ph, then
ϕ(t) =

∑

h≥0
f(µht).

Let ϕ∗ and f ∗ be, respectively, the Mellin transform of the functions ϕ and f . Using
Identity (4.3) given in Example 4.2, we have f ∗(s) = −(pq)−sΓ(s) on its fundamental strip
−1 < ℜ(s) < 0 and, as ϕ is a harmonic sum, its Mellin transform is

ϕ∗(s) = f ∗(s)
∑

h≥0
µ−s

h = q−sΓ(s)
1 − ps

. (4.9)

This function extends analytically to the full complex plane, with isolated poles at the
negative integers (due to poles of Γ(s) there), and with another set of isolated poles (the
roots of ps = 1). These two sets of poles have s = 0 in common. This implies that for
ℜ(s) > −1 the poles of ϕ∗ are




sk = 2ikπ

ln p
for k ∈ Z, k ̸= 0 (all are poles of order 1),

s0 = 0 (the only pole of order 2).
Using Formula (4.4) for the inverse Mellin transform, we obtain

ϕ(t) = Res[sϕ∗, 0] ln t− Res[ϕ∗, 0] −
∑

k∈Z\{0}
Res[ϕ∗, sk] t−sk

= ln t
− ln p −

(
γ

ln p + 1
2 + ln q

ln p

)
+ 1

ln p
∑

k∈Z\{0}
Γ(sk)q−skt−sk .

We finally get the claim of the theorem by noting that E[Hn] = ϕ(n) +O
(

(ln n)4

n

)
. □
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4.3. Variance of the height of Moran walks. We now prove that the height of Moran
walks, despite a mean of order O(lnn) and a second moment of order O((lnn)2), has a
variance which involves surprising cancellations at these two orders, leading to an oscillating
function of order O(1) (in n), as implied by the following much more precise asymptotics.

Theorem 4.6. The variance of the height of Moran walks satisfies

Var[Hn] = 1
ln(p)2

(
Q2(ln(qn)) + 2γQ(ln(qn)) + 2R(ln(qn)) + π2

6

)
+ 1

12 +O

(
(lnn)5

n

)
,

where Q and R are Fourier series of small amplitudes given by Formulas (4.6) and (4.11).

Proof. To obtain the variance of Hn we first consider the second moment
E[H2

n] =
∑

h≥0
P(Hn = h)h2 =

∑

h≥0
P(H2

n > h), (4.10)

where we know from Theorem 3.3 that the summand can be approximated by

P(H2
n > h) = 1 − P

(
Hn ≤

√
h
)

= 1 − exp
(

−nqp⌊
√

h⌋+1
)

+O

(
(lnn)3

n

)
.

Then, partitioning the last sum in (4.10) into the same intervals as in Formula (4.7), we
get that E[H2

n] = ϕvar(n) +O
(

(ln n)4

n

)
, where ϕvar is the function defined by

ϕvar(x) =
∑

h≥0

(
1 − exp

(
−xqp⌊

√
h⌋+1

))
.

From the behavior of ϕvar(x) at x = 0 and x = +∞, using the property given in (4.1), we
get that the Mellin transform of ϕvar is defined on the fundamental strip (−1, 0). Using
the harmonic sum summation (4.9), one gets for s in this strip:

ϕ∗
var(s) = f ∗(s)

∑

h≥0

(
p⌊

√
h⌋
)−s

= −Γ(s)(pq)−s
∑

h≥0

(
p⌊

√
h⌋
)−s

.

Here, as we have
∑

h≥0

(
p⌊

√
h⌋
)−s

=
∑

n≥0

(n+1)2−1∑

h=n2

(
p−s

)n
=
∑

n≥0
(2n+ 1)

(
p−s

)n
= 1 + p−s

(1 − p−s)2 ,

we finally get
ϕ∗

var(s) = −Γ(s)q−s(1 + ps)
(ps − 1)2 .

