MULTIDIMENSIONAL MATRIX INVERSIONS

(Preliminary version)

MICHAEL SCHLOSSER/!

ABSTRACT. We compute the inverse of a specific infinite r-dimensional matrix,
thus unifying multidimensional matrix inversions recently found by Milne, Lilly,
and Bhatnagar. Our inversion is an r-dimensional extension of a matrix inversion
previously found by Krattenthaler. We also compute the inverse of another infinite
r-dimensional matrix. As an application of our matrix inversion, we derive new
multidimensional bibasic summation formulas.

1. INTRODUCTION

Matrix inversions are very important in many fields of combinatorics and special
functions. When dealing with combinatorial sums, application of matrix inversion
may help to simplify problems, or yield new identities. Andrews [1] discovered that
the Bailey transform [2], which is a very powerful tool in the theory of (basic) hyperge-
ometric series, corresponds to the inversion of two infinite lower-triangular matrices.
Gessel and Stanton [10] used a bibasic extension of that matrix inversion to derive a
number of basic hypergeometric summations and transformations, and identities of
Rogers-Ramanujan type. Even earlier, Carlitz [6] had found an even more general
matrix inversion though without giving any applications.

Gasper and Rahman [7], [21], [8], [9, sec. 3.6] used another bibasic matrix inversion
together with an indefinite bibasic sum to derive numerous beautiful hypergeometric
summation and transformation formulas.

The most general (1-dimensional) matrix inversion, however, which contained all
the inversions aforementioned, was found by Krattenthaler [12] who applied his inver-
sion to derive a number of hypergeometric summation formulas. The inverse matrices
he gave are basically (fur)nkez and (gr)kiez (Z denotes the set of integers), where
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and
k
(1.2) _ (u—a) j:rzl+1(a] — )
. gkl (Clk — Ck) 1 .
IT(c; —ck)

J=l

In fact, the special case a; = aqg™/, ¢, = ¢* is equivalent to the matrix inversion of
Andrews, and the case a; = ap™, ¢ = ¢" is equivalent to Gessel and Stanton’s.
Specializing ¢, = ¢* we obtain Carlitz’s matrix inversion, and a; = (bp™//a) + ap’,
cx = ¢ % 4 bg* yields the inversion of Gasper and Rahman.

Multidimensional matrix inversions were found by Milne, Lilly and Bhatnagar. The
A, (or equivalently U(r 4 1)) and C, inversions (corresponding to the root systems
A, and C,, respectively) of Milne and Lilly [17, Theorem 3.3], [18], [13], [14], which
are higher-dimensional generalizations of Andrews’ Bailey transform matrices, were
used to derive A, and C, extensions [17], [19] of many of the classical hypergeometric
summation and transformation formulas. Bhatnagar and Milne [3, Theorem 5.7], [4,
Theorem 3.48] were even able to find an A, extension of Gasper and Rahman’s bibasic
hypergeometric matrix inversion. They used a special case of their matrix inversion,
an A, extension of Carlitz’s inversion, to derive A, identities of Abel-type. But none
of these multidimensional matrix inversions contained Krattenthaler’s inversion as a
special case.

It is the main purpose of this paper to present a multidimensional extension of
Krattenthaler’s matrix inverse (see Theorem 3.1). This multidimensional matrix
inversion unifies all the matrix inversions mentioned so far as it contains them all
as special cases. Besides, we present another interesting multidimensional matrix
inversion (see Theorem 4.1) which is of different type.

In order to prove our matrix inversions in Theorems 3.1 and 4.1 we utilize Kratten-
thaler’s operator method [11] which we review in section 2. We adapt a main theorem
of [11] and add an appropriate multidimensional corollary (see Corollary 2.4).

In section 5 we give an application of our matrix inversions. We combine a special
case of Theorem 3.1 and an A, gpr-summation theorem of Milne [16] to derive an
A, bibasic hypergeometric summation formula, which extends one of the bibasic
hypergeometric summation formulas of Gessel and Stanton [10]. We also derive
another bibasic summation formula. We are optimistic that we can extend other
bibasic summations, and also transformations, listed in [9, sec. 3.8], to A, basic
hypergeometric series as well.

Two determinant evaluations, which are interesting by themselves, turn out to
be crucial for our computations in sections 3 and 4. We decided to give them in a
separate appendix.

This work is part of the author’s thesis, being written under the supervision of
C. Krattenthaler. The author is currently working on further applications of Theo-
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rems 3.1 and 4.1. He is sure that his multidimensional matrix inversions will be very
useful in the theory of basic hypergeometric series of type A, and C,, respectively,
and will lead to the discovery of many more new identities.

2. AN OPERATOR METHOD FOR PROVING MATRIX INVERSIONS

Let F' = (fuk)nkez- (as before, Z denotes the set of integers) be an infinite lower-
triangular r-dimensional matrix; i.e. fox = 0 unless n > k, by which we mean n; > k;
forall i = 1,...,r. The matrix G = (gi1)k,1ez is said to be the inverse matriz of F if
and only if

> fakgk = m
n>k>1
for all n,1 € Z", where &y is the usual Kronecker delta.

In [11] Krattenthaler gave a method for solving Lagrange inversion problems, which
are closely connected with the problem of inverting lower-triangular matrices. We will
use his operator method for proving our new theorems. By a formal Laurent series

ny na

we mean a series of the form 7,5y anz®, for some k € Z", where z" = 2" 2% - - 2.

Given the formal Laurent series a(z) and b(z) we introduce the bilinear form (, ) by

(a(2), b(z)) = (2°)(a(2) - b(z)),

where (z°)c(z) denotes the coefficient of z° in ¢(z). Given any linear operator L
acting on formal Laurent series, L* denotes the adjoint of L with respect to (, ); i.e.

