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Group Actions on Magic Squares

Wolfgang Miiller

Abstract: Two types of magic n X n-squares are studied — the pandiagonal squares
and the W-squares, in which the coefficients of all 2 x 2-submatrices have the same
sum. For 4 < n < 8 big groups — in general wreath products — are described which
act on sets of these magic squares.

In the paper [2] we have studied two types of magic 4 x 4-squares: P- and W-
squares. These types admit cyclic permutations of rows and columns. Here
we give some results on such n x n-squares, especially for n < 8. First we
recall some definitions.

A magic n X n-square is a n x n-matrix (a;;) with coefficients
{a;j|4,7=1,...,n} ={1,2,...,n*} CN,
such that the coefficients of every row and every column yield the same sum

n*(n*+1) 1 n,,
S s ) L Y
s 5 - 2(n—l—)

a) A magic square is called perfect or pandiagonal or P-square, if the
coefficients of every diagonal (and its parallels) have also sum s.

b) A magic square is called W-square, if the coefficients of every 2 x 2-

submatrix
A, Qi,5+1
Ait1,5  Qit1,5+1

with 4,5 = 1,...,n and cyclic notation of the indices have the same
sum ¢. (The only possibility is ¢ := 2(n® + 1).)

Now we list simple properties of such magic squares.
Lemma 1.

a) The set of all P-squares resp. W -squares is closed under cyclic permu-
tations of rows and columns.



b)

c)
d)
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Every W -square is completely determined by its first row and its first
column.

If n is odd then there exists no W -square.

If n = 2 mod 4 then there exists no P-square.

Proof. a,b) Trivial

c)

Considering pairs of neighbouring 2 x 2-submatrices we see that
a1 + Q12 = a31 + 032 = A51 +As2 = .. .,

Q11+ G21 = Q13 + Qg3 = G15 + Qo5 = - ..

If n is odd then we get a1 + a19 = a91 + a92 and aqy + as; = 19 + ag9.
By adding these equations it follows a;; = ag9. A contradiction to the
condition that the coefficients of a magic square are pairwise different.

Let be n = 4m + 2 with m € N. If we denote the sum of all coefficients
in the k-th row resp. column resp. diagonal by

n n
Ry = E Apj Cy = E ik,
j=1 i=1

(1) n n
.—— [
Dy = E Ui ki1, Dy:= E Qi kit 1,
=1 im1

we get
n n—1
Y (k=1)Ry+ Y k(Dy—Cy) =
(2) k=2 k=t n -2 n
= n(z Za/ij + Z in) = 0 mod 2.
i=3 j=1 =2

Since in a P-square the sums Ry, Cy, D;, are all equal to s the expression
(2) equals

D (k—1)s = @-g(n%—l) = (2m+1)*(n—1)(n*+1) = 1 mod 2.

A contradiction. O
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Lemma 2. In every n x n-W-square (a;;) the following diagonal sums (no-
tation as in (1)) are equal:

D1:D3:...:Dn_1:Di:Dg:...ZD;_l

and
D2:D4:...:Dn:D’zzDﬁl:...:Dg.

Therefore every n x n-W-square (a;;) with Dy = s is a P-square.

Proof. Let n = 2m be an even integer. In an n x n-W-square the coefficients
depend on the first row and first column as follows:

—ai1+ai;+a;;  if¢and j odd
a1 +a1; —a;;  if i odd and j even
a1 — a1 +a;; if i even and j odd

t—a11 —a;—a;; ifiand jeven

Gij =

By inserting these expressions in the “half diagonals”

m—1 m—1
— ro
dij = E Qit2k,j+2k and d;; = E Q2K j—2k

we obtain using the abbreviations

m m
U:= E 1,21, V= E 1,2k,
k=1 =1

k
m m
Ut R Vt —
= a2k—1,1, = A2k,1

only four different values

(3)

—4&11 +U + Ut if 7 and _] odd
da;1 +V = U if 7 odd and j even

dij = di da; — U+ V? if 7 even and j odd
4(t —ay) —V =Vt ifiand j even
From these relations the assertion follows. O

For later use we denote by S,, the symmetric group over n elements and by
M,, the hyper-octahedral group, i.e. the group of all rigid motions 7 of the
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n-dimensional hypercube [—1,1]" C R* with 7([—1,1]"*) C [-1,1]". M, is a
subgroup of the orthogonal group O, and isomorphic to the wreath product
751 Sy Tts center C'(M,) is generated by the antipodal map, so C(M,) has
order 2.

