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Abstract

The study of the topological classification of complex polynomials
began in the XIX-th century by Luroth (1871), Clebsch (1873) and
Hurwitz (1891). In the works of Zdravkovska [23] and Khovanskii and
Zdravkovska [17] the problem is reduced to a purely combinatorial
one, that of the study of a certain action of the braid groups on a
class of tree-like figures that we, following [14], call “cacti”.

Using explicit computation of the braid group orbits, enumerative
results of [14], and also establishing some combinatorial invariants of
the action, we provide the topological classification of polynomials of
degree up to 9 (previous results were known up to degree 6).

Résumé

I’étude de la classification topologique des polynémes complexes
a commencé au XIX-eme siecle par Luroth (1871), Clebsch (1873) et
Hurwitz (1891). Dans les travaux de Zdravkovska [23] et Khovanskii
et Zdravkovska [17] le probleme est réduit & une étude purement com-
binatoire d’une certaine action du groupe des tresses sur un genre de
figures arborescentes que nous appelons, d’apres [14], les “cactus”.

En utilisant le calcul explicite des orbites du groupe des tresses, les
résultats énumératifs de [14], et aussi en mettant en évidence certains
invariants combinatoires de ’action, nous achevons la classification
topologique des polynomes de degré jusqu’a 9 (une telle classification
a été connue jusqu’au degré 6).
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1 Introduction

Theory of polynomials is a source of numerous interesting combinatorial
problems. For example, the classification of real polynomials, their criti-
cal values being real and different, leads to the study of alternating permuta-
tions, and thus to the Euler numbers, Bernoulli numbers, Genocchi numbers,
Euler-Bernoulli triangle etc. [4]. In this case the number of critical values
attains its maximum (n — 1 critical values for a polynomial of degree n).
On the other extreme, the study of complex polynomials with the minimal
number of critical values (at most two: such polynomials are called Shabat
polynomials or generalized Chebyshev polynomials) leads to the combinatorics
of plane trees, and is also related to Galois theory and group theory [21].

In the present paper we study the intermediate case of polynomials of
degree n with a certain number k of critical values, which will usually (but
not always) be greater than 2 and smaller than n — 1. Namely, we will
study the classification of complex polynomials with respect to the topological
equivalence. Let P, : C — C and P, : C — € be two polynomials of
degree n, where C' ~ S? is the Riemann complex sphere. We say that P
and P, are topologically equivalent if there exist two orientation preserving
homeomorphisms hy : S? — S? and hy : S? — 52 such that the following

diagram
g M e

P P,

G2 P G2
is commutative.

The study of polynomials and, more generally, branched covers of S?, up
to topological equivalence began in the XIX-th century by Luroth [18] and
Clebsch [8]. It was continued in the XX-th century by Thom [22], Arnold [3]
and many others. We would specifically like to attract the reader’s attention
to a recent paper [17], which was for us the main source of information and
references on the problem.

A complex polynomial of degree n with k£ critical values may be graph-
ically represented by what is called “picture” in [23], and “cactus” in [14].
A cactus is a tree-like figure glued of n polygons with & sides each (see de-
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tails in Section 2). Zdravkovska [23] proved that the classes of topologically
equivalent polynomials are in one to one correspondence with the orbits of a
certain action of the braid group Bj on the set of cacti. In fact, the action
itsell was introduced by Hurwitz as early as in 1891 [15]. Of course, Hurwitz
did not use the term “braid group”, because this group was invented only
34 years later [5].

To a certain extent the problem becomes purely technical: compute the
orbits of the above action. But an orbit, once computed, is practically useless
if we are unable to say whether it does or does not contain all the cacti of the
needed type. Hence the enumerative formula of [14] becomes very important:
together with the computer program which computes the orbits, these two
tools permit us to finish with all the cases where there is only one orbit.

In the case of two or more orbits we look for combinatorial invariants
which might explain the reasons for splitting. These are given in Section 5.
We were able to produce the topological classification of polynomials of de-
gree < 9 (such a classification was previously known for degree < 6, see [17]).
Our results may be summarized as follows:

o The typical case is that of a single orbit.

e For all the examples with more than one orbit we give explicit combi-
natorial reasons for this. (Only for “a half of a case” the explanation
remains somewhat insufficient: see Example 5.12.)

e The main reason why polynomials form a separate orbit is the pos-
sibility to represent them as compositions of polynomials of smaller
degrees.

2 Cacti

A building block for constructing a cactus is a polygon with & sides whose
vertices are “colored” with colors 1,2, ..., k in the counterclockwise direction.
(The number & will later correspond to the number of critical values of a
polynomial.) Another graphical image for a building block is a star-tree,
whose leaves are colored in the same way by 1,2,...,k: see Figure 1. The
center of the star is a point inside the polygon, and its rays go to the polygon
vertices.
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Figure 1: Building blocks for a cactus

w

A cactus of degree n is a tree-like figure glued of n copies of the polygon
(all the n polygons have the same number k of sides). “Tree-like” means that
there is no cycles other than the polygons themselves. If we glue a cactus
not of polygons but of stars, what we get is a plane tree, but not an arbitrary
one: all its black vertices have the same degree k (while colored vertices may
be of arbitrary degrees). In Figure 2 the same cactus is represented in two
graphical forms. If we superimpose both images, each black vertex will be
inside a triangle, and the colored vertices will coincide with one another. We
will use one of the two ways of drawing cacti, whichever will fit the best.

