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Abstract

We present an algorithm which produces a decomposition of left or
right ideals of the group ring of a symmetric group into minimal left or
right ideals and a corresponding set of primitive pairwise orthogonal idem-
potents by means of a computer. The algorithm can be used to determine
generating idempotents of (left or right) ideals which are given as sums or
intersections of (left or right) ideals.

We discuss several subjects such as minimal sets of test permutations
and the application of fast Fourier transforms which contribute to a good
efficiency of the algorithm. Further we show possibilities of use of the
algorithm in the computer algebra of tensor expressions.

1 Introduction

Let C[S,] be the group ring of a symmetric group S, over the field of complex
numbers C. In this paper we present a computer algorithm which can produce
a decomposition of an arbitrary left ideal I := C[S,]| - a of C[S,] with given
generating element a € C[S,] into a direct sum of minimal left ideals

I =@ (1)
=1
and which moreover yields a generating idempotent e of I and a system of or-

thogonal primitive idempotents ¢; corresponding to this decomposition (1):

!
e=>r¢ , el , I=CS] e . (2)
7=1
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We have described already the basic ideas of this algorithm in [6]. We complete
the version of the algorithm from [6] by some considerations about possibilities
of the improvement of the efficiency of the algorithm. Such possibilities are the
construction of minimal sets of test permutations which are used by our algorithm
(section 4) and the application of fast Fourier transforms for symmetric groups
(section 5) realized by the fast algorithms of Clausen and Baum [4, 3].

In section 3 we consider left ideals for which a generating element is not
known, for instance intersections of left ideals and non-direct sums of left ideals.
The algorithm can be used to construct a generating idempotent for such an
ideal. Of course, a version of the algorithm for right ideals can be formed, too.

A special reason to develop our decomposition algorithm comes for us from
the computer algebra of tensor expressions which aims to do conversions of tensor
expressions according to the rules of the Ricci calculus by means of a computer
algebra system. Symbolic calculations with tensor expressions require effective
methods of the determination of normal forms of tensors and of the investigation
of tensor symmetries.

The connection between tensors and the representation theory of symmetric
groups is well-known [17, 10, 1, 2]. A very informative paper is [7] which demon-
strates the application of important tools of the representation theory such as the
Littlewood-Richardson rule and plethysms to the construction of normal form ex-
pressions for polynomial terms in the coordinates of the Riemannian curvature
tensor and its covariant derivatives.

We have discussed several aspects of the use of our decomposition algorithm
in the computer algebra of tensor expressions in [6]. Some essential points of
these considerations are summarized in section 6.

We have realized a Mathematica package called PERMS [5] which contains
among other things tools for the decomposition algorithm.

2 Decomposition of ideals with given genera-
ting elements into minimal ideals

In this section we give a short description of our decomposition algorithm. More
details can be found in [6]. In particular, [6] presents a version of the algorithm
which works in the group ring C[G] of a finite group G.

We consider the group ring C[S,] of a symmetric group' S, over the field of
complex numbers C. Let [ := C[S,] - a be a left ideal of this group ring with
known generating element a € C[S,]. We search for a decomposition of [ in a
direct sum of minimal left ideals I; of C[S,]

I = helhe...ol . (3)

'We use the convention (pogq) : i = (poq)(i) := p(q(i)) for the multiplication of permutations.
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Furthermore, we want to determine a generating idempotent e of I and the decom-
position of e in a sum of orthogonal primitive idempotents e; which corresponds
to the decomposition (3),

e =e+e+...+e , eel; . I=CS] e (4)
,oeirer=0 (j#k)

Our algorithm is based on the well-known fact that the group ring C[S,] can be
decomposed into minimal left ideals by means of Young symmetrizers (see e.g.

[1, Chapter IV/§4 and §6] or [9, vol. I/pp.73,74]).

Theorem 1 Let ST, denote the set of all standard tableaux of a Young frame
which is characterized by a partition A & r of the natural number r as usual.

€€ =€

Further, let y; be the Young symmetrizer of a Young tableaux 1 belonging to r.
Then the group ring C[S,] has the decomposition

(C[Sr] = @ @ (C[Sr]'yt . (5)

AFr tEST

A Young symmetrizer y; of a Young tableau ¢ is defined by

ye = > > xl@poq €CIS] . (6)
qEV: pEH:
Here, H; and V; are the groups of the horizontal and vertical permutations of the
Young tableau ¢, respectively, and x(q) denotes the signature of the permutation
q.

Every Young symmetrizer y; differs from a primitive idempotent e; only by a
factor 0 # pu € C, i.e. ¢; = py;. A left ideal C[S,] -y, generated by a Young sym-
metrizer, is minimal®. However, the Young symmetrizers y; of standard tableaux
t € ST, are not pairwise orthogonal in general ([10, p.76], [1, p.103]).

If we multiply equation (5) by the generating element a of the ideal I, we
obtain

I = C[S ] a = Z Z ClS:]-yi-a . (7)

Abr tESTy
yp-aF0

Unfortunately, the sums in (7) are no longer direct. Thus, the following problem
arises. We have to delete left ideals C[S,] - y; - @ in (7) in such a way that we
obtain a direct sum which results still in I. We will solve this problem.

First we notice (see [6])

Lemma 1 [fy;-a #0, then the left ideals I, :== C[S,] -y, and W, := C[S,]-y; - a
are equivalent that means there exists a vector space isomorphism ¢ @ I, — W,
which fulfils ¢(p- f) =p-&(f) forallp € S, f € I, . Since Iy ts a minimal left

tdeal, Wy s minimal, too.

2About Young symmetrizers and Young tableaux see for instance [2, 7,8, 9, 10, 11, 12, 13,
16, 17].
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Next we show a simple method to produce a generating idempotent of a left ideal

W, =C[S,] - y: - a.

Proposition 1 Let e € C[S,] be a primitive idempotent and let a € C[S,] be a
group ring element with e - a # 0. Then there exists a permutation p € S, such
that

c-a-p-e # 0. (8)

Moreover, the group ring element b := p- e - a formed with this p is essentially
idempotent and generates the left ideal W = C[S,] - e - a.