Now let (aij)ij=1,..,n be a W-square. Starting from the first row and first
column we get by means of the sum condition in the 2 x 2-submatrices

g =4 YL + 1,541 if 7 odd
al:] az;]+1 - t — Qi — ) f .
1, — Q1541 17 even

and
;1 + Qit11 if j odd

Qi+ Gig1,5 = Py
d i+l { t—a;1 — a1 if j even

It follows that the set of all W-squares is closed under the following opera-
tions:

Permutations of the odd rows 1,3,...,n—1
Permutations of the even rows 2,4,...,n
Permutations of the odd columns 1,3,...,n —1
Permutations of the even columns 2,4,...,n

Interchanging of odd and even rows {1,3,...,n— 1} + {2,4,... n}
Interchanging of odd and even columns {1,3,...,n—1} > {2,4,...,n}
Transposing the square

So the following theorem is clear.
Theorem 3. Let m be an integer and n = 2m. The wreath product
(S 18) 18 = (S X Sn) X Sa) X (S X Si) X 82)) X S
acts faithfully on the set of all n x n-W-squares. By this action the set
{D1, D} of diagonal sums is preserved.

4 X 4-Squares

In [2] we have proved that every P-square is a W-square and that there is a
close connection to the cube problem:
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How to relate the integers 1,2,...,16 to the 16 vertices of the
4-dimensional cube [—1,1]* such that all squares on its surface
have equal sums s =t = 347

If this problem is solved then there is the question how to put the integer
Zabea Telated to the vertex (a, b, ¢, d) where a,b,c,d € {—1,1}, into the 4 x 4-
matrix such that every 2 x 2-submatrix corresponds to a square on the cube?
This can be done in the following way (unique up to motions in My).

T T T4y T
Tt— Tt Tttt T4
Tpt—— Tht—+ T+ T4
Tp——e Tt Tp—ft Ty
In this matrix only “—” is written for “—1” and “+” for “+1”. From [2] we can

deduce that every P-square arises from one rigid motion of the marked hy-
percube [—1,1]* where the integers 8,12, 14,15 are neighbours of the integer
1, and that every W-square arises from one rigid motion of the 5-dimensional
marked hypercube [—1, 1]° with equal square sums s = 34 where the integers
8,12,14, 15,16 are neighbours of the integer 1. In this latter cube antipodal
vertices have got the same integer. Thus the action of the antipodal map is
trivial on the latter cube. Summing up we have

Theorem 4.

a) The hyper-octahedral group M, acts faithfully and transitively on the
set of all 4 x 4-P-squares, i.e. there exist precisely |M,| = 2* - 4! =
384 4 x 4-P-squares.

b) The factor group Ms/C(Ms) acts faithfully and transitively on the set of
all 4x 4-squares, i.e. there exist precisely |Ms|/2 = 2*-5! = 1920 4 x4-
W -squares.

5 X 5-Squares

By Lemma 1c) only P-squares can exist. By the condition that the coefficients
of every row, column and diagonal yield the same sum s = 65 we have 20
equations with 25 unknowns. It is easy to see that the rank of the coefficient
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matrix of this linear equation system is 17. So the solution space is an affine
space (over Q) spanned by every 9 of the following 10 permutation matrices

10000 010O0OO0O OOT1O0OO O0OOOTI1ITUO OOTUOTU O?1
00100 00O0OI1O0 OOOO0OCTI 100O0O0O O0OI1O0O0TU0O
00001 100O0OO0 O0O0I1O0O0OO0DTO0OO0ODI1TO0OO0O O0OOO0OTITO
01000 O0O1O0OO OOOI1O0 OOOOTI1T 10000
00010 0O0O0OO0OTI1 100O0O0O OI1O0O0O0O OO0OT1TO0OFPO
10000 010O0O0O OOTI1O0OOO0OOOTI1IO OOTUOTV O?1
00010 0O0O0OO0OTI1 100O0O0O O0OI1O0O0OO0O OO0OT1TTO0OFPO
01000 O0OI1O0OO OOOI1O0O OOOOTI1T 10000
00001 100O0O0 O1O0O0OO0OO0OO0ODTI1TO0OO0O OO0OO0OTI1TO
00100 00O0OI1O0 O0OO0OO0OO0OCTI 100O0O O0OI1TO0O0OTDO

Note that in these matrices there is exactly one integer “1” in every row resp.
column resp. diagonal. Therefore every P-square is a linear combination of
these matrices, i.e. it has the form

a; Qz az a4 as by by b3 by bs
a4 a5 aip Gz a3 b3 by bs b1 by
(4) s a3 a4 az ap + b5 b1 bg b3 b4
as a1 G2 a3z Q4 by bz by bs b
a3 Q4 a5 a1 Qg by bs b1 by b3

where a;,a; € Q and
(5) {ai+0b;|4,7=1,...,n} ={1,2,...,25}.
From a; +b; € Z for 1,5 = 1,...,5 it follows that
a1 =ay, = a3 = a4 = as mod 1

and
by = by = by =by =bs mod 1.