What are the poles of ϕ∗
var(s)? These are s = 0 (a pole of order 3) and s = sk = 2ikπ

(for k ∈ Z, k ̸= 0, which are poles of order 2). Using Formula (4.4) for the inverse Mellin
transform, one thus obtains

ϕvar(t) = ln(t)2

ln(p)2 + ln(t) ln(p) + 2 ln(q) + 2γ − 2Q(ln(qt))
ln(p)2

− ln(p) + 2 ln(q)
ln(p)2 Q(ln(qt)) + 2

ln(p)2R(ln(qt))

+ 1
3 + γ + ln(q)

ln(p) + π2/6 + γ2

ln(p)2 + 2γ ln(q) + ln(q)2

ln(p)2 ,
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with the same Q(x) as in (4.6), and where R(x) is another Fourier series given by

R(x) =
∑

k∈Z\{0}
Γ′(sk) exp(−skx). (4.11)

(Similarly to Q(x), this Fourier series R(x) is always real, as can be seen by replacing Γ
by Γ′ in Remark 4.4.)

Now that we obtained the asymptotic behavior of E[H2
n], we conclude and obtain

Theorem 4.6 via Var[Hn] = E[H2
n]−E[Hn]2, where E[Hn] was computed in Theorem 4.3. □

4.4. Height of excursions. Excursions are walks in N2 ending at altitude 0 (where, as
previously, time is encoded by the x-axis, and altitude by the y-axis). As in previous
sections, let Yn and Hn be the final altitude and height of a walk, and let the random
variable H̃n be the height of a walk of length n conditioned to be an excursion, that is,
H̃n = Hn|{Yn = 0}. For Moran walks, we get the following behavior.

Theorem 4.7 (Distribution and moments of the height of Moran excursions). The
distribution of the height of excursions satisfies (for a uniform error term in k)

P
(
H̃n ≤

⌊
lnn

ln(1/p)

⌋
+ k

)
= exp

(
−qα(n− 1)pk+1

)
+O

(
(lnn)3

n

)
,

with α(n) := p−{ ln n
ln(1/p) } (where {x} stands for the fractional part of x, and where ⌊x⌋ stands

for the floor function of x).
Introducing temporarily the quantity ℓn := ln(q(n−1)), and with the same Fourier series

Q and R as in Theorems 4.3 and 4.6, the average and the variance are given by

E[H̃n] = lnn
ln(1/p) − γ

ln p − 1
2 − ln q

ln p + Q(ℓn)
ln p +O

(
(lnn)4

n

)
,

Var[H̃n] = 1
ln(p)2

(
Q2(ℓn) + 2γQ(ℓn) + 2R(ℓn) + π2

6

)
+ 1

12 +O

(
(lnn)5

n

)
.

Proof. As a Moran excursion necessarily ends by a reset, we have

P(H̃n ≤ h) = P (Hn ≤ h|{Yn = 0}) = qP(Hn−1 ≤ h)/P(Yn = 0). (4.12)

Thus, we have P(H̃n ≤ h) = P(Hn−1 ≤ h), E[H̃n] = E[Hn−1], and Var[H̃n] = Var[Hn−1],
we can therefore directly recycle the results of Theorems 3.3, 4.3, and 4.6 to get the
asymptotic distribution/mean/variance.

In this recycling, some care has to be brought while performing the substitution n → n−1
in the asymptotic formulas for the walks: indeed, this could impact intermediate asymptotic
terms (smaller than the main asymptotic term, but larger than the error term); however,
in our case, all is safe as we have

(ln(n± 1))m

(n± 1)m′ = (lnn)m

nm′ +O

(
(lnn)m

nm′+1

)
. □

This result is a simple consequence of the combinatorially obvious identity (4.12), so
this direct link between the asymptotics of walks and excursions holds in wider generality
for any model of walks with resets for which the step set S contains only positive steps.
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4.5. Fourier series: bounds and infinite differentiability. In his seminal work [38],
Knuth mentions at the end of his Section 3 that if one assumes that ln(qn) is equidistributed
mod 1, then the sum Q(ln(qn)) is of “average 0”. Let us amend a little bit Knuth’s assertion.
Indeed, Weyl’s criterion asserts that a sequence an is equidistributed mod 1 if and only if,
for any positive integer ℓ, we have

lim
N→+∞

1
N

N∑

n=1
exp(2iπℓan) = 0.