Proof. The left ideal W = C[S,] - € - a possesses a generating idempotent f [1,
p. 54] which can be written as f = z - ¢+ a with a certain z € C[S,]. Now, the
relation

e-a-z-e # 0 (9)

follows from 0 # f = f-f=x-€e-a-x-e-a. But then a permutation p € S,
has to exist which satisfies (9) with = p since otherwise the left-hand side of
(9) would vanish for every = € C[S,].

As e is a primitive idempotent, we get

e-a-p-e=pe

with a complex number g € C [1, p. 56] and p # 0 on account of (8). Conse-
quently, b := p - e a is essentially idempotent, because

b-b=p-(e-a-p-e)-a=ub,
and b generates W since C[S,] - p = C[S,]. O

Remark. The assertion of proposition 1 remains true if we replace the permu-
tation p by a group ring element h. If h € C[S,| satisfies (8), then, obviously,
b := h-e-a is essentially idempotent. Furthermore, b generates the left ideal
W = C[S,] €-a, too, since W' := C[S,]|-h-e-ais anon-vanishing left subideal of
W which has to coincide with W because of the minimality of W. This version
of an idempotent construction is used in section 5.

By proposition 1 it is possible to construct a generating idempotent for every
minimal left ideal C[S,] - y; - a in (7) with y; - a # 0.

The determination of the permutation p for the forming of the essentially
idempotent element b can be done by a computer program which tests the validity
of condition (8) for the finitely many group elements p € S, one after another.
The search stops if the first p € S, is found which fulfils (8). We have realized such
an algorithm in PERMS. Though symmetric groups have a very large cardinality
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|S-| = r!in general, all examples treated with this algorithm claim a small number
of search steps to reach a permutation p € S, which satisfies (8).

In section 4 we give minimal sets of permutations which contain certainly a
permutation satisfying (8). Furthermore, in section 5 we will see that the use of
fast Fourier transforms makes the search for such permutations unnecessary.

Now we consider an orthogonalization problem. Let be given the direct sum
of two left ideals

(C[S,] - 1) D (C[S,] - €2)
with generating idempotents ey, €2 which are non-orthogonal. We search for new
generating idempotents f1, fz of these ideals which fulfil

firla=far i = 0.

To solve this problem the following characterization of the set of all generating
idempotents of a given left ideal is very helpful.

Proposition 2 Let G be a finite group and e € C[G] be a generating idempotent
of a left ideal I = C[G] - e. Then a group ring element f € C[G] is a generating
idempotent® of I if and only if there exisls a group ring element x € C[G] such
that

f = e—x-ete-x-€ . (10)

Proof. First we show that every group ring element (10) is a generating idem-
potent of I. Since e is an idempotent we obtain f-e = f. Further, e- f =€
follows immediately from —e-z-e+e-e-x-e=0,1.e. fis a generating element
of I. Now the idempotent property of f is verified by

fof=(e—rretee) fme—retene=].

On the other hand, every generating idempotent f of I can be represented in
the form (10). From f € [ there follows f —e € I. Therefore we can write
[ —e=—y-ewith a certain y € C[G]. Then e¢- f = e yields e -y - e = 0 such
that f=e—y-e+4+e-y-eis correct. O

Corollary 1 * Let ¢ € C[G] be an idempotent. Then the following assertions
hold true for all x € C[G]:

1. n:=xz-e—e-x-eisnilpotent, i.e. n-n =0.

3The idea to produce a new idempotent f from a given idempotent e in this way was taken
out of [14, p. 137]. However, in [14] the forming of new idempotents is carried out only by
means of group elements 2 = g € G of the underlying group G.

4This remarkable property is mentioned in [14, p. 138], too. According to [14], first Zalesskii
becomes aware of it.
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2.

u = 1d — n is an invertible element or a unit of C|G] with the inverse
u~" = id + n, where id denotes the identity element of G.

3. The idempotent f = e—x-e+e-x-e in accordance with proposition 2 fulfils

f=u-e-u'.

Proof. Corollary 1 can be proved by straightforward calculations (see [6]). O

Since formula (10) describes the complete set of generating idempotents of a left
ideal T we can search the idempotents fi, fy of the orthogonalisation problem
in the form of (10). The next proposition is the basis of our orthogonalization
procedure.

Proposition 3 Let I = C[S,] - e and I = C[S,] - € be two left ideals of C[S,],
generated by the idempotents e, é. We assume that e is primilive, i.e. I s mini-
mal. Further we require e - € # e such that I and I form a direct sum I © I since

I Z I. Then there holds true:

1. A permulation p € S, can be found such that
e-(id—¢)-p-e £ 0 . (11)

Moreover, a complex number A € C belonging to thal p is available such
that f :==e—z-e+e-x-e with x := X(id—¢€)-p is a generating idempotent
of I which satisfies € - f = 0.

2. For a given idempotent f according to 1 a permutation p € S, exists such
that

f-lid=&)-p-f # 0 . (12)

Besides, a complex number X\ € C can be chosen such that f = ¢é— - ¢
with & := A(id — €) - p - f is a generating idempotent of 1 which fulfils

ff=7j-r=o.

Proof. From e - € # e we obtain e - (id — €) # 0. Then, proposition 1 yields the
existence of a p € S, such that e- (id — €) - p- e # 0. Thus (11) is proved. Since
e is primitive, a relation

e-(id—¢€)-p-e = pe (13)

is valid with a complex number y € C [1, p. 56], and g # 0 on account of
(11). Now, if f is an idempotent according to statement 1 of proposition 3 which
generates [ by proposition 2, we get

e f =

-e—¢-x-et+e-e-x-e

™ M2

e+ Apé-e
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by considering €z = 0 and (13). Then A = —1/u leads to € - f = 0.

As f likewise generates I, there follows f - € # f. Otherwise, there would
be I C I in contradiction to e - & # e. Now the existence of a p € S, which
satisfies (12) arises from the application of statement 1 of proposition 3 to the
idempotents f,é. We change to a new 1dempotent f =e—F-€e4+€e-T-¢€of
[ with & := )\(zd —€) -p-f. Then €é-& = 0 yields € -7 -¢é = 0. Being a
generating idempotent of the minimal left ideal I, [is primitive and (12) results
consequently in f - (id —€)-p- f = jpf with 0 # g € C. Thus, we get for

f=e—i-¢
[oT=TE=A[-(id=&)-p-[-e=(=Ap)[-E
and the choice A = 1/ji gives f- f = 0. The relation f- f = 0 follows simply from
e-f=0.0
Now, we can describe our
DECOMPOSITION ALGORITHM (L) FOR LEFT IDEALS:

Let be given a left ideal I = C[S,] - a of C[S,] with known generating element
a € C[S,]. We start with formula (7), i.e.

