
Séminaire Lotharingien de Combinatoire, B39a(1997), 28pp.

SCHUBERT FUNCTIONS AND THE NUMBER OF REDUCED
WORDS OF PERMUTATIONS

RUDOLF WINKEL

Abstract: It is well known that a Schur function is the ‘limit’ of a sequence of Schur
polynomials in an increasing number of variables, and that Schubert polynomials gen-
eralize Schur polynomials. We show that the set of Schubert polynomials can be or-
ganized into sequences, whose ‘limits’ we call Schubert functions. A graded version
of these Schubert functions can be computed effectively by the application of mixed
shift/multiplication operators to the sequence of variables x = (x1, x2, x3, . . . ). This
generalizes the Baxter operator approach to graded Schur functions of G.P. Thomas,
and allows the easy introduction of skew Schubert polynomials and functions.

Since the computation of these operator formulas relies basically on the knowledge of
the set of reduced words of permutations, it seems natural that in turn the number of
reduced words of a permutation can be determined with the help of Schubert functions:
we describe new algebraic formulas and a combinatorial procedure, which allow the ef-
fective determination of the number of reduced words for an arbitrary permutation in
terms of Schubert polynomials.

Let Sn denote the symmetric group on the ‘letters’ {1, . . . , n} and Z[x1, . . . , xn]Sn

the Z-algebra of symmetric polynomials in n variables. There are several well
known Z-bases of this algebra (cf. [M1, Sa]), which are indexed by the partitions
λ ≡ λ1 . . . λs (λ1 ≥ . . . ≥ λs ≥ 1) with length l(λ) := s ≤ n. The most

important of these bases are the Schur polynomials s
(n)
λ (x) := sλ(x1, . . . , xn), which

can be defined alternatively by determinant formulas or combinatorially with the
help of semistandard Young tableaux. The Schur polynomials are cumulative in
the following sense: if Z[x1, . . . , xn]Sn is extended to Z[x1, . . . , xn, xn+1]Sn+1 , then

(setting s
(n)
λ (x) := 0 for λ with l(λ) > n) one has

∀λ : s
(n)
λ (x1, . . . , xn) = s

(n+1)
λ (x1, . . . , xn, 0) .(0.1)

In other words:

s
(n+1)
λ (x) = s

(n)
λ (x) + ‘non-negative terms containing xn+1, but no xν with ν > n+ 1’.

It is therefore possible to extend the Schur polynomials to Schur functions sλ(x),
which are homogeneous formal power series contained in the direct limit

Z[[x]]S∞ = lim
←−n

Z[x1, . . . , xn]Sn
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such that s
(n)
λ (x) = sλ(x1, . . . , xn, 0, . . . ). Since the Schur polynomials are homo-

geneous of degree |λ| := λ1 + . . . + λs the natural grading is not by degree but
by the number of variables appearing; and cumulativeness shows, that for fixed λ
the complete information about all Schur polynomials and the Schur function is
contained in the graded Schur function:

s[λ](x) := (s
[1]
λ (x), s

[2]
λ (x), s

[3]
λ (x), . . . )(0.2)

with nth part

s
[n]
λ (x) := s

(n)
λ (x)− s(n−1)

λ (x) (s
(0)
λ (x) := 0) .(0.3)

G.P. Thomas has shown that the graded Schur functions s[λ](x) can be repre-
sented by closed formulas, which are very well suited to computation; namely

s[λ](x) =
∑

ζ∈SY T (λ)

Bζ(x) ,(0.4)

where SY T (λ) is the (finite) set of standard Young tableaux of shape λ and the
expressions Bζ(x), which are easily computed for a given ζ, are a mixture of mul-
tiplication and shift operators applied to the basis sequence x = (x1, x2, x3, . . . ) of
variables.

In [W3] we have shown that this approach of Thomas can be extended to the
1- and 2-parameter families of Hall-Littlewood, Jack, and Macdonald symmetric
polynomials, which contain Schur polynomials for special choices of parameters. In
this paper we will introduce graded Schubert functions, which extends the Schur
case in another direction:

Due to the work of A. Borel (1953), I.N. Bernstein, I.M. Gelfand, and S.I. Gelfand
(1973), M. Demazure (1973-74), and finally A. Lascoux and M.-P. Schützenberger
(mainly 1982-87) the Schubert calculus for the cohomology ring of flag manifolds
has been shown to have an isomorphic realization in terms of polynomials. In fact
to every finite permutation π contained in some Sn there is associated an in general
nonsymmetric Schubert polynomial Xπ ∈ Z[x1, . . . , xn]. The set of all Schubert
polynomials forms a Z-basis of Z[x] and contains the Schur polynomials as special
cases, namely, Xπ is a Schur polynomial exactly when π is a Grassmannian per-
mutation π(λ, n) (cf. Sec.1 below). More information about the Schubert calculus
can be found in [Hi] and about Schubert polynomials in [LS, M2, M3, W1].

In Section 1 we will see that the Xπ are cumulative with respect to a certain nat-
ural embedding of the symmetric groups Sn ↪→ Sn′ for n < n′ (Theorem 1.1). This
will allow us to introduce the (graded) Schubert functions X[π], which generalize
(graded) Schur functions.

In Sections 2 and 3 we extend Thomas’ formula for graded Schur functions
(0.4) to the Schubert case (Theorem 3.9). The sets SY T (λ) of standard Young
tableaux will be seen to be generalized by the sets R(π) of reduced sequences for
π. Recall that Sn is generated by the elementary transpositions σi = (i, i + 1)
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(i = 1, . . . , n− 1) subjected to the relations

(i) σ2
i = id, (ii) σiσi′ = σi′σi , if |i− i′| ≥ 2, and (iii) σiσi+1σi = σi+1σiσi+1 .

For π = σa := σa1 . . . σap the sequence a ≡ a1 . . . ap resp. the word σa is said to
be reduced (for π) iff the number p is minimal. Then l(π) := p is called the length
of π. We use the notations R(π) for the set of reduced sequences for π, and

r(π) := |R(π)| ,(0.5)

fλ := |SY T (λ)| .(0.6)

A basic fact underlying the generalization of Schur functions to Schubert functions
is that r(π(λ)) = fλ, where π(λ) is a Grassmannian permutation associated to λ.
This can be proved for example by a simple combinatorial bijection between the
two sets R(π(λ)) and SY T (λ) (cf. [W4]).

Moreover, in Section 3 we introduce skew Schubert polynomials and functions.
In Section 4 we derive a formula for the number of terms in each component

of X[π], which generalizes the results of [W3, Sec.3] in the Schur case, and we
recall some important results of I.G. Macdonald, which relate reduced words and
Schubert polynomials resp. functions. Moreover we introduce ‘hexagon free’ and
‘decomposable’ permutations, which will simplify in many cases the computation
of the numbers r(π).

In Section 5 two generalizations of binomial coefficients will be discussed: first
by the numbers fλ and r(π) in a lattice theoretic context, and second with the
help of graded Schubert functions.

The final Section 6 begins with a brief survey of what is known about the num-
bers r(π). There are explicit formulas in special cases, and theoretical results,
which relate reduced sequences, balanced labelings, Stanley functions, and Schu-
bert polynomials ([S1, EG, FS, FGRS]), but there is no general formula (see how-
ever Rem.6.13). We use initial parts of graded Schubert functions to provide new
effective algebraic formulas (Theorems 6.3, 6.5, 6.7) and a combinatorial method
(Cor.6.11), which enable the determination of the r(π)’s in general.

1. Schubert functions

We recall some facts about permutations, their codes, and Schubert polynomials.
For every permutation π ∈ Sn the Schubert polynomialXπ ∈ Z[x1, . . . , xn] is defined
as the result of applying a certain π-dependent sequence of divided differences to
the monomial xn−1

1 xn−2
2 . . . x0

n. The divided differences ∂i (i ∈ N) are defined
by ∂if = (f − σi(f))/(xi − xi+1), where f is an arbitrary function of x, and the
elementary transposition σi acts on f by interchanging the variables xi and xi+1.

An important elementary device for working with permutations and Schubert
polynomials is the Lehmer code of a permutation: for π ∈ Sn the Lehmer code
L(π) is an element of the set Ln := { ln−1, . . . , l0 | 0 ≤ ln−ν ≤ n − ν, ν =
1, . . . , n } defined by ln−ν(π) := ]{ j | ν < j, πν > πj} for all ν ∈ {1, . . . , n}, e.g.
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L(361542) = 240210 or L(1257346) = 0023000; this sets up a bijection between Sn
and Ln (cf. [W1]).

A permutation π is called Grassmannian iff there is a partition λ ≡ λ1 . . . λs
and a natural number n ≥ l(λ) = s such that L(π) = 0 . . . 0 λs . . . λ1 0 . . . 0
with n− s ≥ 0 zeros on the left and (at least) λ1 zeros on the right. An alternative
definition is: π is called Grassmannian iff π has a at most one descent, i.e. there
is at most one i with π(i) > π(i+ 1). Anyway

π(λ, n) := L−1(0 . . . 0 λs . . . λ1 0 . . . 0) .(1.1)

Then a result of fundamental importance is

Xπ(λ,n) = s
(n)
λ (x) ,(1.2)

in other words: a Schubert polynomial Xπ is a Schur polynomial exactly when π
is Grassmannian (see [M3] or [W1] for a proof).

The exact number of zeros on the right side in L(π(λ,m)) is irrelevant – provided
we get a well defined Lehmer code –, because in general the Schubert polynomials
are invariant under left embedding of the symmetric groups: the left embedding of
Sp into Sp′ (p < p′) is given by π 7→ π(1) . . . π(p) p+ 1 . . . p′, and the invariance
of Schubert polynomials as Xπ = Xπ(1)... π(p) p+1 ... p′ .