So without loss of generality it suffices to look for integers a;,b;. It is an
elementary task to prove the following

Lemma 5. The unique solution of (5) with a;,b; € Z and

l=ag1<am<az<ag<asand 0 =b; < by < by < by < by
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18
(al, Q9, a3, a4, 05) = (1, 2, 3, 4, 5), (bl, bg, b3, b4, b5) = (0, 5, 10, 15, 20)

Since every permutation of ay, ..., a5 and of by, ..., bs and also interchanging
of {ai1,...,a5} and {by,...,bs} gives a solution of (5) we have

Theorem 6. [3], [4, §22] Every 5 x 5-P-square is of the form (4) with

{{al,...,a5},{b1,...,b5}} _ {{1,2,3,4, 5}, {0, 5, 10, 15,20}}.

This fact has as group theoretical consequence

Theorem 7. The wreath product 85182 = (S5 X S5) X Sy acts faithfully and
transitively on the set of all 5 X 5-P-squares.

6 X 6-Squares

By Lemma 1d) we have to consider only W-squares. By the aid of a computer
we have found

Theorem 8. There are 41 (S3152)1Sz-orbits on the set of all 6 x6-W -squares.
Representatives of these orbits are given by ayy = 1 and

Q21 Aa31 Q41 0Aas1 A1 a2 13 A14 Q15 QA1
34 2 35 3 36 9 19 24 25 33
34 2 35 3 36 9 19 24 31 27
30 4 33 7 36 9 19 26 21 35
30 4 33 7 36 9 19 26 29 27
30 4 33 7 36 9 19 27 20 35
34 2 35 3 36 9 19 27 22 33
30 4 33 7 36 9 20 25 21 35
30 4 33 7 36 9 20 25 29 27
30 4 33 7 36 9 21 25 29 26
34 2 35 3 36 9 22 21 25 33
34 2 35 3 36 9 22 21 31 27
34 2 35 3 36 9 25 21 31 24
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Go1 (31 Q41 Ga51 Gel Q12 Q13 Q14 Q15 Aip
288 5 32 9 36 11 15 24 25 35
2885 32 9 36 11 15 24 27 33
2885 32 9 36 11 15 33 16 35
288 5 32 9 36 11 16 23 25 35
288 5 32 9 36 11 16 23 27 33
288 5 32 9 36 11 25 23 27 24
27 7 32 9 35 12 13 24 25 36
27 7 32 11 33 12 13 24 25 36
27 7T 33 8 35 12 13 24 25 36
27 8 31 9 35 12 13 24 25 36
27 8 31 11 33 12 13 24 25 36
27 9 31 11 32 12 13 24 25 36
31 3 32 9 35 12 13 24 25 36
31 3 32 11 33 12 13 24 25 36
31 3 3 8 35 12 13 24 25 36
32 3 33 7 35 12 13 24 25 36
34 2 35 3 36 21 7 24 25 33
34 2 35 3 36 21 7 24 31 27
34 2 35 3 36 21 7 27 22 33
288 5 32 9 36 23 3 24 25 35
288 5 32 9 36 23 3 24 27 33
288 5 32 9 36 23 3 33 16 35
29 4 33 8 36 24 3 25 23 35
2805 32 9 36 24 3 33 156 35
34 2 35 3 36 24 7 27 19 33
30 4 33 7 36 25 3 26 21 35
30 4 33 7 36 25 3 26 29 27
30 4 33 7 36 25 3 27 20 35
30 4 33 7 36 26 3 27 19 35.

It is eye-catching that ten orbits belong to each of the regular vectors

1, 34, 2, 35, 3, 36)
1, 30, 4, 33, 7, 36)
1, 28, 5, 32, 9, 36)

(
(
(
(1, 12, 13, 24, 25, 36)
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If these vectors are in a row resp. column of a W-square then even the
symmetric group Sg is acting on the rows resp. columns.
For example, two neighbouring rows can be interchanged as follows:

a b ¢c d e f e d d v
a b Jd d e f e f ¢ d a b

while the other rows remain fixed. (Compare the values a + b, b+ ¢, ¢ + d,
d+e,e+ fwitha +0, 0+, +d,d +¢€, e+ f'. They form an arithmetic
sequence.)