Considering this sum with ℓ = 1 and an = ln(qn), and applying the Euler–Maclaurin
formula to it, one gets that it does not converge to 0, and therefore ln(qn) is not equidis-
tributed mod 1.

However, it is indeed true that the oscillating Q(x) and R(x) are of mean value zero
over their period (i.e.,

∫ ln(1/p)
0 Q(x)dx = 0; see Figure 7 on page 283), and that Q(ln(qn))

and R(ln(qn)) are “almost” of mean value zero and that they possess small fluctuations.
Let us give an explicit bound on their amplitude. To this aim, we first need to bound the
digamma function7, defined by

ψ(z) := Γ′(z)/Γ(z).

The function ψ can be seen as an analytic continuation of harmonic numbers and satisfies
ψ(t+ 1) = ψ(t) + 1/t. While several bounds for ψ(z) exist in the literature (see e.g. [52]),
most of them are dedicated to z ∈ R (for example we have ψ(t) < ln(t) − 1/(2t) for t > 0),
so we now establish a lemma for z ∈ iR (which we believe to be new, and which has its
own interest beyond our application hereafter to bounds of Fourier series).

Lemma 4.8 (A bound for the digamma function on the imaginary axis). For t > 0, we
have

|ψ(it)| ≤ 1
2 ln

(
1 + t2

)
+
(
π

2 + 1 − γ
)

+ 1
t
, (4.13)

which also implies the bound

|ψ(it)| ≤
(
π

2 + 1 − γ + ln 2
2

)
+
(

ln(t)1{t≥1} + 1
t

)
.

Proof. Using Euler’s representation of the gamma function as an infinite product, i.e.,

Γ(z) = 1
z

∏

k≥1
(1 + 1/k)z/(1 + z/k) = exp(−γz)

z

∏

k≥1

exp(z/k)
1 + z/k

,

we get that its logarithmic derivative, ψ(z) = Γ′(z)/Γ(z), satisfies, for z ∈ C, z /∈ −N :

ψ(z) = −1
z

− γ +
+∞∑

k=1

z

k(k + z) .

7This is a rather misleading name: indeed, the digamma function is traditionally denoted by the letter
psi (i.e., ψ), while it should logically be denoted by the Greek letter digamma (i.e., 𭟋, a letter which looks
like a big Γ stack on a small Γ, which later gave birth to the more familiar letter F in the Latin alphabet).
This paradox is due to the fact that Stirling, who introduced this function, did initially use the notation
digamma 𭟋, but later authors switched the notation to ψ, while the initial name remained.
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We refer to [18, Section 1.1] for more details on these formulas. Now, setting z = it
(with t > 0), and regrouping the imaginary and real parts gives

ψ(it) = i

(
1
t

+
+∞∑

n=1

t

n2 + t2

)
+
(+∞∑

n=1

t2

n (n2 + t2) − γ

)
,

and thus, by the triangle inequality

|ψ(it)| ≤
(

1
t

+
+∞∑

n=1

t

n2 + t2

)
+
(+∞∑

n=1

t2

n (n2 + t2) − γ

)
. (4.14)

Here, note that for all n ≤ u < n+ 1, we have n2 + t2 ≤ u2 + t2 < (n+ 1)2 + t2, and thus
t

(n+ 1)2 + t2
≤
∫ n+1

n

t

u2 + t2
du ≤ t

n2 + t2
.

Summing for n from 0 to +∞, we obtain
+∞∑

n=1

t

n2 + t2
≤

+∞∑

n=0

∫ n+1

n

t

u2 + t2
du =

∫ +∞

0

t

u2 + t2
du = π

2 .

So the first infinite sum in (4.14) is bounded by π/2. For the second infinite sum, it is
convenient to split it in the contribution from the summand for n = 1, which is bounded by

max
t≥0

(
t2

1 + t2

)
= 1,

plus the remaining part (i.e., the sum of the terms for n ≥ 2):
+∞∑

n=2

t2

n (n2 + t2) ≤
∫ +∞

t−1

1
u(u2 + 1)du = 1

2 ln(1 + t2).

Plugging these two bounds in (4.14) proves our lemma. □

Equipped with the previous lemma, we can now give our bounds for Q(x) and R(x).