On the other hand for q := p′− p > 0 one has the right embedding of Sp into Sp′
given by

π 7→ 1 . . . q q+(π) := 1 . . . q (π(1) + q) . . . (π(p) + q) ,(1.3)

but this time the corresponding Schubert polynomials behave cumulative:

Theorem 1.1. Schubert polynomials are cumulative under right embedding of the
symmetric groups, i.e. let π′ be the right embedding of a permutation π ∈ Sp into
Sp′ with q := p′ − p > 0, then

Xπ′ = Xπ + ‘non-negative terms’ .(1.4)

Proof. Clearly it suffices to show the assertion for q = 1. Set π′ := 1 1+(π) and
π′′ := 1+(π) 1, then π′ = π′′σp . . . σ1 and repeated use of [W1, Cor.6.8] gives:

Xπ′ = X(π′′σp... σ2)σ1 = x−1
1 Xπ′′σp... σ2 + ‘non-negative terms’ = . . . =

(x1 . . . xp)
−1Xπ′′ + ‘non-negative terms’ .

Now [W1, Prop. 3.3] says Xπ′′ = (x1 . . . xp)Xπ, which proves (1.4).

Theorem 1.1 enables the following

Definition 1.2. Let π ∈ Sn be an arbitrary unembedded permutation, i.e. π is not
left embedded (π(n) 6= n), and π is not right embedded (π(1) 6= 1). Set π(0) := π
and for m ∈ N let π(m) := 1 . . . m m+(π) the right embedding of π into Sn+m.
Then the graded Schubert function associated to π is

X[π] := ( 0, . . . , 0, Xπ[0] , Xπ[1] , Xπ[2] , . . . )(1.5)
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with n− 2 leading zeros and mth part

Xπ[m] := Xπ(m) −Xπ(m−1) (Xπ(−1) := 0) .(1.6)

The Schubert function associated to π is the formal sum

X̃π :=
∑
m≥0

Xπ[m] .(1.7)

Remark 1.3. There are currently four possibilities to define Schubert polynomi-
als: (1) the algebraic definition based on divided differences (as indicated above),
(2) combinatorial rules based on box diagrams (similar to Ferrer diagrams, but
with movements of boxes instead of numberings) (cf. Sec.6 below), (3) a semi-
combinatorial rule based on reduced words: the BJS-formula due to S.C. Bil-
ley, W. Jokusch and R.P. Stanley ([FS]) (cf. Sec.2 below), and (4) two algebro-
combinatorial methods, which are consequences of Monk’s rule: the “transition
equation” method of Lascoux and Schützenberger [M3, (4.16)], and the “ascent-
descent” method introduced in [W1, Sec.6].

For the proof of Thm.1.1 we have used the algebraic definition, but it is equally
possible to proceed from one of the others: the cumulativeness of Schubert poly-
nomials follows from the combinatorial definition via box diagrams with the same
ease, as the cumulativeness of Schur polynomials from their combinatorial defini-
tion via semistandard Young tableaux. (In fact for all m ∈ N the box diagrams for
the sequence of right embeddings π(0), . . . , π(m) form an ascending chain of prin-
cipal box diagrams in the K-derived set K(π(m)) (cf. [W2, Thm. 2.7]) ). With
regard to the “ascent-descent” method (4) the result is immediate from the natural
embedding of the right weak Bruhat order on Sn into that of Sn+1 and with regard
to the BJS-formula compare the proof of Thm.6.8 below.

Note that every finite permutation is of the form π(m) for some unembedded π
and a natural numberm. Therefore every Schubert polynomial occurs as the sum of
the initial parts of some graded Schubert function. For unembedded Grassmannian
permutations π(λ) := π(λ, l(λ)) we clearly obtain (setting Xπ(λ,m) = 0 for m < l(λ)
):

X[π] = s[λ](x) and X̃π = sλ(x) .

It is important to observe that Xπ(m) ∈ Z[x1, . . . , xn+m−1] does not in general
originate from Xπ(m+1) ∈ Z[x1, . . . , xn+m] by setting xn+m = 0, but in general

Xπ(m+1) |xn+m=0 = Xπ(m) + ‘non-negative terms’ .

For example let π = π(0) = 321; then: Xπ(0) = x2
1x2, but π(1) = 1432 and Xπ(1) =

x2
1x2 + x1x

2
2 + x2

1x3 + x1x2x3 + x2
2x3. This destroys the notion of ‘grading’ as

introduced in the Schur case, namely grading by the “number of variables”. But
there is a substitute relying on the recursive structure of Schubert polynomials (cf.
[W1, Cor.3.6]), which is almost as simple:

Xπ(m) = 1↓−(Xπ(m+1) |x1=0) ,(1.8)
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where the operator 1↓− means: ‘shift all indices of variables by −1’. Indeed for the

above example one computes 1↓−(Xπ(1) |x1=0) = 1↓−(x2
2x3) = x2

1x2 = Xπ(0) . Note that
for symmetric polynomials (1.8) is equivalent to (0.1).

2. The BJS-formula and the algebra of sequences of polynomials

Our general task in this section is to establish τPx-formulas for the graded
Schubert functions X[π], i.e. to express X[π] as a Z-linear combination of sequences
consisting of the symbols τ , P and x, which are the shift operator, the geometric
shift operator, and the multiplication operator, respectively, on the the space of
sequences of polynomials in a growing number of variables. We discuss first the
BJS-formula for Schubert polynomials found by S.C. Billey, W. Jokusch and R.P.
Stanley (cf.[FS]), than we introduce the algebra of sequences of polynomials and the
above mentioned operators, and in the next section we construct the τPx-formulas.
The BJS-formula is our point of departure, because the divided difference definition
does not work (see Rem.3.11 below).

Let π ∈ Sn be an arbitrary permutation of length l(π) = p and R(π) be the set
of reduced sequences for π. To every a ≡ a1 . . . ap ∈ R(π) we can then associate a
set of p-tuples

B(a) := {b = bp . . . b1 | n− 1 ≥ bp ≥ . . . ≥ b1 ≥ 1, ai ≥ bi, ai < ai+1 =⇒ bi+1 > bi}.
(2.1)

The BJS-formula now reads:

Xπ =
∑
a∈R(π)

∑
b∈B(a)

xb ( with xb = xb1 . . . xbp) .(2.2)

We define the support of π as the set supp π := {a ∈ R(π)|B(a) 6= ∅} ⊂ R(π).

Remark 2.1. Let GR(π) denote the graph with vertices R(π) and edges (a, a′)
:⇐⇒ ‘a can be transformed to a′ according to the relations (ii) and (iii) of el-
ementary transpositions’. GR(π) is connected (see e.g. [W1, Prop. 1.2]), but
supp π in general is not. It is therefore necessary to compute the whole set R(π).
This can be done conveniently by computing one reduced sequence (for example
with the method described below) and than using relations (ii) and (iii) and the
connectedness of GR(π).

In [W1, Cor.2.11] it has been shown that for arbitrary π ∈ Sn with Lehmer code
L(π) ≡ ln−1 . . . l0 the sequence ΦL(π) := Φ(ln−1) . . . Φ(l0) with

Φ(ln−ν) := (ν − 1)+(ln−ν . . . 1) = (ln−ν + ν − 1 . . . ν) , if ln−ν > 0(2.3)

and Φ(ln−ν) := ∅, if ln−ν = 0, is reduced; in signs: ΦL(π) ∈ R(π). For example
ΦL(214635) = Φ(101200) = 1354 ∈ R(214635). Note that Ωn := ΦL(n . . . 1) =
Φ(n− 1 . . . 0) is given by

Ωn = n− 1 . . . 1 | n− 1 . . . 2 | . . . | n− 1 ,
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where we have included vertical sectioning bars for clarity. We call

a(π) := ΦL(π)(2.4)

the canonical reduced sequence of π.
For the determination of B(a) it is not necessary to know the exact form of a,

but only the ‘type’ T (a) of a, which we will introduce next. Every reduced word
a ∈ R(π) can be written as

a ≡ a1 . . . ap ≡ Ak . . . A1 ,

where Ak, . . . , A1 (k ≤ p) are the sections of a defined by

ai and ai+1 are in the same section :⇐⇒ ai > ai+1 .(2.5)

For a reduced sequence a of length p with k sections the type T (a) of a is defined
as a sequence of p integers

T (a) := t1 . . . t1 t2 . . . t2 . . . tk . . . tk ≡ τp . . . τ1 ,(2.6)

where the multiplicity of each tν is |Aν |, t1 := ap, and recursively

tν := min{minAν , tν−1 − 1} for ν > 1.(2.7)

Note that

t1 > t2 > . . . > tk and τp ≥ . . . ≥ τ1 .(2.8)

For example a = 324324 has length p = 6 and k = 3 sections; therefore T (32|432|4) =
422211. Similarly T (43|5|61) = 110(−1)(−1), and for Ωn ∈ R(n . . . 1) one has:

T (Ωn) = n− 1︸ ︷︷ ︸
1

n− 2 n− 2︸ ︷︷ ︸
2

. . . 2 . . . 2︸ ︷︷ ︸
n−2

1 . . . 1︸ ︷︷ ︸
n−1

.(2.9)

Let b ≡ b1 . . . bs, b ≡ b1 . . . br be (finite) words in the alphabet Z, then the
componentwise order on such words (w.r.t. the linear order: ‘empty space’< . . . <
−1 < 0 < 1 < 2 < . . . ) is defined by: b ≤ b :⇐⇒ bν ≤ bν for all ν ∈ N.