(La(z),b(z)) = (a(z), L*b(z)) for all formal Laurent series a(z) and b(z). We need
the following special case of [11, Theorem 1].

Lemma 2.1. Let F' = (fuk)nkezr be an infinite lower-triangular r-dimensional ma-

triv. with fyxx # 0 for all k € Z7. For k € Z', define the formal Laurenl series

Ji(z) and g(z) by fi(2z) = Yask foxz™ and gi(z) = Yick gaz™", where (ga)xiezr is
the uniquely determined inverse matriz of F. Suppose that for k € 7" a system of
equations of the form

Uil(z) = c;(k)V i(z), j5=1,...,m

holds, where U;,V are linear operators acting on formal Laurenl series, V being

bijective, and (cj(k))kezr are arbitrary sequences of constants. Moreover, we suppose
that

(2.1)
for allm,n € Z", m # n, there exists a j with 1 < j <r and ¢;(m) # ¢;(n).

Then, if hx(z) is a solution of the dual system
U;hk(z) = c]-(k)V*hk(z), ] = 1,...,7‘,



4 MICHAEL SCHLOSSER

with hy(z) Z 0 for all k € Z", the series gx(z) are given by
B 1

S RORENE)

In our applications we will use a corollary of Lemma 2.1 (see Corollary 2.4). Let

S, be the symmetric group of order r. For possibly noncommuting operators V;; let
us define the column determinant by

_)
(2.2) det (Vij) := Y sgn(o) Voo Votrtyr—1 - Vo)1

1<4,5<
_27]_T, UEST

V*hi(2).

An equivalent, recursive definition is by means of the expansion along the first column,

(2.3) det (Vi) = S(=1)F+17 B0y,

1<4,5<

where V() denotes the column minor with the i-th row and j-th column being
omitted.

Proposition 2.2. Let (Vi;)I._; be a matriz of linear operators acting on formal Lau-
rent series. Suppose Vi; = Cy; + Ayj for 1,7 = 1,....r, where the operators Cy;, A;;
obey the following commutation rules

(2.4) Ci;Cr = CrCyj, v £k ik l=1,000r,

i.e. Ci; and Cy commute when taken from different rows,

(2.5) Cij A = ACij, v £k ik l=1,.0r

i.e. Cyj and Ay commule when taken from different rows, respectively the rules

(26) AijAkl = Ak]‘AZ'[, i,j,k,l = 1,...,7“,
where the column indices 5 and | keep their order.

—
Then the column determinant deti<; j<,(Vij), as defined in (2.2) or (2.3), can be
reduced to a polynomial in the A;;’s, 1,5 =1,...,r, of degree < 1,

— — r v
) — . i+ (3 .
@7) L0 = do O+ T )OO,
where C(0:9) again denotes the column minor with the i-th row and j-th column being
omitted.
Moreover, for any [ = 1,...,r the expansion

r

(2.8) det (Vi) = S(=1)H 7By,

1<4,5<
=hIST k=1
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holds, which means that the determinant can be expanded along any arbitrary column.

Proof. Our column determinant can be expanded into

—
(2.9) (et (Vi) = > sen(0) Xor(ar) -+~ Xona(dr),
IRREW Y crESr
a€{v,e}r

where q = (q1, G2, - -.,¢-) with ¢; equal to either v or o for 7 = 1,...,r, and where
Xij(y) = C;; and X;;(a) = Ai;. Due to (2.4) and (2.5), we observe that in every
term of (2.9) the X;;(y) commute with all other variables. X;;(«) and Xy () do not
commute unless j = [, but due to (2.6) we have X;;(a)Xu(a) = Xi;(a)Xu(a). This
important fact lets all terms in (2.9) cancel where a occurs more than once, since we
can pair the terms

sgn(a) ... Xo@)i(a) ... Xo@yi(a). ..
and
sgn(o - (2,7)) ... Xogyia) ... Xo@y (). ..,

having chosen the first two occurrences of «, for instance, and where all other factors
are unchanged. After cancellation, we are left with terms with at most one occurrence
of a and where all factors commute. This implies the first assertion of the proposition.

For proving the second assertion, we define for a given permutation 7 € S, a
modified column determinant by

= (7)

(2.10) det (Vij) = > sen(0)Vair())rr) - Vo)) 1)s

1<4,5<
VA CES,

i.e. the sequence of columns in expanding the determinant is determined by 7. Ex-
— (7)
panding det, ., ;. (Vi;) as in (2.9) we see that the same cancellation argument applies.
o= ()

— —
Thus we have det1§i,jgr(vij) = dety<i j<,(Vi;), which proves (2.8). O

Remark 2.3. Note that in the determinant of Proposition 2.2, we may not expand
along rows because then the cancellation argument does not apply. (For a counterex-
ample, consider the r = 2 case.)

Corollary 2.4. Let W;, Vi; be linear operators acting on formal Laurent series, ¢;(k)
arbitrary constants fork € Z" and 1,7 = 1,...,r. Suppose V;; = Cy; + A;;, with the
operators Ci;, Aij, 1,7 = 1,...,r, satisfying the conditions (2.4), (2.5), and (2.6)
of Proposition 2.2. Suppose W; = I/VZ»(C) + I/Vi(a), with the operators m,m(c),m(a),
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1 =1,...,r, satisfying

(211) OMI/VZ':I/VZ'OM, Z%k, i,k‘,lzl,...,r,
(2.12) AW = WAy, itk i kiI=1,...r
(213) AMI/VZ-(&) = AZ'[WIEQ), i, k,l = 1, e, T

%
Moreover the cj(k) are assumed to satisfy (2.1), and deti<; j<.(Vij) is assumed to be

invertible. With the notation of Lemma 2.1, if

r

(214) ch(k)%jfk(z) = Mfk(z), 7 = 1,...,7“,
then
(2.15) o(z) = det(Vii)h(2),

(fi(2). det(V;)hu(2)
where hx(z) is a solution of

(2.16) S e () Vihi(z) = Wiki(z),  i=1,...,r,

i=1

with hy(z) Z0 for allk € Z".