Proposition 4.9 (Uniform bounds for the oscillations). The oscillating functions Q(x)
and R(x) are uniformly bounded by

sup
x∈R+

|Q(x)| ≤ ln(p)
π

lnexp
(
p,

4
5π

2
)
,

sup
x∈R+

|R(x)| ≤ ln(p)
π

[
lnexp

(
p,

4
5π

2
)

+
(
π

2 +1−γ− ln(p)
2π

)
lnexp

(
p,

114
155π

2
)]
, (4.15)

where

lnexp(p, β) := ln
(

1 − exp
(

β

ln(p)

))
.

For p = 1/2, we have more precisely

sup
x∈R+

|Q(x)| = 1.090430 · · · × 10−6 and sup
x∈R+

|R(x)| = 2.987768 · · · × 10−6.
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Proof. Applying the triangle inequality on the definition of Q(x) in (4.6), we get
|Q(x)| ≤

∑

k∈Z\{0}
|Γ(sk)| × | exp(−skx)| ≤ 2

∑

k≥1
|Γ(sk)|

(a quantity independent of x, as | exp(−skx)| = 1). Then, using the complement formula
for the gamma function, we have Γ(−z)Γ(z) = π

z sin(π(z+1)) (for z ̸∈ Z). Using this relation
for z = it (with t ∈ R) together with the relation Γ(z) = Γ(z̄), we infer that

|Γ(it)|2 = Γ(it)Γ(−it) = π

t sinh(πt) . (4.16)

Thus, for t = 2π
− ln p

, this gives

sup
x∈R+

|Q(x)| ≤ 2
∑

k≥1

√
π

kt sinh(πkt) =
√

ln(1/p)
2

∑

k≥1

√
1

k sinh(πkt) . (4.17)

As, for x ≥ 0, we have sinh(x) ≥ (1/4)x exp(4x/5), we get

sup
x∈R+

|Q(x)| ≤
√

ln(1/p)
2

∑

k≥1

√
1

(1/4)πk2t exp(4πkt/5)

= ln(1/p)
∑

k≥1

1
πk exp

(
2
5πkt

) (4.18)

= ln(p)
π

ln
(

1 − exp
(

4π2

5 ln(p)

))
. (4.19)

Note that the more relaxed bound (4.19) is quite close to the stricter bound (4.17):
e.g. for p = 1/2 the bound (4.17) gives the upper bound 1.090430 · · · × 10−6 (and one
can numerically check that these first digits also constitute a lower bound), while the
bound (4.19) gives the upper bound 2.49 × 10−6.

Now, for bounding R(x), we use the identity Γ′(z) = ψ(z)Γ(z), with the bound (4.13)
from Lemma 4.8 for |ψ(it)|, and the bound (4.18) for |Γ(it)|:

|R(x)| ≤ 2
∑

k≥1
|Γ′(sk)| = 2

∑

k≥1
|ψ(sk)| |Γ(sk)|

≤
∑

k≥1


1

2 ln

1+

(
2πk
ln(p)

)2

+π

2 +1−γ− ln p
2πk


 ln(1/p)
πk exp

(
−4

5π
2k/ ln(p)

) . (4.20)

Now, it is easy to check that we have 1
2 ln (1 + x2) ≤ exp

(
1
31πx

)
for all x > 0. Then,

noting t = −2π/ ln(p), we get
∑

k≥1

1
2 ln

(
1 + (kt)2

) ln(1/p)
πk exp

(
2
5πkt

) ≤
∑

k≥1

ln(1/p)
πk exp

(
57
155πkt

)

= ln(p)
π

ln
(

1 − exp
(

114π2

155 ln(p)

))
.

Together with the contribution of the remaining summands in (4.20), this gives the
bound (4.15) for |R(x)|. □

From this, we can establish the infinite differentiability of our fluctuations.
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Theorem 4.10 (Fourier series infinite differentiability). The Fourier series

Q(x) =
∑

k∈Z\{0}
Γ(sk) exp(−skx) and R(x) =

∑

k∈Z\{0}
Γ′(sk) exp(−skx)

(where sk = 2ikπ
ln p

) are infinitely differentiable on R.