Lemma 2.2. For π ∈ Sn and a ∈ R(π) one has with the above notations:
a) T (a) = maxB(a) for every a ∈ supp π;
b) a ∈ supp π ⇐⇒ T (a) ∈ B(a)⇐⇒ tk(a) ≥ 1;
c) a ∈ supp π ⇐⇒ a subword of Ωn.

Proof. a) follows directly from the definitions and implies b), which in turn implies
c): a ∈ supp π ⇐⇒ T (a) ∈ B(a)⇐⇒ ∀ν : minAk+1−ν ≥ ν ⇐⇒ Ak+1−ν is subword
of (n− 1) . . . ν ⇐⇒ a is subword of Ωn.

Let now R be a commutative ring with unit and x = (x1, x2, . . . ) a sequence of
variables; then

A ≡ A(R, x) := ( R[x1], R[x1, x2], R[x1, x2, x3], . . . )(2.10)
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is a R-algebra under componentwise addition and multiplication; note that the
sequences X[π] are elements of A(Z, x) for all (unembedded) π. The nth-component
of a ≡ (a1, a2, . . . ) ∈ A is [a]n := an. The shift operator τ : A −→ A, defined by

τ(a1, a2, a3, . . . ) := (0, a1, a2, . . . ) or ∀n : [τa]n+1 := [a]n, [τa]1 := 0 ,(2.11)

and all its powers τ ν (ν ∈ N), τ 0 := id are algebra endomorphism of A; con-
sequently the same is true for all operators f(τ) ∈ R[τ ] and even f(τ) ∈ R[[τ ]],
because [A]n is not affected by τ ν with ν > n. For x = (x1, x2, . . . ) ∈ A and all
n ∈ N one has { [τ νx]n | ν ∈ N0 } = {x1, . . . , xn}∪{0}. One can calculate as usual
in the rings R[τ ] and R[[τ ]]. Especially important is the ‘geometric’ shift operator

P :=
∞∑
ν=0

τ ν , P (a1, a2, a3, . . . ) = (a1, a1 + a2, a1 + a2 + a3, . . . ) .(2.12)

Consequently one has for all unembedded π:

Xπ := P X[π] = (0, . . . , 0, Xπ(0) , Xπ(1) , Xπ(2) , . . . ) ,(2.13)

which justifies our restriction to the graded case of X[π]. P and S := τP are
Baxter operators, but because τ itself is not a Baxter operator we will not stress
this topic further.

It is not hard to see (e.g. by induction) that a sequence a ∈ A(Z, x) of the form

∀n : [a]n =
∑

n=ip≥... ≥i1≥1

iν∈D⇒iν+1>iν

xi1 . . . xip(2.14)

for a fixed subset D ⊂ {1, . . . , p − 1} can be written using the τPx-formula (or
Baxter sequence)

Bp,D(x) := xBp−1 . . . xB1x with Bν ∈ {P, S} and Bν = S ⇐⇒ iν ∈ D .
(2.15)

For the rest of this section (and the next) let π be an unembedded permutation
of Sn and π(0) = π, π(1), π(2), . . . its sequence of right embeddings.

Lemma 2.3. For every unembedded π of length p and every m ∈ N0 one has

R(π(m)) = m+R(π) := {m+(a) = a1 +m. . . ap +m | a ∈ R(π)} .(2.16)

Proof. We use the above cited result that ΦL(π′) ∈ R(π′) for arbitrary π′. It follows
from Def.1.2 and (2.3) that ΦL(π(m)) = m+(ΦL(π)), and by the connectedness
of the graph GR(π) that every element a ∈ R(π) can be derived by a chain of
applications of the relations (ii) and (iii). Shifting the indices of the occurring
elementary transpositions by m gives for every a ∈ R(π) exactly one corresponding
m+(a) ∈ R(π(m)), which proves the assertion.

The BJS-formula together with Lemma 2.3 clearly implies

xπ(m) =
∑
a∈R(π)

∑
b∈B(m+(a))

xb ,(2.17)
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whence we can write

X[π] ≡
∑
a∈R(π)

X[π](a) with(2.18)

X[π](a) = (0, . . . , 0,
∑

b∈B[0](a)

xb,
∑

b∈B[1](a)

xb,
∑

b∈B[2](a)

xb, . . . ) and(2.19)

B[m](a) := B(m+(a)) \B((m− 1)+(a)) , for m > 0, B[0](a) := B((a)) .(2.20)

3. τPx-formulas for graded Schubert functions

Continuing the discussion of the last section we want to find now τPx-expressions
Ba(x) for the sequences X[π](a) ∈ A(Z, x) [(2.18-20)]. We begin with a simple

Lemma 3.1. For π ∈ Sn and a ∈ R(π) with k sections one has:
a) T (m+(a)) = m+(T (a));
b) m+(a) ∈ supp π(m) ⇐⇒ tk(m+(a)) = tk(a) +m ≥ 1;
c) m+(a) ∈ supp π(m) ⇐⇒ m+(a) subword of Ωn+m.

Proof. Immediate from the Lemmata 2.2 and 2.3.

Corollary 3.2. For π ∈ Sn and a ∈ R(π) with k sections let

m0(a) := min{m ∈ N0 | m+(a) ∈ supp π(m)} ,(3.1)

which can be computed conveniently by Lemma 3.1 b) as

m0(a) = max{0, 1− tk(a)} .(3.2)

Then the first non-zero term of X[π](a) appears in [A]n−1+m0, i.e. in the (n− 1 +
m0)th component of A ≡ A(Z, x).

For a reduced sequence a ∈ R(π) of length p let

D(a) := {ν | aν < aν+1, ν = 1, . . . , p} = {ν | τν > τν+1, ν = 1, . . . , p}(3.3)

be the descent set of a (compare Rem.3.6 below). Let in addition π ∈ Sn be
unembedded; then the number

d(a) := n− 1− al(π)(3.4)

is called the global delay for a and the number

d(π) := min{d(a) | a ∈ R(π)}(3.5)

the global delay for π. Before stating a general result we elucidate the significance
of the number d(a) by the following
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Example 3.3. Let π = 21543 ∈ S5 and a = 4341 a reduced sequence for π. Then
T (a) = 1100, m0 = 1 by (3.1), i.e. the first von vanishing term of X[π](a) occurs in
[A]5, and the global delay is d(a) = 3 by (3.4). Observe that B(1+(a)) = B(2211) =
{2211} whence from (2.15-19) one has X[π](a) = (0, 0, 0, 0, x2

1x
2
2, . . . ). On the other

hand it is not hard to see that X[π](a) is “essentially” of the form (2.14) with
p = 4, descend set D(a) = {2}, and τPx-expression xPxSxPx = (0, x2

1x
2
2, . . . ),

which implies Ba(x) = τ 3xPxSxPx. In other words: the onset of the sequence
xPxSxPx is delayed by τ 3 = τ d(a).

Proposition 3.4. Let π ∈ Sn be unembedded, a ∈ R(π), and Ba(x) the τPx-
formula for X[π](a). Then every term in Ba(x) begins with τ d(a) . . . . If moreover
d(π) > 0, then the deletion of d(π) (but not d(π) + 1) leading zeros from X[π](a)
yields again an element of A(Z, x).

Proof. By Cor.3.2 the first non-zero term in X[π](a) appears in [A]n−1+m0 with
al(π) +m0 as the maximal index of the occurring variables. On the other hand any
τPx-formula of the form x . . . ∈ A contains in component [Aν ] the variable xν as
the variable of maximal index. Therefore the τPx-formula for X[π](a) must have
the form τ d . . . , with d = (n− 1 +m0)− (al(π) +m0) = n− 1− al(π), which is d(a)
by (3.4). The second assertion is now immediate.

We call sequences of the form (2.14), which are expressed by τPx-formulas of
type (2.15), regular and all other singular. Let a be a reduced sequence of length
p with k sections; then using (2.6) we define

a is regular :⇐⇒ tν(a)− tν+1(a) = 1 for ν = 1, . . . , k − 1 ,(3.6)

where the tν(a) ≡ tν are the entries of the type T (a), or alternatively

a is regular :⇐⇒ τν+1(a)− τν(a) ≤ 1 for ν = 1, . . . , p− 1 ,(3.7)

where the τν(a) ≡ τν are the entries of T (a).

Proposition 3.5. Let π ∈ Sn be unembedded of length p and a ∈ R(π) with descent
set D(a), and global delay d(a). If a ∈ R(π) is regular, then

X[π](a) is regular and X[π](a) = τ d(a)Bp,D(a)(x) .(3.8)

For a partition λ ≡ λ1 . . . λs and its associated unembedded Grassmannian per-
mutation π(λ) every a ∈ R(π(λ)) is regular, the global delay for π(λ) is s − 1,
and:

X[π(λ)] = τ s−1
∑

a∈R(π(λ))

Bp,D(a)(x)(3.9)

in accordance with (0.4) (see Rem.3.6 below).

Proof. Comparison between the summation in (2.15) and the definition (3.6-7)
yields (3.8). By the definition of the unembedded Grassmannian permutation [
(1.1) with n = l(λ) = s ] one sees that π(λ) is an element of Sλ1+s. Moreover (2.3)
shows that the number ap with p = |λ| of the reduced sequence a = ΦL(π(λ)) ∈
R(π(λ)) is ap = λ1. But by the results of [W4] (see Rem.3.6 below) every a ∈



GRADED SCHUBERT FUNCTIONS 11

R(π(λ)) then ends with ap = λ1, and therefore we have proved d(π) = λ1 + s −
1− λ1 = s− 1. The term wise equality (except for the global delay) between (3.9)
and (0.4) yields the regularity of all a ∈ R(π(λ)).