The cyclic order of branches around each vertex is important: changing
this order we may obtain another cactus. Therefore it is convenient to code
cacti by permutations. Let all the polygons of a cactus be marked by numbers
1,2,...,n. Let the permutation ¢;, « = 1,2,...,k act on the set of the n
polygons in the following way: it sends a polygon to the “next” one in the
counterclockwise direction around its vertex of color . For example, if we
mark the triangles of the cactus of Figure 2 as is shown on Figure 3, we get
the permutations



g = (1,5,6)(2,3,4),
g2 = (178)(275)7
g3 = (1,9)(7,8).

Remark 2.1 The product v = [T, ¢; is a circular permutation. In a way,
it encodes a circular path around the whole figure. In the above example

Y = 919293 = (17 27 37 47 57 67 77 87 9)
Let us fix once and for all

v=1(1,2,3,...,n).
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Now we are in a position to give a more formal definition of a cactus.

Definition 2.2 A rooted cactus C of degree n is a k-tuple of permutations
C =1g1,92,---,9x) on the set {1,2,....n} which satisfies the condition

k
Hgi =v=(1,2,...,n).
i=1

The root of a cactus is the polygon number 1.

Two rooted cacti C1 = [g1,92,.-.,9x] and Cy = [hy, hy, ..., hy] are iso-
morphic if there exists a permutation ¢ such that

hi=¢ 'gip, ha=0 g0, ..., hp=0¢ grp.

As ¢ must preserve v, it is equal to a power of v: ¢ = y™. An equivalence
class of isomorphic cacti is called a non-rooted cactus.

Remark 2.3 It is clear that an asymmetric non-rooted cactus produces n
different rooted ones. The only possible automorphism group of a non-rooted
cactus is a cyclic group of order s, where s divides n, and the group itself is
generated by the 4™, m = 2. Thus a symmetric non-rooted cactus produces
m = % different rooted ones.

Attention: the cactus of Figure 4 is not symmetric! The center of sym-
metry must be a vertex.

N/

Figure 4: This cactus is not symmetric



To each permutation g € 5, there corresponds its cyclic structure, which
is partition A = (dy,ds, ...,d,) of the number n. Following [17] we introduce
the definition:

Definition 2.4 Thelist 7 = [\, X A®)] of k partitions of the number
n that represent cyclic structures of the permutations of a cactus is called
the passport of this cactus. The set of all the cacti having the same passport
is called a family of cacti.

Geometrically, the partition A is the list of degrees of the cactus vertices
of color ¢. For example, the passport of the cactus of Figure 3 is

T = [1°3%,1°2%,1°2%].

Lemma 2.5 (Planarity condition) The total number of verlices of a
k-gonal cactus of degree n is (k— 1)n + 1.

This lemma is an immediate consequence of the Fuler theorem.

The total number of vertices is also the total number of elements of all the
k partitions. Hence the planarity condition may be rewritten in the following
way. Let

)\(1) = (dlla dia, . .. 7d1:01)7 R )‘(k) = (dkla di2, - .-, dkpk)'
Then
ko pi
SN (dij—1)=n—1. (1)
=1 7=1
Indeed,

Edij = kn, while El =(k—1)n+1.
N ]

A passport 7 which satisfies the condition (1) will be called valuable.

Lemma 2.6 (Existence of cacti) For any valuable passport 7, there exists
at least one cactus with passport «.



Proof The lemmaimmediately follows from the enumerative formula given
below. But it is so simple that we prefer to give an independent proof. The
following is true:

In each partition of a valuable passport except probably one, there
exists a part equal to 1.

Indeed, if all the parts of a partition are > 2, then their number is < n/2.
If this occurs in two or more partitions, we will be unable to get the total
number (k — 1)n + 1 of parts. Thus we can make the following operation
(“cutting off a leaf”):

e remove a part equal to 1 from all partitions except one;
e in the remaining partition diminish by 1 a part that is > 2;

o if one of the partitions becomes equal to 1”71, remove it from the
passport.

The result of this operation is a valuable passport of degree n — 1, and we
may proceed by induction. O

In order to introduce the enumerative formula we need some notation.
Let a partition A F n be presented in the “power notation”:

n

A =1P12P2 . nPr where Zpi:p, Zipizn.

Then denote

N(A):ﬁ:l p ‘
pilpe!. o op! p P1 P2 ... Pn

The following result is borrowed from [14].

Theorem 2.7 (Enumeration of cacti) The number of rooted cacti for a
given passport © = [NV, .. X®)] is equal to

k
nk1 H N()\(i)).
1=1



It is more convenient to divide the above formula by n. Together with
Remark 2.3 this gives us what in physics is usually called a mass-formula:

where the sum is taken over all the non-rooted cacti with the passport
A AB] and |Aut(C)] is the order of the automorphism group of a
non-rooted cactus.

The reader will see that the last formula will be of a primordial importance
for our study. In the most frequent case, when all the cacti are asymmetric,
it gives the exact number of non-rooted cacti. We will call the number given
by formula (2) Goulden—Jackson number.

Example 2.8 The number of cacti with the passport [1%2'3',1%23 1522
(here n =9 and k = 3) is equal to
5! 51 6!

X < 3 < gm0

As for the passport [1°23,1%2% 193] the formula gives
5! 5! 6!
T TR TF TR T

But in fact there are 102 cacti with this passport; 99 of them are asymmetric,
and the remaining 3 are symmetric with the symmetry of order 3, so we have

99 +3 x 1 = 100.