—
Proof. Since it follows by Proposition 2.2 that the column determinant d€t1gi,jgr(vij)
may be expanded along any column, we can apply Cramer’s rule to (2.14) to obtain

r

¢i(k) det (Va)fi(z) = S~ 1) VW, fi(a),

1<2,I<r =1
for y =1,...,r. The dual system reads

(2.17) ¢j(k) d_e>t (Vi) hk(z) = E(_l)ﬁjwj‘f*(m)

1<4,I<r 1

hi(z)

7

(=) VW (),

It

=1

for j = 1,...,r, and is equivalent to (2.16). Notice that, because of (2.11), (2.12),
and (2.13), we may apply Proposition 2.2 in (2.17) and shift W to the right. Now

apply Lemma 2.1 with V' = dzt(Vi') and U; = erl(—l)i+j‘7(i’j)l/1/ifk(z). O

1=
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3. THE MAIN RESULT

For convenience, we introduce the notation |n| =n;+ny+--+n,.

Theorem 3.1. Let (at)iez, (¢i(ti))nez, @ = 1,...,7 be arbitrary sequences, b arbi-
trary, such that none of the denominators in (3.1) or (3.2) vanish. Then (fuk)nkezr
and (g )x1ezr are inverses of each other, where

||:~s

(ar = b/ TTj 5 (ky) :ﬁ (ar — ei(k:))

T
:17:[ (cilts) = b/ Tz e (k) 11 T (eslts) — es(ky)

1,0=1t;=k;+1

(31) fnk —

||:~s

and
_ (cills) — ¢i(ly))
32 o= o= o)
y (b—anIliz; ¢ (1) & (ap — (L))
(b —apITj2y ¢i(ky)) i (ap — ci(ki))

k|

k|

_ }M“f =8/ M) I (k)
11T () = b/ Ty (k) T T (60 = ()

Remark 3.2. The special case a; = 0, ¢;(k;) = :cj_lq_ 7 1s equivalent to the A,
Bailey transform of Milne and Lilly [17], [18], the specialization a; = 0, ¢;(k;) =
;L’j_lq_kﬂ + x;¢%, b = 0 is equivalent to their C, Bailey transform [18], [13], [14]. The
limiting case a; = baq™, ¢;(k;) = x]-_lq_kﬂ, then b — 0, is equivalent to a second A,
Bailey transform of Milne [17, Theorem 8.26]. The specialization ¢;(k;) = z; g
is equivalent to the A, matrix inverse of Bhatnagar and Milne [3, Theorem 5. 7] 4,
Theorem 3.48]. Moreover, the r = 1 case is a restatement of Krattenthaler’s matrix
inversion (eqgs. (1.1) and (1.2)). Due to the fact that Theorem 3.1 covers all known
A, matrix inversions (to the author’s knowledge), we view Theorem 3.1 as an A,
matrix inversion theorem (also see Remark 4.2).

Proof of Theorem 3.1. We will use the operator method of section 2. From (3.1) we
deduce for n > k the recursion

(3.3) (ei(ng) — b/ H] ) ¢ 1:[ ci(ng) ks)) fok

r

= (amj-r = b/ IT,_, ¢i(k)) TT(ami-1 = €s(ko)) fu-ev

s=1
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for 2 = 1,...,r, where e; denotes the vector of Z" where all components are zero
except the i-th, which is 1. We write

—
—
x
Ky
|
(=
T~
—
.3
I
)
LN
—_
Eonl
<
~—
~—
||:jﬁ

L 1T (o i)

fk(Z) = Z r g r n; z .
n2k [T [T (ei(ts) =0/ Ij= ci(ky)) TT TT (eilts) — ¢i(k;))

i=1t;=k;+1 t,0=1 t;=k;+1

Moreover, we define linear operators A,C; by Az" = a5 2" and C;z" = ¢;(n;)z" for
all i =1,...,r. Then we may write (3.3) in the form

r

(3.4) (C:—b/I1 _, ci(ky)) l:[l(ci — ¢s(ks)) fic(2)
:Zi(.A_b/H;:1 1:[ — ¢s(ks)) fx(2),

valid for all k € Z". We want to write our system of equations in a way such that
Corollary 2.4 is applicable. In order to achieve this, we expand the products on both
sides of (3.4) in terms of the elementary symmetric functions (see [15, p.19])

e;(c1(ky), ca(ka), ... e (k) b/ H::1 es(ks))

of order j, for which we write e;(c(k)) for short. Our recurrence system then reads,

using e,41(c(k)) = b,

r

(3.5) 2 ei(e(k)[(=C)™ ' — (=A™ fi(2)

i=1

= [z(=A) T 4 bz — (=C) = b fi(z), i=1,...,r.

Now (3.5) is a system of type (2.14) with Vi; = [(=C;))""'77 — z;(—=A)"T1=1], W; =
[2:(—A) T +bz,— (—C; )7""'1 b], and ¢; (k) = ¢;(c(k)). The operators C;; = (—C;) 177,
Ay = —zi(— AP WD = [—(=C)r = 8], WY = [2(—A) T bz satisly (2.4),
(2.5), (2.6), (2.11), (2 12), and (2.13), the functions ¢;(k) satisfy (2.1). Hence we
may apply Corollary 2.4. The dual system (2.16) for the auxiliary formal Laurent
series hy(z) in this case reads