[ =CS]a = > > CS] y-a . (14)

Abr tESTy
Y aF0

Then we can carry out the following steps:

1. The first left ideal in the sum (14) is minimal. We denote it by I; and we
can determine a generating idempotent e; of Iy by means of proposition 1.

2. We search for the first minimal left ideal in (14) which is not contained in
I, that means for which there holds true

Y- a- € ?é Y- a . (15)

We denote it by I; and we construct a generating idempotent ey of I by
means of proposition 1. Furthermore we determine new generating idempo-
tents fl, f2 of Iy, I3 according to proposition 3 which are orthogonal. Then
we form the leftideal I, := I, & I, for which fg = fl + f2 is a generating

idempotent.

3. Now we search for the next minimal left ideal in (14) which is not contained
in I, that means for which there holds true

yt'a'.fZ 7é Y- a . (16)

We denote it by I5. We construct a generating idempotent e of I3 and pass
over to new orthogonal idempotents fz, fs instead of f,,es. This leads us to

the left ideal I5 := I, I3 which has the generating idempotent fd = fz—l—fs
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4. We continue this procedure until we have investigated all left ideals in (14).
The result is the searched decomposition

I = hehe.. al, (17)

of T and a generating idempotent f,, of T.

According to statement 2 of proposition 3 every idempotent fk of the left ideal
I of the (k 4 1)-th step can be written as fk = (id — ) - fk with z;, € C[S,]
which we have already determined to carry out the orthogonalization (€41, fk) —
(fk+1,fk)- Thus we can write

fm = fm—l + fm

= (id=apa) fuer + f

= (td—2pm1) (frnoa + fm—1)~—|— Im

= (td—2p_1) (1d—2m_2) frmz + (td —2p1) - froc1 + fn

= mz:zd—xml V- (id —2pg) ... (sd — ) - fo + fin - (18)
k=1

Formula (18) presents a decomposition fn = Yoy hy of f,» the summands of

which fulfil

hi = (id — xp_y) - (td — 2ppg) - ... (id—2p) - frr € I (19)
hm = fm e I,

Therefore, f,, = Sy hy 1s the decomposition of fm corresponding to the di-
rect sum [ = @), I; and the A, are orthogonal generating idempotents of the
minimal left ideals Iy, [1, p. 55].

Theorem 2 Lelt [ = C[S, ]| a be a left ideal of C[S,], generated by a given group
ring element a € C[S,], a # 0. Then the algorithm (L) produces a generating
idempotent e € C[S,] of I and a decomposition e = hy + hy + ... + h,, of €
into primilive pairwise orthogonal idempotents hy which defines a decomposition

I =@, I of I into minimal left ideals Iy = C[S,] - hy.

Essentially, the correctness of theorem 2 follows from the description of algorithm
(L). A detailed proof is given in [6, Theorem 4.1].

It is clear that there are still some possibilities to increase the efficiency of the
algorithm (L). Since minimal left ideals C[S,]-y;-a and C[S,]-yu - a automatically
form a direct sum if the standard tableaux ¢ € ST, and ¢t € ST\ belong to
different partitions A, A’ F r, we have to apply the algorithm only to sets of left
ideals C[S,] - y; - @ which lie in the same two-sided ideal

L= PpCs] v, (20)

teSTH
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characterized by a partition A - r that means which belong to the same class of
equivalent minimal left ideals.

Furthermore, the knowledge of multiplicities of equivalent minimal left ideals
in the searched decomposition of [ is very helpful. If for a fixed A F r the
algorithm has found a direct sum of minimal left ideals C[S, |- y; - a with ¢ € ST,
the number of which is equal to the known multiplicity, then the investigation of
the remaining left ideals C[S,]-y;-a of A can be canceled. The calculation of such
multiplicities is possible if the given left ideal I = C[S,]- a can be identified with
the representation space of a certain linear representation « of the symmetric
group S,, the character of which is known. In particular, if o turns out to be
an induced representation of an outer tensor product of representations or of a
certain representation of a wreath product of certain symmetric groups, then the
Littlewood-Richardson rule (see [10, pp. 94], [9, vol. I p. 84], [11, pp. 68] and
[7]) or plethysms (see [9], [15, pp. 8]) are important tools to determine such
multiplicities.

A further efficiency problem of the algorithm arises from the fact that the
naive calculation of the product a - b of two group ring elements a,b € C[S,]
entails a high need of calculation time and computer memory, if we have a large
r. The use of fast Fourier transforms shows a way out of this problem (section
5)

We finish this section with a remark on decompositions of rigth ideals.

Proposition 4 Let J := a - C[S,] be a right ideal of C[S,], generated by a given
group ring element a € C[S,],a # 0. Then a version (R) of the algorithm
(L) can be stated which produces a generating idempotent ¢ € C[S,] of J and
a decomposition e = hy + hy + ... 4+ hy of € into primitive pairwise orthogonal
tdempolents hy defining a decomposition J = @], Jp of J into minimal right
ideals Jy = hy, - C[S,].

Proof. The version (R) of the decomposition algorithm starts with the decom-
position

CS] = P P v-CsS] (21)

AFr teSTy

of C[S,] into minimal right ideals y; - C[S,] which can be proved in the same way
as (5) (see [9, vol. I/pp.73,74] and [1, footnote on p.105]). Then we obtaine a
description of the version (R) from the description of the version (1) if we write
all products of group ring elements, which occur in the description (L), in reverse
order. Furthermore, we have to transform the given versions of lemma 1 and
of the propositions 1, 2 and 3 for left ideals into statements on right ideals by
inversion of the factor sequence in all appearing products. Then, the proofs of
propositions 1, 2, 3 can be rewritten easily into proofs for right ideals. O
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The involution

x : C[S,] — C[S/] ,  a = z‘; a(p)p — a" = Z a(p)p™t  (22)

PES:

of C[S,] presents an other possibility to decompose right ideals by means of
the algorithm (I.). The involution * maps (primitive) itempotents to (primitive)
idempotents, direct sums of left (rigth) ideals to direct sums of rigth (left) ideals
and preserves the minimality of ideals. Thus we can construct a decomposition of
a given right ideal J = a-C[S,] by passing over to the left ideal I = J* = C[S,]-a*,

determining a generating Idempotent e and a decomposition

I =CS]e=FCS] e , e=> e
k=1

k=1

of I by means of (L) and returning to the right ideal .J,
J=T = eCS] = Peds) . =3
k=1 k=1

However, the transformation * causes extra costs in time and memory. In par-
ticular, the use of two algorithms (L) and (R) is more advantageous in the case
of applying fast Fourier transforms.