9

9

Remark 2.9 For a given passport it is very easy to see if the corresponding
family contains any symmetric cacti. Let us write down the lists of vertex
degrees of the above passport [172%,1323 1631]:

222111 222111 3111111

The distinguished vertex may serve as a center of the symmetry of order 3,
because it satisfies two conditions:

1. its degree is divisible by 3;

2. for the remaining vertices, all the vertices of the same color and degree
may always be divided into 3 equal parts.



3 Cacti and complex polynomials

Let P € C[z] be a polynomial of degree n. For a given w € €, the equation
P(z) = w usually has n distinct solutions. The exceptional values of w, for
which the equation P(z) = w has multiple roots, are called critical values
of P. The multiplicities of the roots of P(z) = w form a partition A F n,
A= (di,ds,...,d,). (For a non-critical value w the corresponding partition
is 17.) A root of multiplicity d; > 2 is called eritical point of P. Sometimes
by abuse of language we will call simple roots that are preimages of critical
values, critical points of multiplicity 1.

Let polynomial P have k critical values wy,ws, ..., wg. The list of the
corresponding partitions 7 = [A1), X®)_ . A#)] is called the passport of P.

If we draw on the plane of the variable w any image which avoids critical
values (that is, does not touch them, and does not have any of critical val-
ues inside), then its preimage via P will consist of n disjoint homeomorphic
copies of this image. If, on the contrary, the image contains a critical value
on its boundary, then several of its copies on the z-plane will glue together
at critical points. Now let us draw on the w-plane a polygon with & sides,
whose vertices are wq, wo, . .., wg. Of course, only the topological form of the
polygon is important: it may well be curvilinear, not convex, etc. However,
necessary condition is that the vertices wy, ws, ..., w; must be numbered in
exactly this order in the counterclockwise direction. Or, alternatively, let us
take a non-critical value wgy and draw a star by joining wg with wy, wa, ..., wg
by non intersecting arcs, respecting the order of the ends taken in the coun-
terclockwise direction. Then the preimage of the polygon (or of the star) is
a caclus.

Thus a cactus is just a convenient form of representing a polynomial.
Let us translate two characteristic properties of cacti into the language of
polynomials.

(1) The property that the product [T, ¢; is a circular permutation means
that a polynomial of degree n has a critical point of multiplicity n at oo (the
corresponding critical value also being oo). This property also implies the
connectivity of the cactus and the absence of cycles other than polygons
themselves. Working only with polynomials, we will often forget about this
additional critical value.

(2) Each root of multiplicity d of an equation P(z) = w, w € €, is also a
root of multiplicity d — 1 of the equation P’(z) = 0 (this is also true of simple
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roots of P(z) = w). Hence the property S5, " (dij — 1) = n — 1 means
that the derivative P'(z), being a polynomial of degree n —1, has n — 1 roots,
with multiplicities taken into acount.

To any complex polynomial there corresponds a cactus. The following
theorem answers in the affirmative the opposite question: is it true that to
any cactus there corresponds a polynomial? This theorem is a particular case
of the well-known Riemann’s existence theorem for Riemann surfaces (see,

for example, [13]).

Theorem 3.1 (Riemann’s existence theorem) Let the following data be
given:

o a k-ltuple of permutations [g1,92,...,9k], §i € Sn, defining a k-gonal
cactus of degree n;

o arbitrary complex numbers wy, wq, ..., wg.

Then there exists a polynomial P(z) of degree n, with k critical values equal
to wy,wa, ..., wg, and with the corresponding cactus [g1,92,-..,gx]. This
polynomial is unique, up to an affine change of variables z — az+b, a,b € C,

a#0.

In the language of Riemann surfaces the polygons of a cactus “represent”
sheets of the Riemann surface of P, points w; are ramification points, and
permutations g; prescribe the passage from a sheet to another one when we
go around w;.

The above theorem, together with Lemma 2.6, gives the following

Proposition 3.2 (Existence of polynomials) For any valuable passport
7, there exists at least one polynomial P with passport .

This simple though important proposition was proved in [22], [10] and
[17].
4 Braid group action

Up to what extent does a cactus represent a class of the topological equiva-
lence of polynomials?
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It is easy to see that the homeomorphisms hy; and hy of the diagram
on page 2 must bring critical points to critical points, and critical values
to critical values. Thus, the number of critical values, and the unordered
passport are both invariants of the topological equivalence.

It is also clear that if two polynomials P, and P, are represented by the
same combinatorial cactus, they are topologically equivalent. The opposite
is not true: two different cacti may represent topologically equivalent poly-
nomials. The following fundamental theorem may be found in [23], [17].

Theorem 4.1 (Braid orbits) Lel o1,...,04_1 be the operations thal act
on k-gonal cacti in the following way:

5= g = g
g;t Giy1 gz/'+1 = Git19igi+1
g = g; = gjforgFii+1

Then
(1) This is an action of the braid group By; that is, the operations o,
v=1,...,k — 1 satisfy the following relations

oio; = o0;0; for i —j| > 2,

and
00,410, = 0;410;0;41-

(2) The classes of the topological equivalence of complex polynomials are
in one to one correspondence with the orbils of this action.

Remark 4.2 The action, as it is introduced, is on the set of the rooted cacti
(see Section 2). However, it is obvious that the operations o; preserve the
product 4 = [T%, ¢, and thus the action may be (and is) considered on the
set of non rooted cacti. It is the orbits of the action on non rooted cacti that
we had in mind in statement (2) of the above theorem.