—

r

> eile(R)[(=C)) 1 — (=AY 2] ue(2)

i=1

== [(—A*)T-HZZ' —|— bZZ - (—C;)H_l - b]hk(z), Z = 1, e, T
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Equivalently, we have
(3.6) (Cr—1b/ H;:1 1:[ (CF = cy(ky))hu(2)
— (A" b/ H;ﬂ 1:[ — ¢5(ks))zihi(2),

forall « = 1,...,r and k € Z". As is easily seen, we have A*z~! = a|1|z_1 and
Crz7' = ¢;(l;)z7 for + = 1,...,r. Thus, with hy(z) = i<k hiz™!, by comparing
coefficients of z7! in (3.6) we obtain

r

ei(l) =/ TL_, es(ki)) T (es(0) = ea(o) i

= (ap = b/ TT_, ei(k)) TT(am — es(ks))hcae

s=1

If we set hyx = 1, we get

I (a0 —b/Tmy (k) TT 1T (4 — ci(k)
hkl = =1 =1 ¢=|1]
roki—l r ki—1
I0 T (es(t) = b/ T (k) T1 T (eilts) = es(ky)

Taking into account (2.15), we have to compute the action of

_> *\ — _pxr+l—g o Axyrdl—g
3.7) (V) = et [(~€) - (- ATy
when applied to
|k|—1 r |k|—1
IT (ar =/ 1=y ¢i(k;)) [T 11 (a; = ci(ki))
A _ t=1| =1 =]l -1
k(Z) - r k=1 r ki—1 z
T () = b/ Ty i) 11T (e = )

From Proposition 2.2 it follows that the determinant (3.7) can be written as

g * g * - i+ g * *
(Jet (Vi) = det (CF)+ 2 (=) _det (Cr.) Al

= :
b 1<n<rn#j
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or more explicitly,

(38) det (Vi) = det [(=C)+1 — (—A )Tz

1<4,5<r 1<4,5<r

— . r - — .
= Je [ (W, det (-G (AT ).

o '
“] 1<n<rn)

Note that after expanding the column determinants by (2.10) all summands in (3.8)
have pairwise commuting factors (when regarding (—(—A*)"t'77z,;) as one factor).

Since
zﬁﬂZ%:Zjﬁxm_%ﬁH}lq@ﬂ)r(Q(J ¢;(k;))

- FASAY hklz_17
1<k (ap — b/ [T cj(kj)) j=1 (ap — c;(k;))

we conclude that

(3.9)  det (V})h(z)

1<’L] r
d * r ’H‘j — . . 0
- 12: 1<£t<7“ 2_: (=1) 1§md§Fm#(Cmn) Aij hyz

= =t 1<n<r,n#j

o . —
_ 7“+1 J Z_|_] B 1en
=3 (lgig (el +1=7) + zl L (el )
i " T<n<rnts

(i ayrri=i (i) = b/ Tz €i(ky)) o eille) = ei(ky)) ),
™) =T et L et )h“‘

We claim that

—
(310) det (V )hk Zl<dze]t<r v”)hklz 5

1<4,5<r 1<k

where

e (el = b T k) (k)
Vij = ( Z(ZZ)) ( il |) (a“' — b/ ., Cs( s) 1;[1 a|1| — Cs(k‘s)) .

The claim follows from the observation that detq<;j<,(vi;) is a determinant of com-
muting entries and so trivially satisfies the assumptions of Proposition 2.2. Thus
> l<k detlsmg(wj)hklz_l can also be transformed into the right side of (3.9).

For the computation of dety<; j<r(vi;) we utilize Lemma A.1 with z; = —¢;(;),
ys = —cs(ks), a = —ayp|, and ¢ = (—1)"*'b, obtaining

b r
det (v;;) = o = L
1<i,5<r (a|1| b/ H] 1 ¢i(k

r r

TSI T o) TT (o) —)

=1 (Cl|1| - CZ z:l 1<i<5<r
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Plugging this determinant evaluation into (3.10) leads to

(3.11) det (%;)hk(z):Z( II (Cj(lj)—Ci(li))ﬁ(—cz'(li))

1<igr 1<k \ 1<i<j<r i=1
y (ap = b/ 1521 ¢i(4) {5 (ap — ci(ly))
(ap — b/ = ¢j(ky)) iz (ap — cilk:))

k| r K|
[I (a:—=b/Tlj=ci(ky))  IT 11 (ar—ci(k:))
t=|1|+1 =1 ¢=|1|+1 Z_l)
r ki—1 r ki—1
I I Ceilts) = b/ Tz eihs)) T1 T (eilts) = e (k)

%
Note that since fux = 1, the pairing (fx(z), det(V})hk(z)) is simply the coefficient of
z7% in (3.11). Thus, equation (2.15) reads

(3.12)

r

ac(z) = I (¢i(k) —ei(ks))™ TT(—eci(ks))™ det (Vi) hi(2),

1<i<i<r i=1 Isigsr

where gi(z) = Yk gz~ So, extracting the coefficient of z™" in (3.12) we obtain
exactly (3.2). O

4. ANOTHER MULTIDIMENSIONAL MATRIX INVERSION

Theorem 4.1. Let (¢;(ti))nez, @ = 1,...,r, be arbilrary sequences, b arbitrary,
such that none of the denominators in (4.1) or (4.2) vanish. Then (fox)nkezr and
(gx1)k1ezr are inverses of each other, where

(4.1)
; (1 = b/ T (k) i (1= at)es(h)
f“k: Z_nz‘l 1_nil
=1 JI (ci(ti) = b/ITjzi ¢i(ky)) iv=t  I1 (eilts) — ¢(k;))

ti=k;+1 ti=ki+1
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and

(4.2) ga= [ ( (ci(li) — ¢ lj?) (1- Ci(h)ﬁ(@h )

1<e<5<r

ki k;
o AL U =belt)/ (k) L 1 (1= ailte;(ky)
L 11 =55 :
= t:l,(ci(ti) — b/ 1T}z ¢i(ky)) o=t tl;[l‘((?i(ti) —c;(k;))

Remark 4.2. The special case ¢;(k;) = :vj_lq_kﬂ is a C, generalization of Bressoud’s
matrix inversion formula [5], as pointed out in [14, second remark after Theorem 2.11].
Setting, in addition, b = 0 yields a ', Bailey transform which is equivalent to the one
derived in [14]. Therefore, we view Theorem 4.1 as a C, matrix inversion theorem.