Proof. A Fourier series f(x) = ∑
k∈Z ck exp(−ikx) satisfies the Weierstrass M -test if there

exists a sequence Mn such that |ck exp(−ikx)| + |c−k exp(ikx)| < Mk (for all x ∈ R)
and ∑

k≥0 Mk converges. If f(x) and g(x) := −i∑k∈Z kck exp(−ikx) both satisfy the
Weierstrass M -test, then they converge absolutely and uniformly in R, and f ′ = g.

Thus, by successive application of this M -test, if the coefficients decay polynomially,
i.e., we have |c−k| + |ck| = O(|k|−d−1), then f(x) is in Cd (that is, d times differentiable)
and f(x) is in C∞ (that is, infinitely differentiable) if its coefficients decay faster than any
polynomial rate. By Equation (4.16), the coefficients Γ(sk) decay like ≈ exp(−kπ/ ln(p)),
so Q(x) is in C∞. By Equation (4.20), the coefficients Γ′(sk) also decay like an exponential,
so R(x) is in C∞. □

It is interesting to compare this smoothness result with the situation observed by
Delange [16] in his seminal work on the sum of digits of n in base 1/p (when 1/p is an
integer). Therein, he proved an asymptotic behavior involving fluctuations dictated by a
Fourier series, which can also be obtained by a Mellin transform approach, quite similarly
to the road followed in our article. It appears that his Fourier series (already mentioned
in Remark 4.5) has coefficients ζ(sk)/((1 + sk)sk) ≈ k−1.5; it is thus not surprising that
the Delange series is nowhere differentiable, in sharp contrast with the smoothness of our
Fourier series (see Figure 8).

This concludes our analysis of the height and the corresponding fluctuations.

Q(x) (for p = 1/2) R(x) (for p = 1/2) Delange(x) (for p = 1/2)

Figure 8. Our Fourier series Q and R are infinitely differentiable, while
the Fourier series obtained by Delange is nowhere differentiable. This follows
from the asymptotics of their coefficients, as explained in the proof of
Theorem 4.10.
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5. Some results for the Moran model in dimension m > 1

5.1. Joint distribution of ages for the Moran model with m > 1. Moran processes
are models of population evolution (or mutation transmission) where the population is
of constant size (some individuals could die but are then immediately replaced by a
new individual). Depending on the applications, several variants were considered in the
literature starting with the seminal work of Moran himself [43, 44], up to more recent
extensions (for example to spatially structured population [41].

Motivated by the model with resets of Itoh, Mahmoud, and Takahashi [34, 35], we
now define the Moran model with m individuals. It is a process parametrized by some
probabilities p and pi’s such that p + ∑m

i=0 pi = 1, and which starts at time 0 with m
individuals of age 0. Then, at each new unit of time,

• either, with probability p, all survive (their age increases by 1),
• either, with probability pi (for 1 ≤ i ≤ m), the i-th individual dies (it is then

replaced by a new i-th individual of age 0), while the age of the m− 1 surviving
individuals increases by 1,

• either, with probability p0, all die and are replaced by m new individuals of age 0.
Now, we define the sequence of multivariate polynomials fn(x1, . . . , xm) (for n ∈ N) by
the fact that the coefficient of xk1

1 · · ·xkm
m in fn(x1, . . . , xm) is the probability that, at

time n, the i-th individual has age ki (for i = 1, . . . ,m). Accordingly, F (t, x1, . . . , xm) :=∑
n≥0 fn(x1, . . . , xm)tn is the probability generating function associated to the above Moran

model, where the time is encoded by the exponent of t.
Theorem 5.1. The probability generating function of the Moran model is a rational
function, and it admits the closed form

F (t, x1, . . . , xm) =
∑2m−1

k=0 (−1)kPkt
k

∆ , (5.1)

where the Pk’s are polynomials (given in the proof) in the xi’s, p, pi’s, and where ∆ is the
following polynomial of degree 2m in t:

∆ =
∏

I⊆{1,...,m}


1 − t

(
p+ p0[[I = {1, . . . ,m}]] +

∑

i∈I

pi

)∏

i ̸∈I

xi


 .