As we have already mentioned in the introduction, the action itself was
introduced by Hurwitz in 1891 [15]. In fact, it is an action of the sphere braid
group, also called Hurwitz braid group (to be distinguished from the Artin
braid group, which is the group of the braids on the plane). The action is
not faithful: there are some relations satisfied by the operations ¢; (on non
rooted cacti!) that do not exist in the braid group.
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We see that ¢! is equal to g¢;41, and Gis1 is conjugate to g;. Thus the
operation o; permutes the partitions A®) and AV of the passport.

Let us explain the geometrical meaning of the operation ;. Suppose a star
is drawn on the w-plane, with its leaves at the critical values wy, ws, ..., wyg.
Fix the positions of all the w;, j # 7,7 + 1, and move the points w; and w;4+q
continuously until they exchange their places. Figure 5 shows the image of
the initial star under this homeomorphism.

@) Wis1 W;
O @ O —> O O
Wi i+1
O

Figure 5: Homeomorphism that exchanges w; with w; 41

For this new star, its preimage is combinatorially the same cactus as
before, because it is described by the same list of permutations.

The next stage would be to change labels of critical values, and from now
on to call w; by the new name w;_,, and w;41, by w;. But we must not forget
that the colors 1,2, ...,k must encircle the center of the star in exactly this
order. Hence we must erase the “curvilinear” ray that goes from the center
to the new point w{,,, and draw another one after w;, see Figure 6.

Note that this last operation does not mean any cutting or pasting of the
Riemann surface. The surface and the covering remain the same; the only
thing that changes is the picture drawn on the surface.

Now we must understand how the new cactus, that is, the preimage of
the new star, is described in terms of permutations. Let us draw a path on
the w-plane that goes counterclockwise from the star center to itself around
the point w;. Its preimage on the z-plane consists of n paths, each going from
a star number m to the star number g;(m), m = 1,2,...,n. It is therefore

13



Figure 6: New star

sufficient to represent the paths going around w; and wj,, in terms of the
“initial” paths going around w; and w;41.

Figure 7: Permutation g; 4

These initial paths may be regarded as being very close to the rays of the
star going from its center to the points w; and w;;1. During the first stage
(the homeomorphism) the paths remain close to the rays. While changing
the labels, the former ¢;11 becomes the new ¢!. Now look at Figure 7: in the
left-hand picture a path goes counterclockwise around wj . It is clear that it
is homotopically equivalent to the path shown in the right-hand picture. This
one goes first around w! (clockwise!), than around w; (following the dashed
ray of Figure 6), and than once more around w! (this time counterclockwise).
This “long way” is g;_llgigi+1.
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5 Combinatorial invariants

The goal of this section is to propose a certain number of combinatorial
invariants of the braid group action which could help us to prove that there
is only one orbit, or otherwise to explain why there are several orbits. Of
course, the first and the most important invariant of this kind is the unordered
passport.

5.1 What was known before

The following theorem was proved by the classics of the XIX-th century [18],
[8], [15]. A critical value w is called simple, if the equation P(z) = w has only
one multiple root, and that of multiplicity 2. The corresponding partition in
the passport is 177221,

Theorem 5.1 (Simple critical values) If all the critical values of a poly-
nomial are simple, then there is only one class of the topological equivalence
of such polynomials.

The two theorems that follow generalize this result in two directions.
They are proved in [17]. The idea of the proof is a construction of more or
less explicit homeomorphisms using Lagrange interpolation.

Definition 5.2 The defect d(7) of a passport 7 is the sum of all the parts
d;; > 2 that correspond to non-simple critical values.

Theorem 5.3 (Defect) Let 7 be a passport of degree n consisting of k par-
titions. If its defect d(7) < n+1, then there is only one class of the topological
equivalence of polynomials with the passport «.

Simple arithmetic considerations lead to the following

Corollary 5.4 (Many critical values) Let a polynomial of degree n have
k > 3n/4 critical values. Then there is only one class of the topological
equivalence of the polynomials with the same passport.

A critical value w is called quasi-simple, if the eqaution P(z) = w has

only one multiple root, of multiplicity d > 2. The corresponding partition is
1744t
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Theorem 5.5 (Quasi-simple critical values) If all the critical values of
a polynomial are quasi-simple, then there is only one class of the topological
equivalence of the polynomials with the same passport.

Example 5.6 Consider the following passport of degree n = 9:
5211 3111111 21111111.

The first two critical values are non-simple; the parts of the partitions to be
taken into account for computing the defect are underlined. We have the
defect d =542+ 3 =10 < n + 1, hence there is only one topological class
of the polynomials with this passport.

The defect of the passport

51111 3111111 3111111

is equal to 11, so Theorem 5.3 does not work. But this time all the critical
values are quasi-simple, and hence Theorem 5.5 works: there is also only one
class.

For the passport

42111 3111111 2211111

the defect is equal to 13, and two of the three critical values are not quasi-
simple, so neither of two theorems works. In fact, there is also only one class
of polynomials with this passport. But in order to establish this result we
need some additional tools.

Theorems 5.3 and 5.5 suffice in order to classify all the polynomials of
degree n < 6 except the polynomials with two critical values, and that of the
passport [122%,1222 142']. For these cases the braid group orbits were com-
puted explicitly in [23] and [17]. For the above passport there are two orbits.
The case of two critical values will be considered in the next subsection.