Remark 3.6. For any partition λ we have established in [W4] a natural combi-
natorial bijection between the set R(π(λ)) of reduced words of the unembedded
Grassmannian permutation π(λ) associated to λ and the set SY T (λ) of standard
Young tableaux of shape λ. Under this bijection every set D(a) is mapped in fact
to the corresponding descent set D(ζ) of a standard Young tableaux ζ (cf. [W3])
thus justifying the notion ‘descent set’ for D(a).

It remains to find the τPx-expressions X[π](a) for non regular a. In view of the
above proposition the following definition seems natural:

Let T (a) be the type of an arbitrary a with k sections and subdivide T (a) into
h ≤ k parts T (a) ≡ Th . . . T1 according to the condition:

tν and tν+1 are in the same part :⇐⇒ tν − tν+1 = 1 .(3.10)

Then the parts Th, . . . , T1 are called the regular parts of T (a). As an example
consider a = 14356: it has length p = 6, the type T (a) = 65331 has k = 4 sections,
and the h = 3 regular parts T3 = 65, T2 = 33, T1 = 1. Of course one has: a is
regular iff T (a) has exactly one regular part.

As a convenient notation we introduce moreover the complement C(a) of the
type T (a) for any reduced sequence a of length p by

C(a) ≡ cp . . . c1, with cν := τp − τν for ν = 1, . . . , p .(3.11)

For example a = 14356 has type T (a) = 65331 and complement C(a) = 01335.
In front of Lemma 2.2 we have already described the componentwise order on

the set of all finite words over Z. Below we will use this componentwise order
restricted to the sets

Wp,D := {i ≡ ip . . . i1 | ip ≥ . . . ≥ i1, ν ∈ D =⇒ iν+1 > iν}(3.12)

where p is a natural number and D a subset of {1, . . . , p− 1}. Define

∀i ∈ Wp,D : i := min{h ∈ Wp,D | i ≤ h, h regular } ;(3.13)

i is called the regular supremum of i. Furthermore for a ≡ a1 . . . ap, T (a) ≡
τp . . . τ1, and every l with 1 ≤ l ≤ p let

T+(l, a) := τp . . . τl+1 and T−(l, a) := τl . . . τ1(3.14)

Assume that T (a) has h regular parts and let p = jh > . . . > j1 ≥ 1 be the indices
of the leftmost entries in each regular part Th, . . . , T1, i.e. Tjν = τjν . . . . Then we
define for ν = 1, . . . , h (with (3.3), (3.12-14)):

(3.15) W+(jν , a) :=

{ip . . . ijν+1 ∈ Wp−jν ,D(T+(jν ,a)) | ijν+1 > τjν and ijs ≤ τjs−1 for s = ν+1, . . . , h} ,

W−(jν , a) := {ijν . . . i1 ∈ Wjν ,D(T−(jν ,a)) | ijν . . . i1 � T−(jν , a), ijν . . . i1 ≤ T−(jν , a)} .
(3.16)
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Before proceeding to the general description of how to set up the τPx-expressions
Ba(x) for arbitrary reduced sequences a, it will be helpful to go through some
examples:

Example 3.7. Let π = 21543 ∈ S5 and a = 1434 a reduced sequence for π. Then
T (a) = 4331, C(a) = 0113, m0 = 0, and global delay d(a) = 0. By the definition
of B(a) resp. B[m](a) the sum in [A]n−1+m is over all 4-tuples i ≡ i4i3i2i1 with
n− 1 +m =: r ≥ i4 > i3 ≥ i2 > i1 ≥ 1, r− 1 ≥ i3 ≥ i2 (automatically), r− 3 ≥ i1.
Moreover at least of the conditions: i4 = r, i3 = r− 1, i2 = r− 1, i1 = r− 3 must
be fulfilled; otherwise the 4-tuple i would be contained in some prior component
[A]n−1+ν with 0 ≤ ν < m.

Assume first that i4 = r. Then using r − 2 ≥ i1 instead of r − 3 ≥ i1 gives a
regular sequence with p = 4, D = {1, 3}, and τPx-expression xSxPxSx, which
has to be diminished in every part of [A]r by the term xrx

2
r−1xr−2. Hence in case

of i4 = 4 we get the expression xSxPxSx−xτx2τx. Observe that xSxPxSx alone
yields (0, 0, x3x

2
2x1, x4x

2
2x1 +x4x3x2x1 +x4x

2
3x1 +x4x

2
3x2, . . . ), which is diminished

by (0, 0, x3x
2
2x1, x4x

2
3x2, . . . ), and in fact X[π](a) has its first non vanishing term in

[A]4.
Assume now that i3 = r − 1 or i2 = r − 1. This implies i4 = r, which is

already done. In general only the first place of a regular part in some T (a) gives
a contribution (here T2 = 433 and T1 = 1). Therefore it remains to study the case
i1 = r− 3 under the condition that i4 ≤ r− 1. But this forces of course i4 = r− 1,
i3 = i2 = r−2, and hence a term τxτx2τx in X[π](a). Observe that in deed x3x

2
2x1

has to occur in [A]4, and not in [A]3. In total we have

X[21543](1434) = (xSxPxSx− xτx2τx) + τxτx2τx .

Example 3.8. Let π = 2153674 ∈ S7 and a = 14356 a reduced sequence for π.
Then T (a) = 65331, C(a) = 011335, m0 = 0, d(a) = 0, D(a) = {1, 3, 4}, and
the regular parts of T (a) are T3 = 65, T2 = 33, T1 = 1. By the definition of
B(a) resp. B[m](a) the sum in [A]n−1+m is over all 5-tuples i ≡ i5i4i3i2i1 with
n− 1 +m =: r ≥ i5 > i4 > i3 ≥ i2 > i1 ≥ 1, r− 1 ≥ i4, r− 3 ≥ i3 ≥ i2, r− 5 ≥ i1,
and at least one of the conditions: i5 = r, i4 = r − 1, i3 = i2 = r − 3, i1 = r − 5
has to be fulfilled.

Assume first that i5 = r. Then the regular supremum [(3.13)] of T (a) in

W5,D(a) is T (a) = 65443. This yields a regular expression in A with τPx-formula
xSxSxPxSx, which has to be diminished by singular expressions corresponding
to the words 65443, 65442, 65441, 65432, 65431, 65421, 65332, 64332 ∈ W5,D(a),
i.e. xτxτx2τx, xτxτx2τ 2x, xτxτx2τ 3x, xτxτxτxτx, xτxτxτxτ 2x, xτxτxτ 2xτx,
xτxτ 2x2τx, xτ 2xτx2τx.
i4 = r − 1 implies i5 = r, which is done already, but i3 = r − 3 with i5 ≤ r − 1

yields: r−1 = i5 > i4 > i3 = r−3, whence i4 = r−2, and r−3 = i3 ≥ i2 > i1 ≥ 1.
Therefore we have the τPx-expression: τxτxτ [. . . ], where ‘. . . ’ is determined by
arguments similar to the case i5 = r or Ex.3.7 above as xPxSx− x2τx.
i2 = r−3 implies i3 = r−3, which is done already, but i1 = r−5 with i5 ≤ r−1

and i3 ≤ r − 4 yields: r − 1 = i5 > i4 > r − 4 ≥ i3 ≥ i2 > i1 = r − 5, whence
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i3 = i2 = r− 4, and we have to consider singular expressions corresponding to the
words 54221, 53221, 43221 ∈ W5,D(a), i.e. τxτxτ 2x2τx, τxτ 2xτx2τx, τ 2xτxτx2τx.

In total we have

X[2153674](14356) = xSxSxPxSx−
(
xτxτx2τx+ xτxτx2τ 2x+ xτxτx2τ 3x

+xτxτxτxτx+ xτxτxτxτ 2x+ xτxτxτ 2xτx+ xτxτ 2x2τx+ xτ 2xτx2τx
)

+ τxτxτ(xPxSx− x2τx) +
(
τxτxτ 2x2τx+ τxτ 2xτx2τx+ τ 2xτxτx2τx

)
.

Theorem 3.9. (Computation of the τPx-formulas for graded Schubert functions
X[π] ) For an unembedded π ∈ Sn of length p one computes first the set of reduced
sequences R(π), e.g. with the help of (2.3), the relations (ii) and (iii) for elementary
transpositions, and the connectivity of GR(π) [Rem.2.1].

For fixed a ∈ R(π) let Ba(x) be the τPx-expression for the sequence X[π](a)
[(2.18-20)]. Calculate T (a) [(2.6-7)], d(a) [(3.4)], the regular parts of T (a) [(3.10)],
and with the help of the indices jh, . . . j1, which are the leftmost entries in each
regular part Th, . . . , T1 of T (a), the sets W+(jν , a) and W−(jν , a) [(3.15-16)]. Then

Ba(x) = τ d(a)

h∑
ν=1

Ba,ν(x) ≡ τ d(a)

h∑
ν=1

αa,ν(x) βa,ν(x) ,(3.17)

where αa,ν(x) and βa,ν(x) are given by

αa,ν(x) =
∑

ip... ijν+1∈W+(jν ,a)

τ τp(a)−ipxτ ip−ip−1x . . . xτ ijν+1−τjν (a) ,(3.18)

βa,ν(x) = Bjν ,D(T−(jν ,a))(x)−
∑

ijν ... i1∈W−(jν ,a)

xτ ijν−ijν−1x . . . xτ i2−i1x .(3.19)

Proof. Assuming that the set R(π) and the types are already computed we are
concerned with the computation of the Ba(x) for fixed a ∈ R(π). In case of
regular a [(3.6-7)] one has: h = 1, j1 = p, W+(p, a) = ∅, T−(p, a) = T (a),

T (a) = T (a) =⇒ W−(p, a) = ∅, and finally Ba(x) = τ d(a)Bp,D(a)(x) in accordance
with Prop.3.5 . Note that the global delay d(a) is already handled by Prop.3.4 for
every a ∈ R(π). We have therefore to show the validity of formulas (3.17-19) in
case of h ≥ 2.