Proof. The Moran model evolution is encoded by the following functional equation for the
probability generating function F :

F (t, x1, . . . , xm) = 1 + tpx1 · · · xmF (t, x1, . . . , xm) + tp0F (t, 1, . . . , 1)

+ t

(
m∑

i=1
pi
x1 · · ·xm

xi

F (t, x1, . . . , xm)|xi=1

)
, (5.2)

where F|xi=1 means F evaluated at xi = 1.
To solve this single functional equation (which has m+ 2 unknowns8), the trick is to

transform it into a linear system of equations with... 2m unknowns! Indeed, by substituting
xi = 1 (in all the possible ways) in the functional equation (5.2), we get a system of 2m

equations.
8We temporarily count F (t, 1, . . . , 1) as unknown, even if it is obviously equal to 1/(1 − t), as F is a

probability generating function.
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Then, we encode this system by a matrix M , where we cleverly (sic!) choose the order
in which unknowns are associated to the lines/columns of M . Let us define this order;
to this aim consider the Cartesian product X := {1, x1} × · · · × {1, xm}. For any pair
of m-tuples X and Y from X , one writes X ≺ Y if the number of 1’s in X is less than
the number of 1’s in Y, or, when they have the same number of 1’s, if X is smaller
than Y in the lexicographical order induced by x1 ≺ · · · ≺ xm ≺ 1. For example, we have
(x1, x2) ≺ (x1, 1) ≺ (1, x2) ≺ (1, 1). Listing all the elements of X in increasing order, we
get a list of 2m tuples X1, . . . , X2m . The matrix M encoding the aforementioned system
of equations is constructed such that the i-th line of the matrix M corresponds to the
unknown F (t,Xi) and the j-th column corresponds to the unknown F (t,Xj).

With this order, the matrix M is an upper triangular matrix (as each of the substitution
of some xi’s by some 1’s in Equation (5.2) leads from some tuple X to m + 2 larger
tuples Y), and thus the determinant of M is the product of its diagonal terms:

detM =
∏

I⊆{1,...,m}


1 − t

(
p+ p0[[I = {1, . . . ,m}]] +

∑

i∈I

pi

)∏

i ̸∈I

xi


 ,

where we use Iverson’s bracket notation9.
As this determinant ∆ := detM is not zero, this entails by Cramer’s rule that

F (t, x1, . . . , xm) can be written as a rational function with denominator ∆ (note that, for
some specific real values of p and the pi’s, it is not excluded that the numerator could have
a shared factor with ∆). Of course, computing the determinant of each comatrix, and
using the relation p0 = 1 − (p+ p1 + · · · + pm), we get symmetric polynomial expressions
for the Pk’s occurring in (5.1), e.g.:

P0 = 1,

P1 = p

(
m∏

i=1
(1 + xi) −

m∏

i=1
xi

)
+

m∑

i=1
xi

∑

j=1,...,m
j ̸=i

pj,

...

P2m−1 =
(

m∏

i=1
xm

i

) ∏

I⊊{1,...,m}

(
p+

∑

i∈I

pi

)
. □

Note that the case p0 = 0, pi = 1/m for i = 1, . . . ,m (with m ≥ 2) was analyzed by
Itoh and Mahmoud [34]: they proved that the age of each individual converges to a shifted
geometric distribution, namely Geom(1/m) − 1. They also show that the number of indi-
viduals of age k at time n converges to a Bernoulli distribution, namely Ber((m/(m−1))k).
Our Theorem 5.1 constitutes a joint law version of these results, at discrete times, for
generic pi’s. For example, introducing G(t, v) := ∑m

j=1

(
m
j

)
vj [xk

1 . . . x
k
j ]F (t, x1, . . . , xm), the

coefficient [tn]∂vG(t, 1) gives the average number of individuals of age k at time n. (Note
that the sum with the binomial coefficients

(
m
j

)
has to be replaced by a sum over the

subsets of {1, . . . ,m} if the pi’s and the initial conditions for the x′
is are not symmetric.)