Proof of Theorem 4.1. Again, we will use the operator method of section 2. From
(4.1) we deduce for n > k the recursion

r

(4.3) (ci(ni) — b/ H;Zl ¢j(k;)) [T (ei(ni) = ea(ks)) fux

s=1
= (1 = bei(n; — 1)/1_[;:1 cij(k;)) IT(1 = eci(ni = Deg(ks)) facei ks
s=1
fore=1,....r. We write
n;—1 n;—1

[T (1 =bei(ts)/ Tz ci(ks)) o IT (1 = eilts)ei (k)

fils) = ST 1 =
i<ki=t ] (ei(ts) = b/ Iy cj(k;)) ii=1 T1 (ei(ts) — cj(k;))

ti=k;+1 ti=k;+1

Moreover, we define linear operators C; by C;z" = ¢;(n;)z™ for i = 1,...,r. Then we
may write (4.3) in the form

(44) (€ =b/TT_, es(k)) T1(C: = eulho)) ful2)

s=1
r

= z(I — Cib/ H;le c;(k;)) TT(I — Cics(ky)) fic(2),

s=1
I being the identity operator, valid for all k € Z". We will write our system of

equations in a way such that Corollary 2.4 is applicable. Again, we expand the
products on both sides of (4.4) in terms of the elementary symmetric functions

e;(e1(ki), ca(ka), ... e (k) b/ H::1 cs(ks))
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of order j, for which we write e;(c(k)) for short. Our recurrence system then reads,
again using e,4+1(c(k)) = b,

r

(4.5) > ei(e(k)[(=C)"' 7 — z(=Ci)] fu(2)

= [z + bz, — (=C) ! = b fu(z), 1=1,...,m

Now (4.5) is a system of type (2.14) with V}; = [(=C;) ™1™ —z:(=C;)7], W; = [z:+bzi—
(—C;)"*t' — b] and ¢j(k) = €;(e(k)). The operators Cy; = V;;, A;; = 0, T/VZ»(C) = W;,
W = 0 satisfy (2.4), (2.5), (2.6), (2.11), (2.12), and (2.13), the functions c¢;(k)
satisfy (2.1). Hence we may apply Corollary 2.4. The dual system (2.16) for the
auxiliary formal Laurent series hy(z) in this case reads

r

> ei(e(k)(=C) ™ = (=C) zilhne(2)

i=1

= [ZZ + bZZ - (—C;()H_l - b]hk(z), = 1, BRI A

Equivalently, we have

(4.6) (c;—b/H;le 1:[ (C; — cs(ks))hi(z)
= (I =Cib/ [T _, ei(k 1:[ (I —Cres(ky))zihx(z),

forall 2 = 1,...,r and k € Z". Thus, with hy(z) = Y« hz!, by comparing
coefficients of z7! in (4.6) we obtain

r

ci(li) — b/ H;Zl ci(k;)) 1;[1(62'(52') — ¢5(ks))a

= (1= bei(l)/ T _, ei(ki)) TT(1 = eilli)es (ko) hicape,

s=1

If we set hyxx = 1, we get

T = bt/ T (k) . T (1 = ex(t)es ()

. ti=l; ti=l;
hkl - . ki—1 ki—1

=TT (eslts) = 0/ 2y ci(ky)) =0 T (ei(ti) — ej(ky)) |

ti=l; ti=l;

Taking into account (2.15), we have to compute the action of

det (Vi) = det [(—Cr)+'=i — (=Cr)iz]

1<4,5<r 1<4,5<r
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when applied to

i<k i=1 k‘il:[l‘(Ci(ti) = b/ Iz ¢(k;)) == ‘_ (eiti) = (k)

Because V7, and V. commute for iy # iy and all ji,j;, all the summands in

%
dety<; j<,(V;7) have pairwise commuting factors. Since

3

(el — b/ T e l) k)
“(2) = S e TL o) 13 (e IO

we conclude that

%.
(4.7) det. (Vi)hi(z) = 3 det, (v;)haz™,

1<4,5<r

where

s el b Ty k) ¢ (el — ex(k))
v = (=)™ = el T, k) L T = eianth)

For the computation of deti<; j<,(v;;) we utilize Lemma A.2 with z; = —¢;(l;), y, =
—cy(ks), and ¢ = (—1)"*'b, obtaining

1—02 )b 70-_16]‘ k]‘
H (k:)b/ Tz <i(K5))

) = T mn 2, o)
X H 1) Hl( ei(l:)) '1__[1(1 — ci(li)ej(k;)) ™
< TT Wei(ly) = eili))(1 = eilli)e; (1)) (1 = ei(ki)ei(ky)]-

1<i<5<r

Plugging this determinant evaluation into (4.7) leads to

(4.8)  det (Vi)h(z) = ( IT [(ei(ly) = eilli)(1 = cilli)e;(15))]

1tysr 1<k \ 1<i<j<r

X H (1 —e(ly) H( ci(l))

ki

o AL (= bt/ Tz (ki) L T (= altie(k))

e s -
C; ti — " ’ ( 1
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Again, the pairing (fx(z), dzt(VZ )hi(z)) is simply the coefficient of z7¥ in (4.8). Thus,
equation (2.15) reads

(4.9) gi(2z) = <H< [(ej(k;) — eilka))(1 = eilki)e; (k)™

r

%
-1 —1 *
T00 = k) TL k)™ det (Vo)
where g (z) = i<k gz . So, extracting the coefficient of z7! in (4.9) we obtain
exactly (4.2). O

5. APPLICATIONS TO A, BIBASIC HYPERGEOMETRIC SERIES

Probably, the most important application of matrix inversion is the derivation of
hypergeometric series identities. We expect that applications of our matrix inversions
in Theorems 3.1 and 4.1 will lead to many new identities for multidimensional (basic)
hypergeometric series. As an illustration, we use a special case of our Theorem 3.1
to derive an A, extension of a terminating bibasic summation of Gessel and Stanton.