3 Determination of generating idempotents by
means of the decomposition algorithm

In this section we discuss some cases of left (or right) ideals for which no gene-
rating elements are known, but for which the determination of generating idem-
potents can be done by the help of the decomposition algorithm.

At first, we give some lemmas on annihilator ideals of a group ring C[G] of a

finite group G. We denote by Z,.(I) the right annihilator ideal and by Z;(I) the
left annihilator ideal of an ideal I of C[G],

Z(I) == {heCG|Vfel:f-h=0}
Zi(I) == {hedG]|Vfel:h-f=0} .

Lemma 2 Let [ and J be a left ideal and a right ideal of C[G], respectively.
Then there holds true

J=27() < I=2(]) . (23)
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Proof. Let J = Z,(I). The ideal I has a generating idempotent e. Then
Z.(I) = J is generated® by the idempotent id — e and further Z;(.J) is generated
by id — (id — €) = e, i.e. Zi(J) = I. The reverse case follows in the same way. O

Lemma 3 Let [ be a left ideal of C[G] and a € C[G] be a group ring element
with a # 0. Then there holds true:

1. There is I = C[G] - a if and only if Z.(I) = {h € C[G] | a-h = 0}.
2. There is [ = {f € C[G] | f-a =0} if and only if Z.(I) = a - C[G].

Proof. We prove statement 1. Let [ satisfy I = C[G] - a. We use the notation
K :={h € C[G] | a-h = 0}. Obviously, there is Z,(I) C K since a- Z.(I) = 0. If
e is a generating idempotent of I, then id — e generates Z,(I). Now we assume
that there exists a group ring element h € e - C[G], h # 0, with a-h = 0. But
since e can be written as e = x - a with a certain 2 € C[], we would obtain the
contradiction z - a - h = h # 0. Consequently, there is K = Z,.(I).

Conversely, if Z,(I) fulfils Z.(I) = {h € C[G] | a- h = 0}, then there follows
from the just drawn conclusions that Z,(C[G]-a) = {h € C[G] | a-h = 0} = Z,.(1).
Thus lemma 2 yields I = C[G] - a.

Statement 2 can be proved in the same way as statement 1. O

Lemma 4 Let 1,5, ..., 1, C C[G] be left ideals of C[G]. Then there holds true

7 ﬁm - kﬁlzruk) - (24)

Proof. Instead of (24), we show the equivalent relation

IDE

I, = Zl(g:lZ,(Ik)) . (25)

k

1

The inclusion i, Iy 2 Zi(>12, Z.(1})) follows from the fact that every f €
Zi(Spey Zo (1)) fulfils f-hy = 0 for all by € Z,.(Ix) and all & = 1,...,m, i.e.
fezZ(Z.(Iy)=Iyforall k =1,... m.

Conversely, every f € N, I satisfies f-h = f-hi+ ...+ f+h, = 0 for
all h = hy + ...+ hy € 300, Z, (1), by € Z.(Ix). This leads to ML, I C
Z( Y5y Ze(Ik)). O

Proposition 5 Let a € C[S,], a # 0, be a group ring element of C[S,| which
annihilates a given left ideal I C C[S,], i.e. I ={f € C[S,]| f-a=0}. Then
we can construct a generating idempotent of I by means of the decomposition

algorithm (R).

%0On the one hand, every h € C[G] can be written as h = ¢ - h + (id — ¢) - h such that there
follows h = (id — €) - h for h € Z,(I) since e - h = 0. On the other hand, every group ring
element (id —e) - y lies in Z,(I), because z - e - (id —e) -y = 0 for every z - e € I.
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Proof. From lemma 3 there follows that Z.(/) = a - C[S,]. Thus we can use
algorithm (R) to determine a generating idempotent ¢ of Z,.(I) from which we
obtain the generating idempotent 1d — e of . O

Proposition 6 Let Iy, 1,,..., 1, C C[S,] be a finite set of left ideals of the group
ring C[S,]. We assume that every left ideal I}, is defined either by a generating
element ay € C[S,], i.e. I, = C[S,]-ag, or by an annihilating element ny € C[S,],
i.e. Iy ={f€C[S.]|f-nr=0}. Then we can construct generaling idempotents
of the left ideals Y 37—y Iy and (=, I by means of the algorithms (L) or (R).

Proof. At first we consider the (non-direct) sum J = Y27, Iz. We can assume
that we know a generating element a; for every left ideal [; because we can
determine generating idempotents e; according to proposition 5 for all such left
ideals I; which are characterized only by annihilating elements n;.

By using equation (5) we can write

J = Zi Y CS ]y ap - (26)

Abr k=1 t€ST)
yt-ap#0

Now we apply our decomposition algorithm (L) to the set T of all minimal left
ideals C[S,] - y:- ax in (26), to select such a subset 7 of T that J is the direct sum
of the ideals in Z. The occurrence of more than one generating element a; does
not disturb the effectiveness of the algorithm. Obviously, algorithm (L) yields a
generating idempotent e of J in this case, too.

To process the intersection K’ = (N[, I, we determine generating idempotents
e; by means of algorithm (L) for all such left ideals I; which are described by a
generating element a;. Then id — ¢ is an annihilating element of [, = C[S,] -
e;. Thus we can assume that all left ideals [ are characterized by annihilating
elements ng. Taking into account lemma 3 and 4 we obtain

7,(K) = g:z,(fk) = ki:nk-(C[Sr]

Now the application of algorithm (R) to Y71, ny - C[S,] produces a generating
idempotent e of Z,(K) wich leads to the generating idempotent id — e of K. O

4 Minimal sets of test permutations

In this section we will determine minimal sets of permutations in which we can
find certainly such a permutation that a condition of type (8), (11) or (12) is
fulfilled.
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Proposition 7 Let us consider the algorithm (L) which is based on the decom-
position (5) of the group ring C[S,;|. Then every of the conditions (8), (11) and
(12) can be reduced to a condition

yorw-p-y # 0 (27)

with a certain Young symmetrizer y; of a standard tableau t and a certain group
ring element w € C[S,], salisfying y; - w # 0, in the course of every step of the
algorithm.