9This notation, [[assertion]], is 1 if the assertion is true, and 0 if not. It was introduced in the semantics
of the language APL by its founder, Kenneth Iverson. It was later popularized in mathematics by Graham,
Knuth, and Patashnik [27].
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5.2. A multidimensional generalization of the Moran model. Interestingly, the
same strategy of proof allows us to solve a wide generalization of the Moran model, where

• with probability pI , all the individuals from the subset I of {1, . . . ,m} die (they
are then replaced by new individuals of age 0), while the age of each surviving
individual increases by 1.

• the process starts with m individuals of any (possibly distinct) ages, encoded by a
monomial f0(x1, . . . , xm).

This translates to the following single functional equation, involving 2m unknowns:
F (t, x1, . . . , xm) = f0(x1, . . . , xm) + t

∑

I∈{1,...,m}
pIF (t,XI)

∏

i ̸∈I

xi,

where XI = (x1, . . . , xm)|xi = 1 for all i ∈ I .
Obviously, by taking f0 = 1, p∅ = p, p{1,...,m} = p0, p{i} = pi, and all other pI = 0,

the generalized model simplifies to the classical Moran model of Theorem 5.1. Another
natural set of probabilities is pI = qk(1 − q)m−k, where k is the number of elements in I.
It encodes the model where, at each unit of time, each individual dies with probability q.

More generally, for any set of pI ’s, one gets the following result.
Theorem 5.2. The probability generating function of the generalized Moran model is a
rational function:

F (t, x1, . . . , xm) =
∑2m−1

k=0 (−1)kQkt
k

∆ , (5.3)
where the Qk’s are polynomials in the xi’s and pI ’s for I ⊂ {1, . . . ,m}, and where ∆ is
the following polynomial of degree 2m in t:

∆ =
∏

I⊆{1,...,m}


1 − t

(
p∅ + p{1,...,m}[[I = {1, . . . ,m}]] +

∑

i∈I

p{i}

)∏

i ̸∈I

xi


 .

Note that, for this generalized model, the denominator ∆ is the same as in Theorem 5.1,
and the Qk’s are a lifting of the Pk’s from Theorem 5.1, involving more terms and variables
(namely, all the pI ’s). For these two models, these polynomials Pk and Qk are variants of
symmetric functions. We comment more on this fact now.

Remark 5.3 (Links with bi-indexed families of symmetric functions). Many problems related
to lattice paths lead to generating functions expressible in terms of symmetric functions;
this results from the kernel method, which involves a Vandermonde-like determinant, and
thus leads to variants of Schur functions [4,6,11]. For the generalized Moran model we also
get symmetric expressions, as the problem is by design symmetric, but in a more subtle
way: one does not get formulas nicely expressible in terms of classical symmetric functions.
This is due to the fact that we have to play with two distinct sets of variables (the pi’s
and the xi’s), the occurrences of which are not fully independent. It appears that these
subtle dependencies are well encoded by the MacMahon elementary symmetric functions,
defined by ej,k := [tjxtkp]∏m

i=1(1+ txxi + tppi). For example, we have e2,1 = x1x2p3 +x2x3p1 +
x3x1p2. They allow us to provide more compact formulas for our generating functions, like
P1 = e1,1 + p

∑m
j=1 ej,0. We plan to study these aspects in a forthcoming work. Note that

these MacMahon symmetric functions also appear in problems a priori unrelated to our
multidimensional Moran walks, see e.g. the articles of Gessel [25] and Rosas [48].
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5.3. Application to the soliton wave model. The soliton wave model (as considered
by Itoh, Mahmoud, and Takahashi [35]) is a stochastic system of particles encoding a
unidirectional wave. The number of particles is constant during the full process: we have
m particles on Z which can only moves to the left as follows. At time n = 0, the initial
configuration consists of m particles, at x-coordinates 1, . . . ,m. Then, at each unit of time
n = 1, 2, . . . , uniformly at random, one of the m particles jumps just to the left of the
first particle (the wave front), thus leaving an empty space at its starting position:

−→
Note that at time n the location of the leftmost particle has thus x-coordinate 1−n. See

Figure 9 for an illustration of 6 iterations of this process, where, for drawing convenience,
we shift the origin of the x-axis after each step, so that the first particle is always at
x-coordinate 1.

Then, applying Theorem 5.2 to this model, we get the following proposition.