We recall the standard definition of the rising ¢-factorial (cf. [9]). Define

(¢;9)0 == [](1 — ag’),

i%0
and for any integer k,
S (e
14 )0
5.1 a;q)g = l—a¢’) = ————
(5.1) e = T10 o) = (T
Theorem 5.1. Let xq,...,x,, a, b, and d be indeterminate, let mq,...,m, be non-

negalive integers, let v > 1, and suppose that none of the denominators in (5.2)
vanish. Then

(5.2)

Z H (1 _ q%i_QkJ:Ei/:l?j) H (1 — azx; q2k'+|k|> ﬁ ((]_Qm]l’i/in;q?)ki
0<ki<m; \ 1<i<j<r l—a/z; i=1 I —axz; ii=1 (Pxifzj; ¢,
t=1,...,r

T (dzi; ¢*)x, (az:q" 2™/ d; q
0 (axid? /by ) (abxiqs Pk

(65 )l (a/b5 9) g =D o k)

.H (azs q) K|

(aziq' 2™ q) |

(aq/d; @) (dg=2m1/a; q)

_ (a¢*/bd; ¢*)jm| (abq/d; ¢*) m| H (az:q; q)2m,
(aq/d; q)2jm] (az:q*/b; G*)m,; (abziq; ¢*)m,
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Remark 5.2. This quadratic summation formula is an A, extension of

(5.3)
il (a; Or(b; Q)i(q/b; Q)r (d; ¢*)r(a®q" ™ [d; ¢*) (g™ % )i K
Pt 1—a (4% ¢*)r(aq?/b; ¢*)r(abq; ¢*)k (aq/d; q)x(dg=2"[a; q)k(ag?™+1; q)y

_ (aq; Q)2m (abq/d; ¢*)m(aq®/bd; %)
(aq/d;q)am (aq?/b;q*)m(abq; ¢?)m

which is due to Gessel and Stanton [10, eq. (1.4), ¢ — ¢*]. Many identities like
(5.3), involving bases of different powers of ¢, are known. Hypergeometric series
with several bases were extensively studied by Gasper and Rahman [7], [21], [8], [9,
sec. 3.8].

Sketch of proof of Theorem 5.1. We follow the analysis of Gasper and Rahman, ex-
tended to multi-sums. We start with the orthogonality relation ) g<kx<n 9nkfxo = Ono-
As inverse pair (guk ), (fx1) we choose the matrices (3.2) and (3.1), respectively, with
the substitutions ¢;(¢;) — ¢~ *¢/x;, i =1,...,r, a; = aq', and b — a/bx; - - -z, (this
special case can be also obtained from the inversion [4, Theorem 3.48] of Bhatnagar
and Milne). Then we multiply both sides by €}, and sum over all n, 0 < n < m.
This gives > g<n<m Cn 2o<k<n 9nkfxo = Co. Next, the sums are interchanged to give

> 0<k<m Jk0 2 0<n<m-k Cntkgn+kk = Co. Choosing

Ca= ]I (1 - fni_%%/”) ﬁ (1 — qzni+2'“|“$i/b) ﬂ (g™ i/ 6" )n,
i,7=1

1<i<j<r I - :L'Z'/:l?]' i=1 I CL”CZ/Z) (QQZ'Z'/SC]'; q2)n¢
X H (dzi; ¢*); (aP2ig" ™[ d; ¢*)n, H (a:/b; ¢*)n|
i=1 (a$iQ; Q)Qni =1 (al’iq2+2m"/b; q2)|n|
1 b’ n T in;
VR 2( / ql)i'ln' .S >y
(aq /bd7 q )|n| (dq /aba q )|n|

the inner sum can be simplified by means of an A, extension of Jackson’s g¢7-sum,
taken from [16, Theorem 6.14] (or in more convenient notation [20, Theorem A12]).
After taking out factors which do not depend on the summation indices, and putting
them on the other side, we arrive at (5.2). O

It is not hard to see from a polynomial identity argument that Theorem 5.1 implies
the following summation theorem.

Theorem 5.3. Let xq,...,x,, ¢1,...,¢C., a, and d be indeterminate, let M be a non-
negative integer, let v > 1, and suppose that none of the denominators in (5.4) vanish.
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Then
(5.4)
2k; =2k

Z H 1 —¢*~ J.f[,‘i/l‘j) ﬁ (1—a:z;iq2k"+|k|) ﬁ (c;mi/xj; 4k,
Eqyeerky >0 1 —z;/x; IS

—ar 2.
1<i<j<r i=1 I —ax; ii=1 (Pxifzjq

0<[k|<M

d:EZ, (Cl $2Q/dH] 1cga H (azi;q |k|
(az; q2+M Q*)x, (azig' =M i (azig/ e )

S U §Q)|k|(q1+M§Q)|k| q-|k|+22§=1ik¢
(aq/d; q) i (dTTj=y ¢/ a3 )

<115

(dg/a; ¢*)n(aq®[dTT= ¢35 ¢°)v & (axig?; ¢*)n(ciq/azi; 4N .