5.2 Two critical values

Polynomials with two critical values are specially interesting because of their
relations to Galois theory (see [21]). Concerning their topological classifica-
tion, this case is rather trivial. First of all, in graphical representations of
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O1 [11 2

Figure 8: A 2-cactus is a bicolored plane tree

the corresponding cacti we may eliminate the “black vertices” and draw just
bicolored plane trees, see Figure 8.

Second, we have only one operation o1, which acts on a couple of permu-
tations [g1, g2] in the following way:

g = g2 = 95" G292, 95 = 95" 9192

Thus the couple [g7, g5] is conjugate to the couple [gq, ¢1]: the action consists
in exchanging the colors, and in changing the labels of the tree edges, while
the tree itself is preserved. There are as many orbits as there are plane trees
with the given passport. The enumerative results of Section 2 give us the
possibility to calculate the number of orbits without computing the action
itself.

The main point of our interest (cf. also [17]) is, what are the passports
that uniquely determine the topological class of corresponding polynomials?
The following theorem gives the complete answer in the case of two critical
values. This result belongs to N. Adrianov (1989). It was never properly
published (see however [2]) and gradually became a part of the folklore.

Theorem 5.7 (Unique trees) The following is the complete list of pass-
ports of polynomials with one or two critical values for which there exists
only one class of the topological equivalence of polynomials:

17



. [n'] (one critical value);

- [1rpt, 1l

. [27,122P71] (n even), or [1'27,1'27] (n odd);
- [177mmt, p =g (here n = (m —1)p + ¢);
. [1r= ettt 9n/?) (n even);

. [17=2rp? 37/3] (n is divisible by 3);

. [1733,27] (n = 14).

©)

©)

(6) )

Figure 9: Trees uniquely determined by their passports
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The corresponding trees are shown in Figure 9. We see here 6 infinite
series (depending on one, two or three parameters), and a “sporadic” tree
(number 7) that does not belong to any series. In fact, the series number 1
and 2 are particular cases of the series number 4. But we give them separately,
because these are the only cases covered by Theorem 5.3. For example, for
the sporadic tree we have n = 14, while the defect d = 23. For the series
number 3 (the chain-tree) the defect attains its maximum: d = 2n — 2; and
still there is only one orbit.

5.3 Monodromy group

Definition 5.8 The monodromy group of a cactus [¢1,¢92,...,gx], and also
that of the corresponding polynomial, is the permutation group

G = <g1,925-- -5 Gk> < Sna
generated by the permutations ¢q, gs,. .., gx.

The next proposition follows immediately from the formulas for the braid
group action given in Theorem 4.1.

Proposition 5.9 (Invariance of monodromy) The monodromy group is
an invariant of the braid group action.

Corollary 5.10 (Symmetry) If for a given passport there exist both sym-
metric and asymmetric cacti, they necessarily belong to different orbils.

The proof is obvious: the monodromy group of a symmetric cactus pos-
sesses a non-trivial centralizer in S,,, while the monodromy group of an asym-
metric cactus does not.

Example 5.11 For the passport [122%,122% 1%2'] of degree 6 mentioned at
the end of Section 5.1, the Goulden—Jackson number is equal to

3! 3! 4! 27

X —— X X = —.
2121 2121 411! 2

6

The presence of fractions in the answer assures us of the presence of sym-
metric cacti. Hence for this passport there are at least two orbits (explicit
computations show that there are exactly two).
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Example 5.12 Consider the following passport: [1722,1%22,1%2?] (n = 7).
Information given in the catalogue [7] allows us to construct two different
groups generated by permutations of this cyclic structure.

(1) Take

g1 =(1,7)(2,4), ¢2=1(2,7)(5,6), g5 =(3,4)(5,7).

Then the monodromy group is G = PSL3(2) 2 PSLy(7), a group of order
168.
(2) Take

91 = (277)(375)7 92 = (377)(475)7 g3 = (172)(677)'

Then the monodromy group is G = A7, the group of order 2520.

Thus in this case we must have at least two different orbits. In fact, the
total number of 56 cacti having this passport splits into 4 different orbits.
Two of them, of size 7, have the monodromy group PSL3(2), and the other
two, of size 21, have the monodromy group A;. We did not find a combi-
natorial invariant that would be responsible for this “additional” splitting.
Our only observation is that the seven cacti of one PSL3(2)-orbit are axially
symmetric to those of the other PSL3(2)-orbit, and the same is true of the
Ar-orbits.

In fact, the monodromy group is not a very powerful invariant, as the
following very powerful theorem shows.

Theorem 5.13 (Exceptional groups) Lel P be a polynomial of degree n
with k > 3 critical values and with primitive monodromy group not equal to
A, ar S,. Then k = 3, and there are only three cases possible:

1.on=T & =[1322,1%22 132?] = [24,24,2A4], G = PSLs(2) & PSLy(7);
2. n =13 ©=[172%,1°24 1524] = [24,2A,2A], G = PSL3(3);
3. n =15 = [1726,1721 1724] = [2B,2A,24], G = PSL4(2) = As.

Here 2A and 2B is the notation of conjugacy classes used in the Atlas [9].

A proof of this theorem, based on some previous results of [12], may be
found in [19]. We have learned this fact from N. Adrianov [1], who found the
result independently of [19]. Tt is also N. Adrianov who provided us with the
following two examples (not to be found in [19]).
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Example 5.14 Let n =13, and

g1 = (1,13)(2,12)(3,7)(8, 10),
g2 = (2,13)(3,11)(4,5)(6,7),
g5 = (3,12)(4,6)(8,11)(9, 10).