Proof. Let us consider the k-th step of the algorithm (L). The first time we have
to use condition (8), if we have found a group ring element y;, - @ # 0 such that

T f~k—1 # vy, - a with the resulting idempotent fk—l of the (k-1)-th step. Then
we have to construct an idempotent from y;, - @ by means of proposition 1. But
in this case condition (8) takes a form (27), i.e

Yy ca-p-y, # 0 . (28)

The idempotent produced from y;, -a according to proposition 1 is e = ag pr-yi,-a
with a constant ay € C and a permutation p; € S, fulfilling (28).

Next we have to determine an idempotent fi. from e, according to statement
1 of proposition 3 such that fy_; - fx = 0. Let us consider the condition

yl‘k'a"(id_fk—l)'s'yl‘k 7'é 0 (29)

of the type (27). The permutation s € S, is searched. From y;, - a - foct #yp, - a
there follows y;, - a - (id — fk_l) # 0. Thus proposition 1 yields the existence
of a permutation s; € S, which satisfies (29). Since y;, differs from a primitive
idempotent only by a constant factor the relation

Ye, - a - (1d — fk—l) “SkYr, = KUY, , K =const.#0 (30)

arises from (29). Multiplying (30) by px and a from the left and the right,
respectively, we obtain (11),

ek-(id—fk_l)-sk-pgl-ek = arkep # 0

fulfilled by the permutation sj-p;'. Now we can form the idempotent fi.. Because
of corollary 1 there holds true fr = uy - ep - ugl with a certain unit u; € C[S,]
which we can calculate according to proposition 2 and corollary 1.

At last, we have to construct an 1demp0tent fk 1 from fk 1 according to
statement 2 of proposition 3 such that fj - fk 1= fk 1 fr = 0. To this end, we
search for a permutation 55 € S, which satisfies the condition

ytk-a-u;l-(id—fk_l)-s-ytk £+ 0 (31)
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of the type (27). From f - fi_1 # fi there follows Yo, - a-up' - (id — fk_l) # 0
such that proposition 1 guarantees the existence of such a permutation s;. Then
relation (31) leads to

ytk-a-ulzl-(id—fkq)-ék-ym = Ly, , k=-const.#0 . (32)

Multiplying (32) by wuy - py and a - up' from the left and the right, respectively,
we obtain (12),

fr-(id— fyor) b fo = ark fr # 0,

satisfied by the group ring element hy := 4, - p;' - u;'. Now we can form an
idempotent fk_l = fk_l —ic-fk_l with z 1= S\(id—fk_l)-hk-fk. The permutation
p, used in proposition 3, is replaced by hi. But the proof of statement 2 of
proposition 3 works in this case, too. O

Now we present a set of permutations for a given relation (27) which is essentially
smaller than S, but contains definitely a permutation p satisfying (27).

Proposition 8 Letty € ST, be a fired standard tableau of a given partition A F r
of a natural number r € N and let y;, be the Young symmetrizer of to. We denote
by Py, the set

Py, = {s€S8, |solpe ST} (33)

of all such permutations s € S, which transform ty to the rest of the standard
tableauz of . Then, for every w € C[S,| with y,,-w # 0 we can find a permutation
S0 € Py, such that

Yto = W = So " Yy 7’5 0 . (34)

Proof. Since y;, - w # 0, the left ideal Wy, := C[S,] - ys, - w is equivalent to the
minimal left ideal I;, := C[S,]- ys, (lemma 1). Therefore, Wy, is a subideal of the
two-sided ideal

I, = @ CS, ]y (35)

teSTy

which contains all ideals of the equivalence class of minimal left ideals of C[S,],
characterized by A. Thus y,, - w € I can be written as

Yp, "W = Z oy, € ClS] (36)

teSTH

with suitable group ring elements z;. At least one of the summands of (36) does
not vanish.
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We use the usual dictionary order for Young tableaux of the same partition
A (9, vol. I, p. 73]. A tableau t3 of A is regarded as greater than a tableau ¢y
of A, if the simultaneous run through the rows of both tableaux from left to right
and from top to bottom reaches earlier in ¢; a number which is greater than the
number on the corresponding place in ¢;.

Now, let t; € ST, be the smallest standard tableau of A such that the sum-
mand of ¢; in (36) fulfils z;, -y, # 0. Since all Young symmetrizers y; of standard
tableaux t € 87, with ¢t > 1; satisfy y; - y;, = 0 and, on the other hand, the sym-
metrizer y;, is essentially idempotent, i.e. vy, -y, = pyy, , g = const. # 0, the
multiplication of (36) by y;, from the right yields

Yo "W Yty — KTy " Yy 7& 0 . (37>

Let so € Py, be that permutation which transforms ¢y into ¢, i.e. {1 = sg 0 to.
Then there holds true y;, = so - yy, - syt and we obtain from (37) the relation

yto'w'so'yl‘o'sal 7é 0
which leads to (34). O
The cardinality of Py amounts to |Py| = |STi| < |S,| = r!l. Now we will show

that this value represents already the minimum.

Proposition 9 Let y;, be the Young symmetrizer of an arbitrary Young tableau
ty of a given partition A = r. Further, let P C S, be such a subset of permutations
from S, that for every group ring element w € C[S,] with y;, - w # 0 there exists
a permutation s € P which satisfies

Yt "W -5 Yy F 0 . (38)
Then there holds true
Pl = ISTHl (39)
Proof. We assume |P| < |S7,|. Let us denote by Yp the set
Yr = {y: | v+ Young symmetrizerof t =soty, s € P}

of the Young symmetrizers of all those Young tableaux ¢ which are generated
from ¢y by all permutations of P. The property of P, required in proposition
9, has the consequence that for every w € C[S,] with y;, - w # 0 there exists a
Young symmetrizer y; € Vp such that

Yo cw-yr # 0. (40)

If the permutation sy € P satisfies (38) for a given w then the Young symmetrizer
y:, € Vp of the Young tableau ¢, := sgot, fulfils y;, = so-yto-sgl and, consequently,
there follows y;, - w - yy, # 0 from (38).
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Let us consider the right ideal

Jp = Z ys - C[S, ] (41)

ytEYp

to which we can apply the algorithm (R) according to proposition 6. Since the
Young symmetrizers y; are proportional to primitive idempotents, the right ideals
y¢ - C[S,] are minimal and algorithm (R) produces a subset ' C Vp of Yp such
that

Jp = P w-CS] . (42)

yt€Y!