Since
∑

b∈B[m](a) xb is the part of X[π](a) in [A]r with r := n − 1 + m, the task

is to describe the sets B[m](a) [(2.20)] for all m ≥ 0 simultaneously. Using C(a)
[(3.11)] and D(a) [(3.3)] the set B(m+(a)) is given by

B(m+(a)) = {bp . . . b1 ∈ Wp,D(a)) | ∀ν = 1 . . . p : bν ≤ r − cν} .

For B[m](a) we have to consider only those p-tuples of B(m+(a)), which are not
contained in B((m − 1)+(a)), i.e. for at least one ν ∈ {1, . . . , p} we require bν =
r − cν . But this has to be assured only for ν ∈ {jh, . . . j1}: for simplicity we
consider ν = 1 resp. the regular part T1(a) = τj1 . . . τ1 and s ∈ {1, . . . , j1 − 1}; if
τs = r − cs, then from T1(a) ∈ Wj1,D(T1(a)), regularity of T1(a), and τj1 ≤ r − cj1 it
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follows that τj1 = r − cj1 . In other words the case of τs = r − cs is identical to the
case of τj1 = r − cj1 .

Fix some ν ∈ {jh, . . . j1} and let B
[m]
ν (a) be the set of all bp . . . b1 ∈ B(m+(a))

with bjν = r − cjν and bjs ≤ r − cjs − 1 for s = ν + 1, . . . , h. By the preceding

discussion B
[m]
ν (a) ⊂ B[m](a),

⋃h
ν=1 B

[m]
ν (a) = B

[m]
ν (a), and by definition B

[m]
ν (a) ∩

B
[m]
µ (a) = ∅ for every ν and µ > ν, i.e.

B[m](a) is the disjoint union of the B[m]
ν (a) .

The τPx-expression Ba(x) for the sequence X[π](a) is therefore the sum of the
τPx-expressions Ba,ν(x) (ν = 1, . . . , h) for the sequences

(0, . . . , 0,
∑

b∈B[0]
ν (a)

xb,
∑

b∈B[1]
ν (a)

xb, . . . ) .

From the definition of B
[m]
ν (a) and taking into account that bjν+1 > bjν = r − cjν

it is easily seen that the ‘translations’ of W+(jν , a) by m+ yield the first p − jν
entries bp . . . bjν+1 of the b ∈ B

[m]
ν (a). Thus every (p − jν)-tuple ip . . . ijν+1 of

W+(jν , a) yields a corresponding singular expression, the sum of which gives αa,ν(x)
as described by (3.18).

For the remaining part bjν . . . b1 of the b ∈ B
[m]
ν (a) observe that r − cjν =

bjν ≥ . . . ≥ b1 ≥ 1 and bjν−1 ≤ r − cjν−1, . . . , b1 ≤ r − c1. The (jν)-tuple
r−cjν . . . r−c1 giving these ‘upper bounds’ is obtained by ‘translation’ of T−(jν , a)

by m+. Taking therefore the regular supremum T−(jν , a) of T−(jν , a) gives the
regular τPx-formula Bjν ,D(T−(jν ,a))(x), which includes all terms xb for the b ∈
B

[m]
ν (a) in every component [A]r. But in general this is too much, and therefore

singular terms corresponding to all those ijν . . . i1 ∈ Wjν ,D(T−(jν ,a)), which are less

or equal (in componentwise order) to T−(jν , a) but not less or equal to T−(jν , a)
have to be subtracted. (Note that ijν (a) = τjν (a) for all ijν . . . i1 ∈ W−(jν , a).) In
total this yields βa,ν(x) as defined by (3.20).

Remark 3.10. Note that the sets (3.15-16) and formulas (3.18-19) are unchanged
if one replaces T (a) by some T (m+(a)). It is therefore convenient always to use
T (a) := T (m+(a)) with m = m0, because then τ 1 = 1 : in fact this is true for
m0 > 0 by Lemma 3.1, and

m0 = 0 =⇒ τ1(a) = 1 ,(3.20)

because: ‘π unembedded’ =⇒ ‘π(1) 6= 1′ =⇒ ‘1 occurs in a’ =⇒ (3.20) by
definition of the type T (a).

Remark 3.11. The algebraic definition of Schubert polynomials relying on di-
vided differences is not suitable to build up τPx-formulas:

It would be necessary to have a ‘well behaved’ extension of the operators ∂i
to A(Z, x). For an unembedded π ∈ Sn the mth part Xπ[m] of the graded Schu-
bert function and the Schubert polynomial Xπ(m) = [Xπ]n−1+m (recall (2.4)) are
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elements of Z[x1, . . . , xn−1+m]. Now ‘well behaved’ should clearly mean that the
extended operator ∂i,π fulfills ∂i,π Xπ = ∂iXπ. This is achieved, if we define:

[∂i,π Xπ]r := ∂i+r−n+1 [Xπ]r , if r ≥ n− 1, and

[∂i,π Xπ]r := 0 , if 1 ≤ r < n− 1.

Now one has for example ∂1X321 = ∂1x
2
1x2 = x1x2 = X231. The general approach

in this section shows that X321 = PxSxPx+ SxPxSx and X231 = PxSx, whence
∂1(PxτPxPx + τPxPxτPx) = PxτPx. Since the term τPxPxτPx does not
contribute to [X321]2 = X321, we would expect it to be of minor importance in
∂1 X321, too, but the contrary is the case: an tedious but elementary computation
shows that ∂1(PxSxPx) = xτx and ∂1(SxPxSx) = PxSx−xτx. This unforeseen
behavior of ∂1 in our example clearly shows that we can not hope to build up a
neat calculus of τPx-formulas on the basis of extended divided differences.

The τPx-formulas for the graded Schubert functions allow the introduction and
easy computation of (graded) skew Schubert functions and therefore skew
Schubert polynomials, which in the Grassmannian case specialize to skew Schur
functions and polynomials:

Let π be an unembedded permutation of length p and µ an unembedded permu-
tation of length q ≤ p, which is less than or equal to π in right weak Bruhat order.
For our purpose this means that every reduced sequence a1 . . . aq ∈ R(µ) can be ex-
tended by suitable numbers aq+1, . . . , ap to a reduced sequence a1 . . . aq aq+1 . . . ap
of π. It is therefore possible to define

R(π/µ) := {a ≡ a1 . . . ap ∈ R(π) | a1 . . . aq ∈ R(µ)} .(3.21)

Every term in the τPx-formula for X[π] is of the form

xfp−1x . . . xf1x with fp−1, . . . , f1 ∈ Z[[τ ]] .

For such an expression and q ∈ N we define

(xfp−1x . . . xf1x) � q := xfp−1x . . . xfq+1x ,

where of course (xfp−1x . . . xf1x) � (p − 1) = x and (xfp−1x . . . xf1x) � q = 0
for q ≥ p. With this not(at)ions we define the graded skew Schubert function
associated to the pair (π, µ) to be

X[π/µ] :=
∑

a∈R(π/µ)

Ba(x) � l(µ) .(3.22)

Proposition 3.12. Let λ, µ be partitions with µ ⊂ λ, i.e. the Ferrer diagram
of µ is included in that of λ, and π(λ), π(µ) the associated unembedded Grass-
mannian permutations. Then R(π(λ)/π(µ)) is well defined, and X[π(λ)/π(µ)] equals

τ d(π(λ))s[λ/µ](x), the graded skew Schur function associated to the skew partition

λ/µ (shifted by τ d(π(λ))).

Proof. (Sketch) Recall from Prop.3.5 or (3.9) thatX[π(λ)] = τ d(π)
∑

a∈R(π(λ)) Bp,D(a)(x).

For R(π(λ)/π(µ)) to be well defined it is necessary and sufficient that every reduced
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sequence of π(µ) is contained as an initial segment of a reduced sequence of π(λ).
But this is immediate from the combinatorial bijection between the sets R(π(λ))
and SY T (λ) of standard Young tableaux of shape λ set up in [W4], and the obvious
fact that the inclusion of the shapes µ ⊂ λ implies the inclusion SY T (µ) ⊂ SY T (λ)
of standard Young diagrams. Finally it has been shown in [W3, Sec.2] how the
τPx-formulas of the graded skew Schur functions s[λ/µ](x) can be deduced from
the τPx-formula of s[λ](x), and an easy comparison with the Schubert case yields
that the latter is in fact a generalization of the former.

4. The number of terms of graded Schubert functions

In this section let π ∈ Sn be an unembedded permutation and a ∈ R(π). In
view of the cumulativeness of Schubert polynomials and the τPx-formulas for
graded Schubert functions it is natural to investigate the sequences π](a) :=

(π]1(a), π]2(a), . . . ) of numbers π]r(a) := |B[r−n+1](a)|, which is the number of
terms in each component of the sequence X[π](a) [(2.19-20)]. Obviously one has

π](a) := B(a)(1) with 1 = (1, 1, . . . ) .(4.1)

Since all factors x = 1 except the rightmost act as the identity automorphism on
A ≡ A(Z, x), they can be neglected. Moreover shift operators in R[[τ ]] commute
and therefore every term in Ba(1) can be written in the ‘normal form’ τKPN(1),
where N is the number of symbols P or S occurring and K is the sum of exponents
of the τ ’s occurring outside the P ’s. In [W3, (3.3)] it has been shown that PN(1) =(
r+N−1
N

)
, whence

τKPN(1) =

(
r −K +N − 1

N

)
.(4.2)

For example from Ex.3.7 one concludes

21543](1434) = B1434(1) = (τ 2P 31 − τ 21) + τ 31 =

(
r

3

)
− (0, 0, 1, 0, 0, . . . )

and from Ex.3.8

2153674](14356) = B14356(1) = τ 3P 41− (τ 3 + 4τ 4 + 3τ 5)1 + τ 3(τP 2− τ)1 + 3τ 51

=

(
r

4

)
+

(
r − 3

2

)
− (0, 0, 0,−1,−6,−6, . . . ) .