Then GG = PSL3(3). This group is of order 5616, and the orbit consists of
13 cacti.

Example 5.15 Let n =15, and

g = (1,15)(2,3)(5,14)(7,10)(8,9)(11,13),
g2 = (2,5)(6,11)(8,10)(12,13),
g3 = (2,15)(4,5)(6,14)(7,11).

Then GG = PSL4(2) = As. This group is of order 20160, and the orbit

consists of 15 cacti.

The results concerning the group orders may be verified by means of

MAPLE (for example).

5.4 Conjugacy classes

The following proposition is trivial:

Proposition 5.16 (Set of conjugacy classes) The sel of conjugacy clas-
ses {Hy, Hy, ..., H.} of permutations g1,92,...,9x, i € H; in the mon-
odromy group is an invariant of the braid group action.

It is clear that o; only permutes classes H; and H;;4.

For the group 5, there is nothing new in this proposition, as conjugacy
classes in 5,, are completely determined by the cyclic structure of their ele-
ments. For the group A, this is not so. The following lemma may be found

in [16] (Lemma 1.2.10):
Lemma 5.17 (Splitting types in A,) A sel of permutations of a given

cyclic structure splits into lwo conjugacy classes in A, if and only if the
lengths of all cycles are odd and different.
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Note that the parity of the monodromy group is easily seen from the
passport: the monodromy group (i is a subgroup of A, if and only if the sum
b i(dij —1)isevenforalli =1,2,... k.
The “smallest” example that may be constructed using the idea of the
above lemma is the following one:

Example 5.18 Take the passport of degree n = 25
T = [1131517191’ 122317 12231]
and a corresponding cactus [g1, g2, g3], where

g1=(1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16)(17, 18, 19, 20, 21)(22, 23, 24)(25)

and

g2 = (1,10,17), g3 = (1,22,25)

(verify that the product gi19295 = v = (1,2,3,...,25)!). We now change ¢
at four rightmost places, thus obtaining the permutation

hy = (1,2,3,4,5,6,7,8,9)(10, 11,12, 13,14, 15, 16)(17, 18, 19, 20, 21)(22)(23, 24, 25),

and take
h2 = g2, h3 = (1,22,23)

(in order to have the same product hqhyhs = 7). Permutations g; and hq are
conjugate in S, by an odd permutation (22,23,24,25), and hence they are
not conjugate in A,. Therefore the cacti [g1, g2, g3] and [hq, ha, h3] belong to
different orbits.

The explicit computations show that in this case there are indeed two
orbits, each one of size 900.

5.5 Compositions

If we want to construct different monodromy groups for the same passport,
Theorem 5.13 leaves us the only hope, namely, when one of the groups is
imprimitive.
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Theorem 5.19 (Composition) The following statements are equivalent:
1. The monodromy group of a polynomial is imprimitive.

2. The polynomial is a composition of non-linear polynomials of smaller
degrees.

3. The corresponding cactus is a composition of smaller cacti.

The equivalence of the statements 1 and 2 is a classical result obtained by
Ritt [20] (see also [19]). What remains is to introduce the operation of the
composition of cacti in such a way that the theorem would be true: that is,
the composition of cacti should be an exact simulation of the composition of
polynomials. This operation will be explained in detail elsewhere [11]; in this
paper also an algorithm will be presented that verifies, for a given passport,
whether or not its representation as a composition is possible (and if yes, it
gives the passports of smaller cacti to be composed). Here we give only a
few examples; but they are transparent enough to clarify the nature of the
operation.

(A)

Figure 10: An example of composition
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Example 5.20 In Figure 10 a cactus C' of degree 9 is shown, which is a
composition of two cacti A and B of degree 3. It is constructed in the
following way: we take a bicolored tree A (the two colors are now marked by
circles and squares); then we take three copies of the cactus B, and replace
each edge of A by a copy of B in such a way that distinguished vertices are
identified.

Note that in the cactus B the third color is added “artificially”: all ver-
tices of color 3 in B are of degree 1, that is, they are non-critical. However,
we need this color in order to get a critical point of degree 2 and of color 3
in the cactus C.

Remark 5.21 Symmetry is a particular case of composition. Let a cactus
have a symmetry of order s. Put its center to the point z = 0 and apply the
polynomial z°: the result is a cactus representing one branch of the initial
one (see Figure 11).

Figure 11: Symmetry is also a composition

Remark 5.22 The reader must not conclude that the presence of a com-
position leads necessarily to splitting the corresponding family of cacti into
several orbits. Let us consider the following passport of degree 8: = =
(22411521 /192']. On the one hand, the defect d(x) = 8, and hence according
to Theorem 5.3 we must have only one orbit of cacti with this passport. On
the other hand, Figure 12 shows, for one of the cacti with this passport, two
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Figure 12: Two blocks of imprimitivity of monodromy group

blocks of imprimitivity of its monodromy group. The group itself is in fact
equal to the wreath product S41.5;.

This seemingly contradicting information is resolved by verifying that
all the cacti having this passport are compositions, and for all of them the
monodromy group is the same: 541 .55.

Thus, the presence of composition gives us a non-trivial information only
in the case when, for the same passport, some of the cacti are decomposable,
and others are not.

The next stage of our study involves computers.

6 Computations

Example 6.1 Consider the following passport of degree 9:
T =[1°3%,1%2'3' 172'].