The right ideal Jp possesses a generating idempotent e which decomposes into
primitive pairwise orthogonal idempotents e,, according to (42),

e = Z €y; s Cys < Yt - C[Sr]

ye €Y

Now we form the left ideal Ip generated by e

Ip = C[S,] e = EB C[S,] - ey - (43)

yeeY!

Because all Young tableaux ¢ in (41) belong to the same partition A F r, all
right ideals y; - C[S,] in (41) are equivalent to the right ideal y;, - C[S,]. Therefore,
for every y; € )’ there exists a non-vanishing group ring element ey, - « - y¢, # 0,
z € C[S,], which describes the equivalence mapping vz, - C[S,] — ¢, - C[S,] [1,
p.56]. On the other hand, the existence of the elements e, - © - y;, # 0 guarantees
that every left ideal C[S,]-¢,, in (43) is equivalent to the left ideal Iy, := C[S, ] ys,.
Thus Ip is a subideal of the two-sided ideal I, (35) belonging to the given partition
A F r. The dimension of Ip is smaller than the dimension of I, since

dimIp = |Y|diml, < |P|diml, < |[STh|dimI, = (diml;)* = dimI,
Now we consider the left ideal K which is annihilated by e, i.e.
K = {feCS]|f e=0} .

Because there holds true C[S,] = Ip @ K and dim Ip < dim [y, the left ideal
K has to obtain a minimal left ideal I which belongs to the equivalence class of
minimal left ideals of A.

Let ¢ be a generating idempotent of I. Every Young symmetrizer y; € Vp lies
in Jp and can be written, consequently, as y; = € - y;. Since furthermore there is
¢-e =0, we obtain

Vy€Yp: é-y,=0
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On the other hand, the left ideals [ = C[S,] - ¢ and I,, = C[S,] -y, are
equivalent and the equivalence mapping Iy, — I is described by a non-vanishing
group ring element y;, -z - € # 0, x € C[S,]. Now, if we choose w := z - ¢, then
there holds true yy, - w # 0, but

VYV €Vp o gy -w -y =0

in contradiction to (40). O

In the next section we will see that the search process for permutations is canceled
if we use fast Fourier transforms. But, in the case of small symmetric groups S,
with approximately » < 7, the algorithms (L) and (R) can be carried out with
reasonable costs immediate in the group ring C[S,]. Then the results of section
4 are important.

5 Application of fast Fourier transforms

As mentioned in section 2, the naive calculation of the product a - b of two group
ring elements a,b € C[S,] entails high costs in calculation time and computer
memory, if we have a large r. This reduces the efficiency of the algorithms (L)
and (R). Now we discuss some ideas of the use of fast Fourier transforms which
show a way out of this problem.

The basis of the concept of discrete Fourier transforms for arbitrary finite
groups is Wedderburn’s Theorem which we give here only in the special form for
symmetric groups S, (see e.g. [1, p.61] or [3, p.38]).

Theorem 3 For every partition A & r the two-sided ideal I\ = @cs7, C[S,]-ys of
the group ring C[S,] is isomorphic to a full algebra of complex (dy x d))-matrices:

I, ~ Chxh (44)

where dy denotes the dimension® of any minimal left ideal from the equivalence
class of X. Furthermore, the group ring C[S,] is isomorphic to an algebra of block
diagonal matrices:

ClS] = Prn ~ s . (45)

Abr Abr

Definition 1 Every isomorphism D : C[S,] — @,., C»*% of C-algebras is
called a discrete Fourier transform for C[S,] (or simply, for S,).

fdy can be calculated from X by means of the hook length formula (see e.g. [1, p.101], [9,
p.81] or [7]).
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We denote by D* the natural projections D* : C[S,] — C»*9 of D which form a
complete list of pairwise inequivalent irreducible representations of C[S,]. Then
D can be written as

A1)
D:a — A = diag(A()‘); /\l—r) =
AQm)

a € C[Sr] ’ A(/\) _ DA(Q) € Cdkxdx

(lausen and Baum have shown that the isomporphism o : C[S,] — @,., C?*%,
called Young’s seminormal form, represents a discrete Fourier transform of S,
which can be handled by fast algorithms. In [3, chapter 9] they present efficient
algorithms for the evaluation of o and o' (see also [4]). Upper bounds of the
number of arithmetic operations for these evaluations are

5 L, 11
o (G +3 - o)
5 4 7
-1 9 3 = 3/2 i '
o : (127“ +3\/§r —|—12r>r.

Descriptions of Young’s seminormal form can be found e.g in [2], [9, pp.75,76],
8], (3 [4]

Now it is clear that the use of the Fourier transform o can essentially improve
the efficiency of our algorithms (L) and (R) in the case of large symmetric groups
S, . Instead of a group ring product a - b we can calculate A - B with A = o(a)
and B = o(b) which can be done by isolated calculations of the block products
AR BO for all A F r. If these blocks are large matrices we could employ
algorithms for fast matrix multiplication.

Since ¢ is an isomorphism of C-algebras, the complete decomposition algo-
rithms (L) and (R) can be carried out in the space o(C[S,]) of the Fourier trans-
forms. We have to determine Fourier transforms only for the given input data,
i.e. generating or annihilating elements of given ideals, and to calculate inverse
Fourier transforms only for the results of the algorithms. Again, all calculations
within the scope of these algorithms can be done blockwise.

There are two points on which the decomposition algorithms for o(C[S,])

should be modified.