Summing up all sequences π](a) gives

π] :=
∑
a∈R(π)

π](a) ≡ (π]1, π
]
2, . . . ) ,(4.3)

where π]r = |Xπ[r−n+1]| by (2.18) and (1.5-6). Of course

π] = X[π](1) ,(4.4)
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and as we will see below the tedious computation of π] via the π](a) and their
τPx-formulas can be simplified very much.

By (2.13) the sequence X[π](1) is clearly known iff one knows the sequence

(sπ(0) , sπ(1) , sπ(3) , . . . ) with sπ(m) := Xπ(m)(1, . . . , 1) ,(4.5)

i.e. sπ(m) is the sum of coefficients of the corresponding Schubert polynomial. It
has been shown by I.G. Macdonald ([M1, M2, FS]) that for every permutation
µ ∈ Sn of length p = l(µ)

Xµ(1, . . . , 1) =
1

p!

∑
a∈R(µ)

pr(a) with pr(a) := a1 . . . ap .(4.6)

Moreover Macdonald has conjectured the following q-analog, which subsequently
has been proven by S. Fomin and R.P. Stanley in [FS]:

Xµ(1, q, . . . , qn−2) =
1

[p]!

∑
a∈R(µ)

prq(a) qα(a) ,(4.7)

where α(a) :=
∑

aν<aν+1
ν, [k] := 1 + q + · · · + qk−1, [p]! := [1][2] . . . [p], and

prq(a) := [a1] . . . [ap].
Observing that for an unembedded π ≡ π(0) ∈ Sn of length p all π(m) have length

p, too, by Lemma 2.3, formula (4.6) immediately implies

sπ(m) =
1

p!
Pπ(m)(4.8)

with

Pπ(m) :=
∑
a∈R(µ)

pr(m)(a) and pr(m)(a) := (m+ a1) . . . (m+ ap) .(4.9)

The q-analog with pr
(m)
q (a) := [m+ a1] . . . [m+ ap] is of course

sπ(m)(q) := Xπ(m)(1, q, . . . , qn−2) =
1

[p]!
Pπ(m; q) :=

1

[p]!

∑
a∈R(µ)

pr(m)
q (a) qα(a) .

Proposition 4.1. For all unembedded π of length p the polynomials 1
p!
Pπ(m) are

elements of Q[m] with non-negative coefficients and degree p with the property of

integrality:
1

p!
Pπ(m) ∈ N for all m ∈ N0 .

Proof. Immediate from formula (4.8) and the fact that the coefficients of Schubert
polynomials are non-negative integers.

Remark 4.2. In [FK] S. Fomin and A.N. Kirillov have shown that the polynomials
Pπ(m) and Pπ(m; q) enumerate certain sets of plane partitions at least in the special
case of π being of ‘staircase shape’ π = n (n − 1) . . . 1 or more generally π being
dominant. Cor.4.4 below gives an answer to one of the question raised in [FK],
namely for which π the polynomial Pπ(m) is a product of linear factors in Z[m].
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Proposition 4.3. Let µ ∈ Sn be a permutation of length p = l(µ), r(µ) the number
of reduced sequences [(0.5)], and a(µ) the canonical reduced sequence of µ [(2.4)].
If now µ is hexagon free, that is: every a ∈ R(µ) can be computed from a(µ) by a
sequence of transpositions according to relation (ii) alone, then

p! sµ = r(µ) pr(a(µ)) .(4.10)

Proof. Since transpositions according to relation (ii) do not change the ‘letters’
contained in a reduced sequence a, the result is immediate from (4.8-9).

Corollary 4.4. The following statements are equivalent:
a) the polynomial Pπ(m) is a product of linear factors in Z[m];
b) π is hexagon free.
c) π is 321-avoiding, i.e. there are no numbers i < j < k, such that π(i) > π(j) >
π(k).

Proof. a) ⇐⇒ b) by the preceding proposition and b) ⇐⇒ c) by [BJS, Thm.2.1].

We quote without proof a nice result from [M1, M2]:

Proposition 4.5. Let µ be vexillary of length p and λ ≡ λ(µ) the partition ob-
tained from reordering the entries of L(µ). Then with (0.5-6)

r(µ) = fλ =
p!

h(λ)
,(4.11)

where h(λ) is the product of hooks according to the celebrated hook length for-
mula. For Grassmannian permutations π(λ) imply formulas (4.10-11) that h(λ) =
sπ(λ)/pr(a(π(λ))).

Unfortunately the proportion of vexillary permutations contained in some Sn is
≤ (23/24)n−3 for n ≥ 4 and thus vanishes for n −→∞. In comparing Propositions
4.3 and 4.5 note that Grassmannian permutations are vexillary and hexagon free,
but in general a vexillary permutation need not be hexagon free (e.g. π = 321)
and vice versa (e.g. π = 2143).

The following important general result has been observed by I.G. Macdonald,
too:

Proposition 4.6. Let π be an unembedded permutation of length p. Then

r(π) = p! lim
m−→∞

Xπ(m)(
1

m
, . . . ,

1

m
) .(4.12)

Proof. One has p := l(π) = l(π(m)) for all m; and a well known fact about Schubert
polynomials says that the Xπ(m) are homogeneous of degree p for all m. Thus

Xπ(m)(
1

m
, . . . ,

1

m
) = (

1

m
)p Xπ(m)(1, . . . , 1)

and

(
1

m
)p lim

m−→∞
pr(m)(a) = lim

m−→∞
(1 +

a1

m
) . . . (1 +

ap
m

) = 1 ∀a ∈ R(π)
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together with (4.8) prove (4.12).

Definition 4.7. Let π ∈ Sn be an arbitrary permutation, then π is called decom-
posable iff it is of the form ‘π1×π2’, where π1 ∈ Sk for some k ∈ {1, . . . , n−1} and
π2 ∈ Sk+(n−k) := S{k+1,...,n}. Otherwise π is called indecomposable. The decompo-
sition π = π1 × . . . × πs is called maximal iff the ‘parts’ πν are indecomposable.
(But it is useful to collect neighborly ‘identities’.)

Proposition 4.8. Let π ∈ Sn. Then the following statements are equivalent:
i) π is decomposable with π = π1 × π2 and π1 ∈ Sk with 1 ≤ k ≤ n− 1;
ii) L(π) = [ln−1 . . . l0] (cf. Sec.1) with [ln−1 . . . ln−k] ∈ Lk and [ln−k−1 . . . l0] ∈
Ln−k.
iii) The interval [id, π] in right (weak Bruhat) order is the direct product of the
intervals [id, π1] and [id, π2].

Moreover with the notation of i) and p := l(π1), q := l(π2):

r(π) =

(
p+ q

q

)
r(π1) r(π2) .(4.13)

Proof. i) means that on places 1, . . . , k there is a permutation of the letters 1, . . . , k,
and on places k+ 1, . . . , n there is a permutation of the letters k+ 1, . . . , n. Hence
π1 and π2 have independent complete Lehmer codes as stated in ii), and for the
entries of a ≡ a1, . . . , ap ∈ R(π1) and b ≡ b1, . . . , bq ∈ R(π2) one has from (2.3):
aν ∈ {1, . . . , k−1} and bν′ ∈ {k+1, . . . , n−1}. Therefore all aν and bν′ ‘commute’
in the sense of relation (ii) of the introduction, which shows that ii) =⇒ iii) =⇒ i).

Moreover the ‘commutativity’ of aν ’s and bν′ ’s yields that the reduced sequences
in R(π) are exactly the (p, q)-shuffles of pairs (a, b) ∈ R(π1) × R(π2), where the
shuffles of the words a and b are all distributions of the p letters of a and the q
letters of b over p+q places such that a and b remain subwords. Clearly for a given
pair (a, b) the number of (p, q)-shuffles is

(
p+q
q

)
, which completes the proof.

Remark 4.9. The reduced sequences of some permutation π are the sequences
of edge labels of maximal chains (without repetitions) in the interval [id, π] of
right order. In Rem.2.1 we have introduced the graph GR(π) with vertex set R(π)
and in [W4] we have made GR(π) into a ranked poset PR(π) by declaring the
canonical reduced word a(π) as bottom element. It would be nice now to continue
the equivalences of Prop.4.8 above by a characterization ‘iv)’ of decomposability
in terms of GR(π) or PR(π).

This hints at a general problem: to every lattice L (or poset with top and bottom
element) with labeled edges one can associate a graph GL on the set of ‘vertices’ =
‘the maximal chains of L’ by considering two chains, i.e. the associated sequences
of labels, as ‘adjacent’ iff they can by transformed into each other by changing
as less labels as possible. With every (natural) choice of a ‘canonical vertex’ as
bottom element this graph may be turned into a poset PL. The problem is now
to find relationships between the original L and the associated graph or poset of
maximal chains.
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5. Generalizations of binomial coefficients

For every n, k ∈ N0 the binomial coefficients
(
n
k

)
are well known to have the

following properties:

integrality:

(
m+ k

k

)
∈ N for all m ∈ N0 ,

recursion:

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
, and

symmetry:

(
n

k

)
=

(
n

n− k

)
.