) (ag?/d; ¢?)n(dq Tz ¢/ a; ¢%)n 1;[1 (gfazs Plardles gy
(d/a; ¢*)n(aq/dTTi—y ¢;;*)N & (aziq; ¢*)n(cifaxs; ¢*)n .
(aq/d; )N (dT)=y ¢ /a5 PN 1:11 (azs Pwlazgfes By oD

Proof. First we write the right sides of (5.4) as quotients of infinite products using
(5.1). Then by the b = ¢~ case of Theorem 5.1 it follows that the identity (5.4)

holds for ¢; = ¢=*™1, j = 1,...,r. By clearing out denominators in (5.4), we get a
polynomial in ¢;, which has roots ¢72™1, for m; = 0,1,.... Thus we obtain an identity
in ¢;. By carrying out this process for ¢y, ¢, ..., ¢, also, we obtain Theorem 5.3. [

APPENDIX A.

Here we provide two determinant lemmas which we needed in the proofs of our
Theorems 3.1 and 4.1. Our lemmas are interesting generalizations of the classical
Vandermonde determinant evaluation

det (z77)= I (vi—u),

1§27]§T 1SZ<]ST

and the “symplectic” Vandermonde determinant evaluation

det (i —ai™)y= T (vi—a;) [I (1—aiay),

tshisr 1<i<j<r 1<i<i<r
respectively.

Lemma A.1. Let xy,...,%,, Y1,...,Yr, a, and ¢ be indeterminate. Then
(A1) det ( =i (= el Moy ) (i = y»)
1shisr (@ —¢/Tlszrys) i1 (@ = ys
— (G—C/szlxj) :
(a - C/ H;:l y]) =1
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Proof. In the determinant on the left side of (A.1) we take z; out of the i-th row,
1 =1,...,r, and a"7/ out of the j-th column, 7 =1,...,r, obtaining

o Lo g, () - e T f )

1

In the last determinant we subtract the r-th column from all other columns. We
are left with entries (z;/a)"7 —1for:=1,...,r and y =1,...,r — 1, but the r-th
column remains unchanged,

1_a($i—c/]_[i:1y5) (2: = ys) for i=1,...,
:Ei(a' - C/ Hs:l yS) s=1 (d - ys)

Next we expand the determinant along the last column, to get

s (= )t () )

k=1 1<j<r—1

In the minors we take (z;/a — 1) out of the i-th row

(A.2)
T\ T r A3 2\
Kgﬁ#(<g) _1>:£1C3_1)&%$#: Z%(E) '

1<j<r=1 ik 1<j<r-1

Now, the determinant on the right side of (A.2) can be reduced to the Vandermonde

determinant
i\ 1—j
det (—) ,
1<i<rizk a

1<j<r—1

1 (2-%)

1<i<j<r ~ @ a
6,J#k
Substituting our calculations, we arrive at

and therefore symplifies to

(A3)  det (;ﬁl—f _ =i @ o/ Tlim ys) H —ys))

1<4,5<r ‘ (d - C/ Hs 1 y5 s=1 a - ys)

—Ha—”c e IT (i)

=1 1<e<5<r

Z:( k_c“Llnyi( y))w—qufﬁﬂ—WJA-

:zjka—c/]_[s 1ys)s1(a_ys) i=1
itk
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We are done if we can show that the sum in (A.3) equals

(@ —¢/Iljmy ) 1
(@ =/ Tz Y T (a—y;)
=1

This is accomplished by splitting the sum and applying the partial fraction decom-
position

(A.4) 1=

S =0 S e 10— b
=1
2

and the equivalent formula

<
—~
o~
|
2
N
~—

(A.5)

(which can be obtained from (A.4) by the replacementst — 1/t, a; — 1/a;, by — 1/b;,

for e = 1,...,r,) appropriately to its parts. Namely, we write the sum on the right
side of (A.3) as

(A.6) Z(l a(wy = ¢f Mooy o) H xk—ys)( I |

k=1 ze(a—c/Ilimy ys) 551 (a—ws) ) (a—2) ﬁ(l'k_l'z)
-
k=1 (a — ;ck)l:[l(xk — ;)
r H (-I'k - yz)

— Z =1
r —

c/ H;ZI yj r a H (l'k - yi)
(a—c/Iliz y5) ﬁ (@ —y;) k=1 (a — xp)xy li[l(l’k — l’z)
2k
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The first expression can be summed by the partial fraction decomposition (A.5) with
a; =0,t—1/t,and b; — 1/b;, for e = 1,...,r, and reduces to
! 1 1
(A7) Z T = 9
k=1 (a — :ck)]:[l(xk — ;) ']:[l(a — ;)
i%k -
the second by the partial fraction decomposition (A.4),

(zr — ui)

a

(a—¢/Tle ;) 11 (a — i) i

=1

L=

(A.8)

Z::l 7

(a —zx) I1 (25 — 1)

£

z
7

a

(a— ¢/ Ty ;) 11 (a — w:) (:1 % - 1) ’

=1
and the third can be summed by (A.5),
r r a T — 7
(A.9) GALRED St
(a = eIl ) I (a —yi) k=1 (@ — zx) 2y Hl(fﬂk — i)
£k

¢/ =1 s Tla—y) [Ty
= J= H N '
(G—C/H§:1yj)l_[(a—yz) (= (a—w) )

Simplifying (A.6) by means of (A.7), (A.8), and (A.9), we get

r a(zr — ¢/ Tlhsy Ys) 1~ l’k—ys> T 1

1-— - - T

> (- e ) e e )
i#k

r

—H

“_”“’) (a—c/ITj2 1yg)ﬁ(a—yz)<

k3

N C/Hjly] 1(1—[ a—yz 1:[ )

(@ —¢/Tl= i) I (a = y:) iz (

_ (a — /Tl ;) !
(@ —c/Ili= y5) f[ (a —y;)

=1

?