(i) It is not necessary, to use Fourier transforms o(y;) of Young symmetrizers
y;. We can replace the primitive idempotents o(y;) by other natural primitive
idempotents 7y of Cérxdx,

Proposition 10 Let 7 € Chxdx 1 < k < dy, be the malriz the elements
2(k),i; of which fulfil
1 ifi=5=k
(k)i =

0 else
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Then the matrices Zyy, ..., Zay,) form a set of primitive pairwise orthogonal
idempolents, generaling minimal left or right ideals, and C**% decomposes into

d dx
Chxds @(Cch xdy A @Z(k) Cdaxda (46)
k=1 k=1

Proof. The proof, that the Z) form a set of pairwise orthogonal idempotents, is
trivial. For every matrix A € C»*% the product A- Zry (or Zy - A) is a matrix,
the k-th column (row) of which is equal to the k-th column (row) of A, whereas
all other elements vanish. Consequently, the left ideal Z, := C% *%x . Z(xy and the
right ideal Jp := Z(3) - C* %4 have both the dimension dy such that they have to
be minimal since 07'(Z;) and o~ (J) turn out to be minimal in C[S,] because
of their dimensions. Relation (46) follows simply from the column structure or
the row structure of the matrices A - 7y or Z, - A, respectively. O

If we use the idempotents Zy instead of o(y;) in every matrix algebra Chrxdr,
then the transfers of the propositions 1 and 3 and of the algorithms (I.) and (R)
to o(C[S,]) keep their validity.

(ii) The search process for permutations p which satisfy inequalities as (8), (11)
and (12) can be replaced by a simple search of non-vanishing elements in matrices.

Proposition 11 Lel E € C*? be a primitive idempotent of C**?, d > 2, and lel
W € C™* be a matriz with - W # 0. Search for a non-vanishing element” in
each of the matrices F and E-W . If such non-vanishing elements have been found
in the jo-th column of E - W and the ko-th row of E, then the matriz P = (pj;i)
with pjor, = 1 and p;r, = 0 else fulfils

E-W-P-E # 0

Thus we can determine matrices P which satisfy the transfers of the conditions
(8), (11) and (12) to o(C[S,]) by means of proposition 11. We remark that,
in general, o~'(P) is not a permutation but some group ring element of C[S,].
However, the idempotent constructions of the propositions 1 and 3 remain correct
if we use group ring elements instead of the original permutations p satisfying
(8), (11) or (12). (See also the remark after the proof of proposition 1.)

Our considerations have the remarkable consequence that the algorithms (I.)
and (R) can be regarded as algorithms for the decomposition of left or right ideals
of arbitrary matrix algebras C**?, independent of their connection with group
rings. This statement is supported by the fact that for every natural number
d > 2 the hook length formula yields a dimension dy = d for the partition
A= (d1) Fd+1,ie C*? isisomorphic to the two-sided ideal Iy C C[Si1]
belonging to that partition A.

“Such non-vanishing elements exist because of E - W # 0.
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Proposition 12 For every matriz algebra C**¢, d > 2, the transfers of the algo-
rithms (L) and (R) to C*™*? can be used to decompose left or right ideals of C**?,

corresponding to all types of ideals from sections 2 and 3, into minimal (left or
right) ideals and to determine generaling idempotents of these ideals, decomposed
in primitive pairwise orthogonal idempotents according to the ideal decomposition.

Example.® We determine a decomposition of the left ideal T = C?*3 . A given by the matrix

2 3
A= 5 6
8 9

Let 7Z(1), Z(2), #(3) be the idempotents of (C3*3 described in proposition 10. Since 7( A 75 0 we
obtain [, := C3%3.7 )+ A as first minimal subideal of 1. Further there is Z(1)-A- 7 nH#0

such that prop051t10n 1 yields as generating idempotent of I

1 2 3
E1:Z(1)~Z(1)~A: 0 0 0

-~ & =

0 00

Next we check Z9)- A # 0 and Z(9y- A+ E1 # Z(3)- A such that the next minimal subideal of I is

=Cx3.7 (2)" ‘A. I and I, form a direct sum [2 =11 ®1s C I. Thereis Z(2) A Z(2 # 0
such that the construction of proposition 1 gives

as a generating idempotent of 7.
Now we have to orthogonalize F1 and Fs. Taking into account

1 0 0
Id—FE, = | —4/5 0 —6/5 :
0 0 1

we can check Ey-(Id—FEs)-Z(1)-E1 # 0. Thus we can make an ansatz Fy = By =X -E1+FE1-X - Ey
with X = A(Id — Es3) - Z(1) for a new idempotent Fy of /1 according to proposition 3. The
condition Fg - Fy = 0 leads to A = 5/3 and

~5/3 —10/3 —5
o= ( 4/3  8/3 4 )

0 0 0
Next we obtain
1 0 -1
Fi-(Id— E3) = —4/5 0 4/5
0 0 0

and Fy - (Id — E5) - Z(1y - F1 # 0 such that we can use the ansatz Fy = Ey — X - E3 with
X =A(Id - E») *Z(1y - F1. Now the condition Fy - Fp = 0 yields A = 1 and

8/3 10/3 4
F,= | -4/3 —5/3 —2
0 0 0

8All calculations of this example have been carried out by means of Mathematica 2.2 [18].
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Then I, has the generating idempotent

Fg = Fi+ Fy = (

o o~
o — o
o |

—
\—/

Since Z() - A # 0 but Zgz) - A+ Fy = Z(gy - A we finish with I = I, = C33 . F}, .

6 Application of the decomposition algorithms
to investigations of tensors

In this section we summarize shortly ideas from [6] which refer to applications
of our algorithms to investigations of symmetry properties of tensors and to pro-
blems of reduction of tensor expressions arising in symbolic computer calculations.

We make use of the following connection between tensors and elements of the
group ring of a symmetric group. Let 7.V be the space of all complex-valued
covariant tensors of order r on a vector space V' over the field of complex numbers

C. The tensors T' € T,V are multilinear mappings of the r-fold cartesian product
of V onto C,

T:VxVx.xV-=>C ., (v,....0,) = T(v1,...,0,) .

r factors

Let T € T,V be a covariant tensor of order r and let b := {v,...,v,} C V be
an arbitrary subset of r vectors from V. Then T and b induce a complex-valued
function Ty on the symmetric group S,

Ty:S = C , Tyipes Ty(p) :=T(vpa)s -« Up(r)

which we will identify with the group ring element 3~ s T3(p) p denoted by T,
too. The action of a group ring element a = 3 5, a(p)p € C[S,] on a tensor T
is defined by

a:Twal , (aT)y. 4 = Z a(p) Tip(l)--.ip(r)
PES,

Using the involution # from (22) one can show by a straightforward calculation

(see [6])
(aT)b = Tb-a* . (47)

Now we consider tensors which possess a symmetry relating to permutations of
their indices.
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Definition 2 We call a pair (C,€) a tensor symmelry, if C C S, is a subgroup
of the symmetric group S, and ¢ : C' — S' is a homomorphism of C' onto a finite
subgroup of the group of the unimodular numbers S' := {z € C | |z| = 1}. We
say that a tensor T' € T,V possesses the symmetry (C¢), if

VeeC : T=¢)T . (48)
The Ty of a tensor with a tensor symmetry lie in a special left ideal.