All these properties can be deduced at once from the fact (cf. [S2, Ex.3.5.4-5])
that

(
m+k
k

)
is the number of linear extensions of the direct sum of the chains m

and k with m and k elements, respectively, which is well known to be the number
of saturated chains in the direct product m + 1×k + 1: take the rectangular grid
of points [0,m] × [0, k] ⊂ Z × Z (–this is the direct product of the chains–) and
count all possible paths or chains on this grid from (0, 0) to (m, k) with steps (1, 0)
and (0, 1); clearly the number of such chains is

(
m+k
k

)
, because the k steps (0, 1)

can be chosen as an arbitrary subset of the set of all m+ k steps.
We call the partition λ = (n−k+1) 1k of n+1 the (n, k)-hook with leg consisting

of k boxes and arm consisting of m = n − k boxes. The set SY T (λ) of standard
Young tableaux of such a (n, k)-hook is clearly in bijective correspondence to the
saturated chains in m + 1× k + 1: for ν = 1, . . . ,m + k write the number ν into
a box of the leg, if ν is a step (0, 1), otherwise into a box of the arm, such that
resulting tableau is standard.

Thus we conclude that the numbers fλ = |SY T (λ)| for partitions λ generalize
binomial coefficients. In fact all the direct sums of the chains m and k are the
finite order ideals in N + N (N viewed as the infinite chain 1 < 2 < . . . ). N + N
is embedded (as half axes) into the direct product N × N, which has as finite
order ideals the Ferrer shapes of partitions λ. The Young lattice Y of all Ferrer
shapes ordered by inclusion is therefore the (distributive) lattice of order ideals of
N × N, and the saturated chains of an interval [∅, λ] in Y are in natural one to
one correspondence with the set SY T (λ). The symmetry of binomial coefficients
is generalized now by the conjugation of partitions:

symmetry: fλ = fλ
′

( with λ′ the conjugate of λ) ,

the recursion relation is generalized by

recursion: fλ =
∑

λ is covered by λ in Y

fλ .

Let S∞ = lim
←−n

Sn (using left embedding) and P∞ the set S∞ with right (weak

Bruhat) order, where right order is the transitive closure of the covering relation:

π covers π in S∞ :⇐⇒ ∃i ∈ N : π = πσi, l(π) = l(π) + 1 .(5.1)
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Since the above condition for i is fulfilled exactly when i is a descent of π, i.e.
π(i) > π(i+ 1), it is helpful to define the descent set of π:

D(π) := {i | π(i) > π(i+ 1)} .(5.2)

Note that for i ∈ D(π) the permutation πσi is the same as π except for the
numbers π(i) and π(i + 1) interchanged. The edges of the Hasse diagram of P∞
can be labeled by the natural numbers i according to (5.1-2).

Since for every partition λ we know e.g. from (4.11) that r(π(λ)) = fλ (– see
[W4] for a combinatorial bijection establishing this identity –), the sets SY T (λ) are
special cases of reduced words, and the reduced sequences for π are the sequences
of edge labels of saturated chains from id to π in P∞. Therefore the numbers fλ

are generalized by the numbers r(π) ∈ N, which obey

symmetry: r(π) = r(π′) ( with π′ := ωπω the ‘conjugate’ of π) and(5.3)

recursion: r(π) =
∑
i∈D(π)

r(πσi) .(5.4)

The notion ‘conjugate permutation’ is justified by the fact that for every partition
λ one has π′(λ) := ω π(λ) ω = π(λ′) with ω = n (n − 1) . . . 1 for n large enough
([W1, Prop.4.9]).

Remark 5.1. R.P. Stanley has defined “generalized Pascal triangles” in an purely
order theoretic way ([S2, S3]) relying on the Birkhoff duality between (finite) posets
and distributive lattices ([S2, 3.4.1-3]). But the above described embedding of Y
into P∞ is not covered by this result, because P∞ is not even modular as can be
seen already in the case of S3.

An interesting other approach to a generalization of binomial coefficients is sug-
gested by (

m+ k

k

)
=

1

k!
Pπ(λ)(m) for λ = 1k or λ = k.(5.5)

This is true, because by (2.3-4) one has a(π(1k)) = 1 . . . k and a(π(k)) = k . . . 1,
whence Pπ(λ)(m) = (m + k) · · · · · (m + 1) in both cases. Therefore binomial
coefficients are generalized by the expressions 1

l(π)!
Pπ(m), which by Prop.4.1 fulfill

integrality:
1

l(π)!
Pπ(λ)(m) ∈ N for all m ∈ N0.(5.6)

(Note that for every k ≥ 2 there are infinitely many unembedded π of length k.)
Furthermore one has the

recursion: Pπ(m) =
∑
i∈D(π)

(m+ i) Pπσi(m) ,(5.7)

where for unembedded π the covered πσi are not necessarily unembedded.
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6. Computing the number of reduced sequences of a permutation

The number r(π) of reduced sequences of a permutation π ∈ Sn is easily com-
putable by the recursion (5.4). But of course one would like to have a simple closed
formula as in the case of Grassmannian or more generally vexillary permutations
(Prop.4.5). An important step in this direction are the results of R.P. Stanley ([S1])
and Edelman and Green ([EG]), which say that the number of reduced sequences
of a permutation π can be computed as a sum of fλ, where the λ’s are partitions
of the length l(π) of π:

r(π) =
∑
λ`l(π)

απλ f
λ with απλ ∈ N0(6.1)

The non-negativity has been established in [EG] with the help of balanced tableaux.
But more can be said:

Theorem 6.1. ([S1, Thm.4.1, Cor.4.2]) Let π ∈ Sn be an arbitrary permutation
and π′ = ωnπωn its conjugate. Define

λ0 ≡ λ0(π) := λ(L(π′)) ,

λ1 ≡ λ1(π) := λ′(L(π)) ,

where λ(L(µ)) is the partition obtained by reordering the components of the Lehmer
code of the permutation µ, and λ′(L(µ)) is the conjugate of λ(L(µ)). Then (with
‘<’ being the dominance order on partitions)

r(π) = fλ0 = fλ1 , if λ0 = λ1 ,

r(π) = fλ0 +
∑

λ0<λ<λ1

απλ f
λ + fλ1 , if λ0 6= λ1 , whence:

r(π) = fλ0 + fλ1 , if λ1 covers λ1 in dominance order.

The απλ occurring in the case ‘λ0 6= λ1’ may be nonzero !

Except for the special cases discussed above there is unfortunately no simple
method known how to compute the coefficients απλ:

In [S1] Stanley has introduced symmetric functions Fπ (= Gπ−1 in the notation
of [FS]), which upon expansion into Schur functions yield the απλ as coefficients;
but the Fπ in turn are computed from the sets R(π) of reduced sequences of π.
The sets of balanced tableaux studied and used in [EG] and [FGRS] seems to
be much more complicated than the sets of standard tableaux or the sets R(π)
itself. Especially the computation of reduced words from balanced tableaux by a
procedure of promotion and evacuation in [EG] seems to be of theoretical interest
only.

In view of the close connections between reduced words and balanced tableaux
([EG, FGRS]), reduced words and the Stanley functions F (π) ([S1]), Stanley func-
tions and Schubert polynomials ([FS]), and balanced tableaux and both Stanley
functions and Schubert polynomials ([FGRS]), it doesn’t come as a surprise that
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Schubert polynomials can be used for the computation of the numbers r(π). This
will be the subject of this final section.

By (2.16) and (4.13) we can restrict to unembedded and indecomposable per-
mutations π. As an example take π = 132458769, which is represented by the
unembedded permutation 2134765 = 21×34×765 ≡ π1×π2×π3. Since l(π1) = 1,
l(π2) = 0, L(π3) = 210, l(π3) = 3, and π3 dominant (hence vexillary) of shape
λ(π3) = 21, one sees: r(π) =

(
4
3

)
1 · 3 = 12. (Note: R(id) = {∅}, r(id) = 1.)

Propositions 4.1 and 4.6 have clearly shown the combinatorial significance of the
polynomials Pπ(m) and their coefficients, and formula (4.8) connects the Pπ(m) to
the sums sπ(m) of coefficients of the Schubert polynomials Xπ(m) [(4.5)].

Lemma 6.2. Let π be an unembedded permutation of length p and Pπ(m) = cpm
p+

. . . + c1m+ c0. Then c0 = p! sπ and cp = r(π).

Proof. Setting m = 0 in (4.8) gives c0 = p! sπ. The other equality cp = r(π) follows
directly from the definition of Pπ(m) in (4.8) and the observation that pr(m)(a) is
a monic polynomial of degree p in m for all a ∈ R(π).

Theorem 6.3. Let π ∈ Sn be an unembedded permutation of length p > 0. Then

r(π) =

p∑
i=0

(−1)p−i
(
p

i

)
sπ(i) .(6.2)

Proof. Using the notation of the above lemma and formula (4.8) one sees that
for p + 1 different values of m one gets p + 1 linear equations for the coefficients
c0, . . . , cp. Taking the values 0, . . . , p we get the system

cpi
p + · · ·+ c1i+ c0 = p! sπ(i) , (i = p, . . . , 0) ,

which can be solved for cp by Cramers rule. We use the Vandermonde Vn(x1, . . . , xn) :=

det((xn−ji )) to compute:

r(π) = cp =
p!