As a consequence we can consider the corresponding 40 orbits as 8 orbits of
the group (S318s) x Se.

7 X T-Squares

By Lemma 1c) only P-squares can exist. Similar to the case n = 5 one can
show that every 7 x 7-P-square is the sum of the four matrices

/ a; Qo a3 a4 Qa5 Qg ap / bl bg b3 b4 b5 bg b7 \
g Qa7 a1 Q2 az a4 Qs b5 b(; b7 b1 b2 b3 b4
a4 Qa5 Qg Qa7 a1 G2 ag bQ b3 b4 b5 b6 b7 b1
as a3 as as ag ar a; |+ | bs by by by b3 by bs
ay Qi G2 a3 Q4 Qs Gg b3 b4 b5 bG b7 b1 bg
as Qg a7 a1 Qo a3 Q4 b7 bl bg bg b4 b5 b6
az ag G5 Gg a7 G1 Ay \ by bs bs by by by b3 /

( Ci Cp C3 C4 Cy Cg Cq \ ( d1 d2 d3 d4 d5 ds d7
Ch Cy Cg Cr C1 Co9 C3 d3 d4 d5 d6 d7 d1 dg
Cr Ci Cp C3 C4 Cz Cg d5 dG d7 d1 d2 d3 d4

+ C3 C4 Cs; Cg Cr C1 Co + d7 dl d2 d3 d4 d5 d6
Cg Cr C1 Cp C3 C4 Cy d2 d3 d4 d5 dﬁ d7 dl
Cy C3 C4 Cy Cg Cr (C1 d4 d5 d6 d7 dl d2 d3

\ Cp Cg C7 C1 Co C3 C4 K d6 d7 d1 d2 d3 d4 d5 /

where the four vectors

(al,...,a7), (bl,...,b7), (Cl,...,C7), (dl,...,d7)

are in Z7 such that
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(6) {ai + bigr + ciqor +diga |4,k =1,..., 7} ={1,2,...,49}

This condition is fulfilled if two of these vectors are zero vectors and the other
two are equal to (1,2,...,7) and (0,7,...,42). Starting with these special
vectors we get by permuting the components of each non-constant vector
altogether (7!)?-12 7 x 7-P-squares. So we have an action of the group
S; x §; and 12 orbits.

The following question is open: Are there more P-squares, i.e. exists a solution
of (6) with three or four non-constant vectors in Z"?

8 X 8-Squares

From now on a magic square which is simultaneously a P- and a W-square
is called a PW-square.

We proceed analogous to the case n = 4: We relate the integers 1,2,...,64
to the vertices of a 6-dimensional cube, i.e.

{xabcdef la,b,c,d,e, f € {1, 1}} = {1,2,...,64},

by choosing the integers 32,48, 56,60, 62,63 as neighbours of the integer 1
and by using the sum condition that every square on the surface of this
hypercube has sum ¢t = 130. So we get a marked hypercube.

There are four essentially different ways (with respect to the motion group
Ms) how to put these integers into a 8 x 8-matrix such that every 2 x 2-
submatrix corresponds to a square on the surface of this hypercube. (One
sees easily that in every 2 x 2-submatrix

( Ta Tp ) with a, 3,7,8 € {~1,1}°
Ty g

the vectors in every pair

(o, 8), (2,7), (B,6), (7,9)
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only differ in one component and this component is the same in (o, §) and
(8,9) and also in (o, ) and (8, 6). Going from left to right in a row or from
top to bottom in a column three components can be changed as follows:

or

——————————— e I e i o
——t———  ——t——+ ——t—F+ =+t =ttt ——tt—— ——— -
e e e o R o e e e s e e e o e
FHt———  HHt——+ Attt At At A= A
F—t——— H—+——+ H—t—t+ A=+ttt A—tt—+ A—t+—— F—t+t— =+
Fo——— Fo———+ A==+t =ttt ==t AF——F—— F——t+—  +———t-—
FH———— H+———+ H+——t+ Ht—tt++ A=t —+  H—t——  H—+t— =+
—t————  —t———+ ==+ =ttt At == == -

For example we get:

1 63 4 57 6 60 7 62
o6 10 53 16 51 13 50 11
25 39 28 33 30 36 31 38

8 58 5 64 3 61 2 59
41 23 44 17 46 20 47 22
32 34 29 40 27 37 26 35
49 15 52 9 54 12 55 14
48 18 45 24 43 21 42 19

Theorem 9. In every square arising from the above marked 6-dimensional
cube the following relations hold:
dij 1= Gij + Qiyajya + Gitajra + Gige e =1 = 130
(7) dii=0;;+ Qipoj o+ Qita i+6j—6 =1 =130
Z] Y] ’L—|—2,‘]72 a”‘+4,]74 + a1+6,‘]76 - -
with 1,7 = 1,...,n and cyclic notation of the indices. These squares are lying
m (g) = 20 orbits, consisting only of PW -squares, of the group (S;182)1Ss.