The corresponding Goulden-Jackson number is

41 51 71
“ 3 i T

9 = 90.

All the three partitions in the passport are different, hence we may permute

them in 6 ways, and the total number of cacti corresponding to the unordered
passport is 90 x 6 = 540.
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Now let us take an arbitrary cactus with this passport, for example, like
that:

g1 =(1,3,5)(7,8,9), ¢2=1(1,6,7)(4,5), ¢3=(2,3),
and call the program that computes the braid group orbits:

Magma V1.03-1 Wed Oct 2 1996 15:40:19 [Seed = 2132753822]
Type ? for help. Type <Ctrl>-D to quit.

> ChangeDirectory("~zipperer/Magma");

> load "exorbit.mag'";

Loading "exorbit.mag"

> c:=[Sym(9)!(1,3,5)(7,8,9),Sym(9)!(1,6,7)(4,5),Sym(9) !(2,3)];
> time orbit:=BraidExOrbit(c);

540 elements found

Time: 1089.970

We have found an orbit consisting of 540 elements. The question is settled:
there is only one orbit.

Example 6.2 Let us take the passport
T =[1°2°,1°2°,1°3"].

This is the second passport considered in Example 2.8: there are 99 asym-
metric cacti and 3 symmetric ones, the Goulden-Jackson number being
99 + 3 x % = 100. As the partitions of the passport may be permuted in
3 different ways (because two of them are identical), we have in total 297
asymetric cacti and 9 symmetric ones.

For an asymmetric cactus we may take
g =(1,9)(2,8)3,7), g2=1(2,9)3,8)(6,7), g3=(4,5,6).
Then we have
> c:=[Sym(9)!(1,9)(2,8)(3,7),Sym(9)!(2,9)(3,8)(6,7),Sym(9)!(4,5,6)];
> time orbit:=BraidExOrbit(c);

297 elements found
Time: 612.849

We take next a symmetric cactus

9 ::(179)(374)(677)7 g2 ::(279)(375)(678)7 I ::(37679)7

and compute its orbit:
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> c:=[Sym(9)!(1,9)(3,4)(6,7),Sym(9)!(2,9)(3,5)(6,8),Sym(9)!(3,6,9)1;
> time orbit:=BraidExOrbit(c);

9 elements found

Time: 0.839

We may conclude that the cacti having this passport split into two orbits,
of 297 and 9 elements respectively.

Example 6.3 Consider the passport
T = [1%2'4,132%,172"].

It is easy to see that there is no symmetric cacti with this passport. The
Goulden—Jackson number is

41 50007l
SRR TR aIY

thus the total number of cacti with the unordered passport is 120 x 6 = 720.
Take a cactus

g1 =(1,3,5,7)(8,9), ¢2=(1,8)(2,3)(4,5), g5=(6,7),

9

= 120,

and construct the corresponding orbit:

> c:=[Sym(9)!(1,3,5,7)(8,9),Sym(9)!(1,8)(2,3)(4,5),Sym(9)1(6,7)];
> time orbit:=BraidExOrbit(c);

702 elements found

Time: 1796.560

Not all of the 720 cacti are found! Where are the remaining ones?

If we turn to Example 5.20, we may see that the cactus-composition C'
given there has exactly our passport. Let us represent it in the form of
permutations

1 ::(2737879)(576)7 g2 ::(172)(475)(778)7 B ::(477)7

and compute the corresponding orbit:

> c:=[Sym(9)!(2,3,8,9)(5,6),Sym(9) ! (1,2)(4,5)(7,8),Sym(9) ' (4,7)];
> time orbit:=BraidExOrbit(c);

18 elements found

Time: 1.779
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We may conclude that in this example there are two orbits, of 702 an 18
elements respectively, the reason of splitting being the composition.

The above examples make clear the approach we have taken to classify
polynomials. In order to obtain a complete classification for degrees n < 9, we
computed the orbits corresponding to 93 passports (with & > 3) not covered
by Theorems 5.3 and 5.5. The results will be announced in the next section.
We finish this section with several remarks concerning the algorithmic part
of the work.

Remark 6.4 (Rational and meromorphic functions) The “purely the-
oretical” part of this work may be generalized from polynomials to rational
functions and even to meromorphic functions on Riemann surfaces of ar-
bitary genus [17]. Instead of cacti, we must consider maps that are glued
of k-stars or of k-polygons (these maps are planar when we consider ratio-
nal functions, and they are of higher genus when we consider meromorphic
functions defined on Riemann surfaces of higher genera). The action of the
braid group is introduced in exactly the same way, and the classes of the
topological equivalence of functions are in one to one correspondence with
the orbits of this action.

There are, however, two obstacles to a practical approach to the problem.
First, there is no enumerative formulas for these kinds of maps; and the
information that an orbit has, say, 702 elements, is practically useless, if we
don’t know the total number of maps in question. Second, we don’t even have
a reasonable algorithm that would be able to generate an exhaustive list of
maps with a given passport. Thus this study remains purely theoretical.

Remark 6.5 (Algorithm) The algorithm of orbits construction, starting
from a given cactus C4, fills in the following table (of course, the number N
of its lines is not known in advance):

Jg1 | O9 v | Ok

Ch
Cy
Cs

Cn
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Each time after applying an operation o; to a cactus, it verifies if the new
cactus thus obtained is really new, or already exists in the first column of
the table.

The complexity of the algorithm depends quadratically on N: indeed, it
must make at most (k — 1)N? comparisons of two cacti. The lower bound is
also quadratic: at least NV times the algorithm must find a really new cactus,
and in order to be sure that it is new, it must be compared with all the cacti
found before.