Proposition 5.4. The joint distribution F (t, x1, . . . , xm) of the time/positions of the
particles in the soliton wave model is given by Formula (5.3), by taking as initial condition
f0 = x1

1x
2
2 . . . x

m
m, and, as probabilities of transition, p{i} = 1/m and all other pI = 0; what

is more, the denominator of F (t, x1, . . . , xm) thus simplifies to

∆ =
∏

I⊆{1,...,m}

(
1 − t

|I|
m

)∏

i ̸∈I

xi,

where |I| stands for the number of elements of the set I.

Wave Time n Length Ln

0 4

1 5

2 6

3 6

4 4

5 5

6 6

Figure 9. The soliton wave model: a wave is a sequence of particles (the
sequence may have some inner holes), and at each unit of time, one particle
is selected and jumps at the very start of the wave (and thus leaves an empty
slot where it was). Trailing empty slots are ignored (this occurs when the
last particle is selected, e.g. from step 3 to 4 above).
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Figure 9 also shows that this model has one degree of freedom, that is, the soliton
wave model with m particles can be modeled as m− 1 interactive urns U1, . . . , Um−1: the
urn Uk contains the number of white cells between the k-th and (k + 1)-th blue particle.
Accordingly, this interactive urn process starts with Uk(0) = 0 for all k, and then, at each
unit of time, we have one of the following m events (with probability 1/m):

• U1(n+ 1) = U1(n) + 1 and other urns are unchanged.
• for k = 2, . . . ,m − 1: U1(n + 1) = 0, Uj(n + 1) := Uj−1(n) (for j = 2, . . . , k − 1),
Uk(n+ 1) := Uk−1(n) + Uk(n) + 1, and remaining urns are unchanged.

• U1(n+ 1) = 0 and, for k ≥ 2, Uk(n+ 1) := Uk−1(n).
The length of the soliton is then given by Ln = m + U1(n) + · · · + Um−1(n); it can
equivalently be viewed as the maximum of the x-coordinates (at time n) of each particle.

6. Conclusion and future works

In this article, we considered several statistics (final altitude, waiting time, height)
associated to walks with resets, for any given finite step set. For the case of the simplest
non-trivial model (namely, for Moran walks), we prove that the asymptotic height exhibits
some subtle behavior related to the discrete Gumbel distribution. In a forthcoming article,
we plan to consider the asymptotic analysis of the height for more general walks.

In our formulas for walks of length n, taking q′ := q/n (and more generally q′ = q(n)) as
the probability of reset leads to models which can counterbalance the infinite negative drift
of the initial model, and thus present a different type of asymptotic behavior. Studying
these models and their phase transitions in more detail would be interesting.

In Section 5, we considered several multidimensional extensions of such walks, with
applications to the soliton wave model, or to models in genetics. More multidimensional
variants of Moran models allowing both positive and negative jumps (and with or without
resets) can be handled using the approach presented in this article (see [1]). One interesting
example is the one where each dimension evolves like a Motzkin path, this model was
e.g. considered in the haploid Moran model [32], where the authors use a Markov chain
approach, using duality/reversibility to establish links with Ornstein–Uhlenbeck processes.
Note that even if one adds resets to such Motzkin-like models, one keeps nice links with
continuous fractions associated to birth and death processes; see [20]. The analysis becomes
much more complicated as soon as jumps of amplitude ≥ 2 are allowed; in such cases, our
approach based on the kernel method strikes again.

Another natural extension is to consider walks in the quarter plane with resets (a natural
model of two queues evolving in parallel); even for walks with jumps of amplitude 1, the
exact enumeration and the asymptotic behavior of the (maximal) height remain open.
Other more ad hoc extensions consider some age-dependent probabilities pi’s, then leading
to partial differential equations for the corresponding generating functions. Some specific
cases lead to closed-form solutions.

All these variants of Moran models are parametrized by the pi’s. One can then turn to
the tuning of several statistical tests: having some experimental data, it is natural to look
for maximum likelihood estimators of the pi’s, and to study if they are unbiased, sufficient,
and consistent (for more on these notions, see e.g. [50]). In conclusion, the Moran model
offers a large variety of interesting models, with many aspects to explore!
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