which completes the proof of Lemma A.1. [
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Lemma A.2. Let xy,...,%,, Y1,...,Yr, and ¢ be indeterminate. Then
(AlO) det .TL‘H_l_j _ ;zj] ('rl B c/ HZ:1 ys) ﬁ ('rl - ys)
1<ig<r \ 2(1 — wic/ =y ¥s) 5= (1 — wiys)

yzc/H] ly] H 1_1;22)1—[:1;2
=1

_2':1 1_$C/H] ly] =

X H (1 —ziy;)™ H —2;)(1 = 22;)(1 — yiyy)]-

iy=1 1<j<

r

I/\

Proof. Here we use a completely different method than in the proof of Lemma A.1. In
the determinant on the left side of (A.10) we take z;(z;c— [Tz ys) ™ [Tocy (1 —25ys) ™"

out of the i-th row, : = 1,...,r, obtaining
det (xm-j R G N 7 I S Gl 1) )
T T e T ) B (=)
r T r
= r (1 - xiy')_l ' A(C7X7Y)7
i:]:E (zic — Hj:l Y;i) Z]j_:'[1 !

where A(e, x,y) is the determinant
(A.11)

153’% (:r:;_j(:r;ic - H 1;[ — T;Ys) f_l(c —z; H 1;[ —y,) ) ‘

Thus, in order to establish the lemma, we have to show that

r r

Ale,x,y) = [Twie =TT _ v [T —2f) TT [(wi = 2)(1 = wiz)(1 = wiyy)].

i=1 i=1 1<i<j<r

We will do this by identifying all factors using a polynomial argument.

We see that A(e,x,y) is a polynomial in ¢, z;,y; (¢ = 1,...,r) of maximal degree
(7r? — r)/2. Now observe that if z;, = z,,, for i; # i3, two rows in the determinant
(A.11) are equal, hence [[;c;c;< (i — z;) must divide A(c,x,y). Next suppose
z;, = 1/x;, for some iy # iy. In this case the i;-th row is —:EZ»_QQT times the 75-th row
which implies that [T;<;<;<,(1 — x;x;) also divides A(c x,y). Ifz; =1or 2, =—1
then all entries of the i-th row are zero, so [Ti_, (1 — z?) divides A(c,x,y).

The remaining factors of A(e¢,x,y) are a bit more delicate to establish. For each
special case we will succeed in specifying nontrivial linear combinations of the columns
that vanish. Suppose y; = 1/y; for some k # [. Taking —(1 — z;y%)(1 — z;/yx) TI ys

skl
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out of the i-th row of (A.11), for all = 1,...,r, we obtain the determinant
(A.12)

 det. i1 —aie/ T ws) TT (1 = wiys) — 2 @i — ¢/ TT ws) I] (zi —ws) | -
SHIST s#kl  s#kl s#kl stk

We expand the entries of this determinant in terms of the elementary symmetric
functions (see [15, p.19])

(A.13) €m( Yty ey Ukse vy Uly vy Yry €/ H#M Ys)s

of order m with r — 1 arguments, y; and y; indicating that the variables y,y; are
omitted. Namely, if we write e, (y*!) for the elementary symmetric function (A.13)
for short, (A.12) can be written as

r—1 ' '
(A.14) det (Z (—1)mem(y(k’l)) (l,;j—ﬁm _ $§—1+r—1—m)) ‘

1<eg<r \ 1 2o

To prove that this determinant vanishes we show that the columns of (A.14) are
linearly dependent. As the coefficients for the linear combination we choose
(=1 e, (y*D), for 5 =1,...,r. Then we have

r r—1
(A15) Y1) eimn(y ™) 3 (—1)7 e (3 0) (a7 = a7
J=1 m=0
r—1 7“—1 4 '
- ey *en(y®0) (771 = 2l77) =0,
]:0m:0

That the sum equals 0 is because it is a double sum in 7 and m with terms that are
skew symmetric in j and m. Hence we have proved that [T;<;c;<,(1 — y;y;) divides
Ale,x,y).

Now suppose ¢ = [[,4; ys forsome k = 1,...,r. Taking —(1—z;yx)(1—2;/yx) [T5=; ¥s
out of the i-th row of (A.11) for all = 1,...,r, we obtain the determinant

(A.16) 1§di§‘t§r (a:;_j ]___[(1 — TYs) — a;‘z_l H(.TZ — ys)) )

s#£k s#k

We expand the entries of this determinant in terms of the elementary symmetric
functions

(Al?) em(yla---agka-"7y7“>7

of order m with r—1 arguments, ¢, indicating that the variable y; is omitted. Namely,
if we write e,,(y®) for the elementary symmetric function (A.17) for short, (A.16)
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can be written as

st m k r—j+m j=14r—1—-m
(A18) e (e (v - ).
To prove that this determinant vanishes we show that the columns of (A.18) are
linearly dependent. Here the coefficients (—1)'="e;_; (y®) for j = 1,...,r do the job
(compare with (A.15)). Hence [];<;<,(c — [1o; ys) divides A(e,x,y).

Now suppose y; = 0 for some k& = 1,...,r. If we take (—x;¢) out of the i-th row
of (A.11) for all = 1,...,r, we obtain the determinant (A.16), and we can proceed
as above. Le., we have also shown that []<;<, y; divides A(e, x,y).

Collecting all factors of A(c,x,y) that we have identified so far, we now know that

(A19) Aexy) = [we =TT, ) [I0 - =)
: 1<H< [(zi — 2;)(1 = z2;)(1 = wiy;)] - ple,x,y),

where p(c,x,y) is some polynomial in ¢, z;,y; (: = 1,...,r). But the degree of the
factors we already identified amounts to (7r* —r)/2, which is the same degree as that
of A(¢,x,y). Thus the polynomial p has to be a constant which is easily seen to be 1,
since the coefficients of ¢® []i_, (2"

'yr) in A(e,x,y) and in the product on the right
side of (A.19) both equal (—1)". O
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