The comparison of the cacti is simplified by the fact that the only per-
mutations that preserve

k
'y:Hgi:(l,Q,...,n)
=1

are the powers of .

Remark 6.6 (Pure braid groups) The pure braid group PBj is a sub-
group of By consisting of all elements that do not permute points 1,2,... &
(that is, the thread that starts at the point ¢, returns to the same point);
see, for example, [6]. The elements of the pure braid group, while acting on
a cactus, do not permute the partitions in the passport.

Let us return to Example 6.1. The orbit of the pure braid group contains
90 elements instead of 540, and the orbit computation becomes much quicker.
The following example is even more striking:

[163!,1522,1522, 1721 172"].

The Goulden-Jackson number here is 6561, but the partitions may be per-
muted in 30 different ways, the orbit of the braid group thus becoming of size
30 x 6561 = 196830, which is hopeless both from the point of view of memory
and of computation time. The pure braid group orbit remains accessible.

Bigger orbits were in fact computed in this way. Computation of the
biggest one, having 19683 elements, took about 42 hours of CPU time of a
SUN Ultra 1 station, the program being implemented in GAP.

The answer to the following question is a priori not clear: in the case when
not all partitions in a passport are different, is it sufficient to act by the pure
braid group, or do we also need the elements that permute corresponding
points? What is, however, clear, is that if the pure braid group orbit has

29



the number of elements equal to the Goulden—Jackson number, then the
question is settled and there is only one orbit. This was always the case
in our computations. Two other disadvantages of computing with the pure
braid group:

(a) the number of generators in PBy is bigger than in By: k(k — 1)/2
instead of k — 1 (see [6]);

(b) each generator of P By, expressed as an operation on permutations,
is much more complicated than the operations o;.

7 Results

We do not touch here the “trivial” case of two critical values. The results of
our computations may be summerized as follows:

Theorem 7.1 (Classification for n <9) Lel a passport = be given, with
n <9 andk > 3. Then, except for the twelve cases listed below, there is only
one class of the topological equivalence of polynomials with this passport.

In what follows we list all the exceptional cases, giving (a) the passport,
(b) the number and the size of orbits (the size of the full braid group orbits
is given), and (c¢) the combinatorial reason for splitting. We use the term
“composition” only for the cases of a composition more complicated than
symmetry.

Case 1 n =6, k= 3: passport

2211 2211 21111.

Two orbits, of sizes 36 and 6.
Reason: symmetry (the smaller orbit consists of symmetric cacti; the
symmetry center is underlined); see Example 5.11.

Case 2 n =1, k=3: passport

22111 22111 22111.

Four orbits, of sizes 21, 21, 7, 7.
Reason: different monodromy groups: A7 versus PSL3(2) = PSLy(7)
(see Example 5.12).
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Case 3 n =8, k = 3: passport
3311 221111 2111111.
Two orbits, of sizes 168 and 24.
Reason: symmetry.
Case 4 n =8, k = 3: passport
2222 221111 2111111.
Two orbits, of sizes 24 and 12.
Reason: symmetry.
Case 5 n =8, k= 3: passport
41111 221111 221111.
Two orbits, of sizes 144 and 12.
Reason: symmetry (the center of the symmetry is of degree 4, but the
symmetry itself is of order 2).
Case 6 n =8, k = 3: passport
22211 221111 221111.
Two orbits, of sizes 288 and 24.
Reason: symmetry.
Case 7 n =8, k = 4: passport
221111 221111 221111 2111111.
Two orbits, of sizes 3968 and 64.
Reason: symmetry.
Case 8 n =29, k= 3: passport
42111 222111 21111111.
Two orbits, of sizes 702 and 18.

Reason: composition (see Example 5.20).
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Case 9 n =29, k= 3: passport
22221 222111 21111111.

Two orbits, of sizes 162 and 18.
Reason: composition (see one of the 18 cacti-compositions in Figure 13).

Figure 13: Composition for the Case 9

Case 10 n =9, k = 3: passport
222111 222111 3111111.

Two orbits, of sizes 297 and 9.
Reason: symmetry (see Example 6.2).

Case 11 n =9, k = 3: passport
222111 222111 2211111.

Two orbits, of sizes 891 and 9.
Reason: composition (see one of the 9 cacti-compositions in Figure 14).
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Figure 14: Composition for the Case 11

Case 12 n =9, k = 4: passport
222111 222111 21111111 21111111,

Two orbits, of sizes 5346 and 54.
Reason: composition (see one of the 54 cacti-compositions in Figure 15).

4Q—03 4903
2 O r\2 o) o O r\2 1
\ll 9, ©O1 2¢ \Jl \&
3 4
o B o) o @ o)
3 4 3 4 3 4 3 4
2
O O O O
1 1 2
30——04

Figure 15: Composition for the Case 12
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We may also summarize the mechnisms of splitting of a family of cacti
into several orbits that we have observed:

e Composition, and symmetry as its particular case (Section 5.5);
e Exceptional monodromy groups (Theorem 5.13);
e Splitting of conjugacy classes in A,, (Example 5.18);

e A yet unknown mechanism that leads to splitting of the family of Ex-
ample 5.12 into four orbits instead of two.

Of course, one may combine the above mechanisms in order to get more
complicated examples. It would be, however, more interesting to find new
mechanisms of splitting that do not reduce to the known ones.
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