Vp+1(p, . . . , 0)
det((∗| (p− i)p−j))i=0,...,p

j=1,...,p

with ∗ being the column vector (sπ(i))i=p,...,0. Expansion of the determinant w.r.t.
the first column ∗ yields

p∑
i=0

(−1)p−i sπ(i) Vp(p, . . . , p− i+ 1, p− i− 1, . . . , 0) =

p∑
i=0

(−1)p−i sπ(i)

Vp+1(p, . . . , 0)

i!(p− i)!
,

which completes the proof.

The drawback of formula (6.2) is of course that one needs to compute all the
numbers sπ(m) for m = 0, . . . , p, which is getting harder for increasing m. But as
we will see next one usually has to compute only a small fraction of the numbers
sπ(m) . As Prop.4.3 has shown the complexity of the determination of Pπ(m) can be
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reduced considerably by singling out a factor corresponding to the multiset M(π)
of letters, which occur in all reduced sequences a ∈ R(π) simultaneously. Since we
don’t want to determine M(π) by enumeration of all reduced sequences, we must
be content with the following (good) ‘approximation’ of M(π):

Lemma 6.4. ([FK, Lem.2.2]) For any permutation π the number of occurrences
of an entry k in every a ∈ R(π) is at least

mk ≡ mk(π) := {i | i ≤ k, π(i) > k} .(6.3)

Proof. For the convenience and pleasure of the reader we quote the argument from
[FK]: “Let us interpret a reduced word as a process of converting the identity
permutation into π by means of adjacent transpositions. Since mk numbers have
to be moved from some of the first k positions to some of the remaining ones, it
follows that the transposition σk has to be applied at least mk times.”

For (unembedded) π ∈ Sn we define the m-vector of π by

m(π) := (m1, . . . ,mn−1) ,(6.4)

e.g. m(597216384) = (1, 2, 3, 3, 2, 2, 1, 1), and a polynomial

(x)m(π) := (x+ 1)m1 (x+ 2)m2 . . . (x+ n− 1)mn−1 .(6.5)

In addition we introduce the polynomial Qπ(m) by requiring

Pπ(m) = (m)m(π) Qπ(m) .(6.6)

Then we get the following refinement of Thm.6.3:

Theorem 6.5. Let π ∈ Sn be an unembedded permutation of length p > 0 and
d := p − |m(π)| = p − (m1 + m2 + . . . ) [(6.3-4)]. Then with with notations (4.5),
(6.6):

r(π) =
d∑
i=0

(−1)d−i
p!

d! (i)m(π)

(
p

i

)
sπ(i) .(6.7)

Proof. Using the notation of Lemma 6.4, and (4.8), (6.4-6) one sees that Qπ(m) =
cpm

d + . . . . Taking m = 0, . . . , d one now gets the system of linear equations:

(i)m(π) (cpi
d + . . . ) = p! sπ(i) , (i = d, . . . , 0) .

A calculation similar to that in the proof of Thm.6.3 yields the result.

For the computation of the numbers sπ(0) , . . . , sπ(d) one can use advantageously
the (up case) recursive structure of Schubert polynomials described in [W1]: as-
sume π ∈ Sn and Xπ(m) as known; then

Xπ(m+1) = ∂1 . . . ∂n+m((x1 . . . xn+m)Xπ(m)) .(6.8)
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Example 6.6. Take π = 4321. Then L(π) = 3210, l(π) = 6, λ(L(π)) = 321, and
r(π) = 16 by Prop.4.5. The m-vector for π is m(π) = (1, 2, 1), whence d = 2. Since
sπ(0) = 1, sπ(1) = 14, and sπ(2) = 84, formula (6.7) gives

r(4321) = 30 · 1− 10 · 14 +
3

2
· 84 = 30− 140 + 126 = 16

as desired.

Remark 6.7. In a sense the Theorems 6.3 and 6.5 are complementary to the
recursion formula (5.4): formula (5.4) relies on knowledge about the interval [id, π]
in right weak Bruhat order, and formulas (6.2) and (6.7) on knowledge about
certain Schubert polynomials, which is essentially equivalent to knowledge about
the intervals [π, ωn+p] and [π, ωn+d], respectively. This can be seen from the method
of divided differences or even more clearly from the ascent-descent method (cf. [W1,
Sec.6]) for the computation of Schubert polynomials.

Theorem 6.8. Let π ∈ Sn be an unembedded permutation of length p > 0 and let
sπ(m) denote the coefficient of the monomial x1 . . . xp in Xπ(m). Then

0 ≤ sπ(0) ≤ sπ(1) ≤ . . . ≤ sπ(p−2) ≤ r(π) = sπ(p−1) = sπ(p) = . . . .(6.9)

Proof. Recall the BJS-formula (2.2) for Schubert polynomials. Clearly b = p . . . 1
appears at most once in a set B(a). Moreover, B(m+(a)) ⊂ B((m + 1)+(a)) for
all m ∈ N0 by Lemma 2.3, whence: 0 ≤ sπ(m) ≤ r(π) and sπ(m) ≤ sπ(m+1) for
all m ∈ N0. But for m ≥ p − 1 every entry aν of a reduced sequence a obeys
aν +m ≥ 1 + (p− 1) = p; thus from the definition of the sets B(m+(a)) it follows:
b = p . . . 1 ∈ B(m+(a)) for m ≥ p− 1 independently of a ∈ R(π).

Of course (6.9) in connection with the recursive computation (6.8) of Schubert
polynomials can be used to determine r(π), but more importantly (6.9) in con-
nection with the K-rule for the combinatorial generation of Schubert polynomials
opens up a way for the combinatorial determination of r(π) and possibly the sim-
ple determination of the coefficients απλ in (6.1). Below we describe briefly the
K-rule, which has been conjectured for arbitrary π (and proved for vexillary π)
by A. Kohnert, and proved in general in [W2].

A box diagram B is a subset of an n×n-array of unit squares or boxes in the plane:
B ⊂ {[i, j] ∈ Z × Z | 1 ≤ i, j ≤ n} for some n ∈ N. The position “column i, row
j” will be denoted by (i, j), the box at position (i, j) by [i, j]. We use the notation
[i, j] ∈ B ([i, j] /∈ B) as an abbreviation for: B contains (does not contain) the
box [i, j].

The diagram D(π) of a permutation π ∈ Sn is the box diagram, which originates
from {[i, j] | 1 ≤ i, j ≤ n} by cancelation of the ‘hooks’ of boxes

{[i′, π(i)] | i′ ≥ i} ∪ {[i, j′] | j′ ≥ π(i)}

for i = 1, . . . , n. For example π = 263154 has the diagram



26 R. WINKEL

××
×
×
×

×

×
·

·

·
·

·
·

1
2
3
4
5
6

x1x2x3x4x5x6
,

where we have added: dots in the positions (i, π(i)), row numbers j = 1, . . . , 6
at the left, and variables xi in columns i = 1, . . . , 6 at the bottom of the dia-
gram. For the columns we have taken variables instead of numbers in view of
the following evaluation rule: to every box diagram B one associates a monomial
xB := xβ1

1 x
β2

2 . . . , where βi is the number of boxes in column i of B. The most
important part of the K-rule is now a prescription, how to move a box [i, j] of a
given box diagram B:

Definition 6.9. (of K-moves:) Let [i, j] ∈ B with {(i, j′) | j′ ≥ j} ∩ B = ∅,
i.e. there is no box above [i, j] in B, and assume that MB(i, j) := {(i′, j) | i′ <
i, [i′, j] /∈ B} 6= ∅. Then [i, j] is allowed to move to the position in MB(i, j) with
the greatest column number i′, i.e. the closest empty position left to [i, j] in row j
of B.

Theorem 6.10. ([W2]) Let K(π) denote the set of all box diagrams, which can be
derived by (repeated) K-moves from D(π); then

Xπ =
∑

B∈K(π)

xB .

Example 6.11. We depict K(31542) with D(π) appearing as the upper left box
diagram. (The empty third level has been omitted from all box diagrams.)

×
× ×
×
×

×
× ×
×
×

×
× ×
×
×

×
× ×
×
×

×
× ×
×
×

×
× ×
×
×

×
××
×
×

×
× ×
×
×

And indeed Xπ = x2
1x

2
3x4 +x2

1x2x3x4 +x3
1x3x4 +x2

1x
2
2x4 +x2

1x2x
2
3 +x3

1x2x4 +x2
1x

2
2x3 +

x3
1x2x3.

Corollary 6.12. Let π ∈ Sn be an unembedded permutation of length p > 0, and
define

K(π(m)) := {B ∈ K(π(m)) | xB = x1 . . . xp}

for every m ∈ N0. Then r(π) = |K(π(m))| for m ≥ p− 1.

Proof. Immediate from Theorems 6.7 and 6.9.

This corollary opens up a combinatorial way for the determination of the num-
bers r(π). We remark that a box diagrams in B ∈ K(π(m)) (or K(π(m))) gives rise
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in a natural way to a labeling of D(π), which is called the retract r(B) in [W2,
Def.4.1], and which in general is substantially different from the balanced labelings
of [EG] and [FGRS]. It seems possible that a closer inspection of the sets K(π(m))
could yield a combinatorial method for the determination of the coefficients απλ in
(6.1) resp. Theorem 6.1.

Remark 6.13. A short time after finishing the present paper conversations with
Mark Shimozono brought to light that the paper [RS, Thm.24] of Reiner and Shi-
mozono contains a combinatorial algorithm for the computation of the numbers
απλ. The algorithm begins with the diagram D(π) and is based on the notions of
‘plactification’ and ‘peelable tableau’. In fact it seems that this approach has been
known already by Lascoux and Schützenberger and that it underlies a MAPLE rou-
tine in the package ACE, which computes the number of reduced words. Therefore
it is almost certain that a related algorithm exists, which is based on the K-rule.
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