Proposition 13 Let (C,e), C C S,, be a tensor symmelry. Then the group ring
element

e == Y elc)e €C[S], (49)

ceC

is essentially idempotent. Furthermore, every Ty, of a covariant tensor T € T,V

with the symmetry (C,¢) is conlained in the left ideal [ := C[S,] - € of C[S,].

Proof. There holds true ¢(c)e- ¢ = € for all ¢ € C since

(:(C) € C= Z (:(C)(:(C,) CI C = Z (:(C)(:(C" . C_1> (,'" = Z (:(C">C" = €.

el c'eC ceC

Thus we obtain €- e =Y .coe(c)e- ¢ = |C|e, Le. €is essentially idempotent.
Because of (47) equation (48) turns into Ty - ¢™! = e(¢) Ty or Ty = ¢(c) Ty - ¢
for every vector set b = {v,...,v,} C V. Then the sum of these relations over

all ¢ € C yields |C|T, =T, - ¢, i.e. Ty lies in the left ideal C[S,]-e. O
Now, let us consider tensors T which satisfy a certain system of linear identities.

Proposition 14 Let T € T,V be a covariant tensor which fulfils a system of m
linear identilies

u; ' = 0 , 7=1,...,m (50)

given by m group ring elements uy, ..., u, € C[S,]. Then every Ty, of T lies in
the intersection J = i, Ji of those left ideals Ji of C[S,] which are annihilated
by the group ring elements uf, i.e. Ji, :={f € C[S,]| f-uf = 0}.

Proof. On account of (47) the relations (50) are equivalent to
Vb = {vy,vgy ..., 0.} CV: Ty-uw:=0 , j57=12..,m .0

The summary of propositions 13 and 14 reads: If T € 7.V is a tensor which
possesses a tensor symmetry and/or satisfies linear identities, then all Ty of T' lie
in the intersection .

I = ﬂ I;

J=1



InEAL DECOMPOSITIONS 23

of certain left ideals I; C C[S,] which are given by generating or annihilating
elements. Using proposition 6 we can construct a generating idempotent e =
€1+ ...+ e, of the intersection I and a decomposition of e into primitive pairwise
orthogonal idempotents e;. Then this idempotent e decomposes every Ty of T'
since we can write

Vb=Hvy,...,0.} CV: Ty, =Tyoe = Th-e1+...4T- ¢,
This relation is equivalent to
T = &T+...+€T . (51)

Formula (51) is a decomposition of the tensor 7" into parts belonging to so-called
symmetry classes” which are generated by the idempotents e} (see [1, p.127]).

The knowledge of a decomposition (51) of a tensor 7' can be very helpful
in solving reduction problems which occur with symbolic tensor calculations by
a computer. Let us consider a tensor expression 7 which is a complex linear
combination of certain isomers of a tensor T' € 7.V,

Ty i = ZﬁpTip(l)...ip(r) ) ﬁp € (C 9 P gsr ) (52>

peEP

where the sum runs over a subset P of the symmetric group §,. We assume that
all T,, belonging to T, lie in a left ideal I := C[S,] - @ with known generating
element a. Then there arises the problem to determine linear dependences be-

tween the terms Tip(l)...i and to reduce (52) to a linear combination of linearly

p(7)
independent termes.

Lemma 5 A relation (52) exists between 7,7 € T,V if and only if there holds

true

Vo={vi,...,0.} CV: n(id) = > B8, To(p) . (53)

pEP

Proof. (52) is equivalent to
Vb= (oo} OV s vl = Y BTy i ol

pEP

which can be written as (53). O

A set of complex numbers {z, | p € S,} determines a linear identity for all
elements of the left ideal I if

Vviel: > z,f(p) = 0. (54)

PES,

“Let K be a right ideal of C[S,]. Then the symmetry class of tensors from 7,V characterized
by K is the subspace Sk :={fT | fe€ K,T € 7.V} of 7.V. Every generating idempotent e
of K generates the symmetry class Sk, i.e. Sk = {eT | T € 7, V}.
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If we know a non-trivial identity (54) with z, = 0 for all p € S, \ P, we can use
it to eliminate a term T3(p) in (53). This leads to reduced variants of (53), (52)

y(id) = Z Bp To(p) & Tiri, = Z Bp Tyt pPcr.
peEP pEP

/

Since every f € I = C[S,] - a can be written as f =g-a =3, yes, g(p)a(p’)p-p
with a g € C[S,], we obtain from (54)

VgeCS]: > ( Y ap™! -p’)fcpf)g(p) =0.

PES, p'ESy

From this relation there follows the homogeneous linear equation system

Z a(p™ -pry = 0 , peS, (55)

pIESr

for the numbers x, that describe the linear identities of I. The coefficient matrix
A= [a(p™ - p')]ppes, of (55) is a S,-circulant of a € C[S,] (see [3, p.141]).
The set {p-a | p € S,} generates the left ideal I = C[S,]-a and can be reduced

to a basis of I. Because

p'€S, p" €S,

we see that
rank A = dim/. (56)

Now, if a decomposition (51) of T" is known we can write (53) as

n(id) = 3% A (T)(p) (57)

k=1 peP

and reduce the subsums 37 cp 3, (efT)s(p) separately. The (e;T); lie in the mi-
nimal left ideals [}, := C[S,] - e since (e;T)y = Ty - ;. Then the equation system
of type (55) for the reduction identities belonging to an ideal I} possesses the
circulant Fj of e as coefficient matrix. But rank £, = dim I, is much smaller
than rank A = dim 7 such that we have better conditions to solve (55).

Further details of the handling of a system (55) can be found in [6]. In
particular, a method is described in [6] which allows to determine a set of linearly
independent rows of a system (55) without using the Gaussian algorithm.
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