Proof. With m = 4 we proceed as in the proof of Lemma 2. So we get for
dij, d;; only four different values
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(8) —4a;; +U + tUt, At — ary) — Vt— Vi,
day, +V — U, da;1 — U+ V.
Now we take the embedding above, i.e. a;; = 1 and
9) {a12, aiq, a1s, ao1, a1, as1 } = {32, 48, 56, 60,62, 63}.
Using the square sums we get:

a7 =t — a1 —ae — aig, G13 =1 — ay — G2 — a1g,
a5 =t — a1 — Q12 — Gie, Q14 = 2011 + Q12 + Q16 + a8 —

and further

(10) U =3t—2(a11 + a1z + a1 + a15), V = 2(a11 + a12 + a1 + a15) — t.
Similarly we have

(11) Ut = 3t —2(a11 + a1 + a1 +as1), V' = 2(ay; + a1 + ae1 + ag) —t.

By inserting (10) and (11) into (8) and then using (9) the assertion follows.
In case of the other embeddings one can proceed in an analogous manner.
The assertion on the orbits follows from Theorem 3. O

Now it should be mentioned that one can get 4 -25.7! 8 x 8W-squares
by means of the marked 7-dimensional cube in which the neighbours of 1
are 32,48, 56,60, 62,63,64 and all square sums are equal to ¢ = 130. These

squares are lying in %(g) (g) = 70 orbits of the group (S;282) 1 Ss.

Much more 8 x8-W -squares, namely 40 orbits of the group (S5,2S5,) x Sg can be
obtained from the following 20 regular W-squares and their corresponding
transposed W-squares using the special interchange (described in the case
n = 6) of neighbouring columns resp. rows:
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G21 G31 Q41 Gs1 Ge1 Gr1 A4gl G2 (13 Q14 Q15 G16 Q17 Q18
61 2 62 3 63 4 64 60 53 16 17 44 37 32
8 H3 H2 45 44 25 32 %
60 9 52 45 24 37 32
60 53 16 45 24 25 36
o8 3 60 5 62 7 64 63 50 16 17 47 34 32
8 50 b5 42 47 25 32«
63 9 55 42 24 34 32
63 50 16 42 24 25 39
52 5 56 9 60 13 64 63 50 16 17 47 34 32
14 50 61 36 47 19 32«
63 3 61 36 30 34 32
63 50 16 36 30 19 45
40 9 48 17 56 25 64 63 38 28 5 59 34 32
26 38 61 36 959 7 32 %
63 3 61 36 30 34 32
63 38 28 36 30 Y
16 17 32 33 48 49 64 63 14 52 5 99 10 56
50 14 61 12 59 7 56 %
63 3 61 12 54 10 56
63 14 52 12 54 Y

In these (S418,) x Sg-orbits of W-squares one can find 60 (S;282)1S;-orbits of
PW-squares. Representatives of these PWW-squares arise from the preceding
lines indicated with a star “x”:

In the corresponding PW-squares (cy, ..., cs) where ¢; denotes the column
i, the columns are changed by using three maps (later written above the

columns)

_:ZS—)Zs’(a,b’C,d,e,f,g,h)

— (g,h,eafacadaa'ab)a
:Z8—>Z8,(a,b,c,d,e,f,g,h) — (hagafaeadacabaa)a
~:Z8_>Z8a(aabacad)€af:gah) — (b,a,d,c,f,e,h,g).
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From the PW-square (c1, ¢2, ¢3, ¢4, C5, Cg, C7, ¢g) five PW-squares are deduced:

(ClaCQac3ac4a56765768’E7)7
(01702a64763ac5706768’67)7
e o )
(Cl,03,02,04,05,07,06,08),
) -~
(Cla03’02504’08506567’05)7

[ ) [ ) L ] [ )
Cy,C7,C3,Cs5,Cy,Cg,Co,Cg).
To each of these six PW-squares the map
(01, C2, C3, C4, Cs, 06,07,08) — (01,02, C3, C4, C5, Cp, Cr, Cs)

supplies another PW-square. Is there an extension of the group $,1S; behind
these 12 column transformations?

At the end of his paper [1] Fitting has given two construction methods for
8 x 8-P-squares which are in general no W-squares. Each method supplies
more than 10'* P-squares. How to describe the groups acting on these sets?
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