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By A, we denote the subalgebra of Q.S,, which is known as Solomon’s
Descent Algebra [7, 6, 1]. This article gives a sketch of a proof for the
following theorem about the automorphisms of A,. (Details and related
developments will be given in a forthcoming publication.)

Main Theorem For the automorphism group of Solomon’s Descent Alge-
bra A, the following holds:

Inn(A,,) if n odd,

Aut(A,) =
Inn(A,) x Cy  if n even.

The proof of this theorem splits into four main steps:

e the reduction of the problem to show that a stabilizer of a certain set
is generated by inner automorphisms,

e the definition of a graph I',,,
e the mentioned stabilizer is determined by its action on I',,

e the action of the stabilizer on I',, is induced by conjugation by invertible
elements of A, i.e. by inner automorphisms, and possibly a central
involutionary outer automorphism.



1 Notation

We write N for the set of positive integers {1,2, ...}, N* for the free monoid
generated by N and QN* for the free algebra generated by N over the field
of the rational numbers Q. The elements of N* are written as words in the
alphabet N, e.g. 132 € N* is the product of 1, 3 and 2. If w =w;...w; is a
word, we set |w| := k, the length of w.

Let n € Nand p = p;...pr € N* such that py,... ,pr € N. The word p
is called a partition of n (pkFn)ifp1+---+pr=nand p; >ps > - > py.
We write p(n) for the number of all partitions of n. For each letter ¢ we set

ac(p) == i | pi = c}l,
the number of occurences of the letter ¢ in p. Then we may write

p= nan(P)(n _ 1>an71(p) o 1a)

2 Reduction of the problem

By a theorem of Malcev [4], [5, 11.6] we know that the set 1 4+ Rad(A,) of
invertible elements acts transitively by conjugation on the set of complements
of Rad(A,,).

By Frattini’s lemma [3, 3.3]', for each complement H of Rad(4,) we
have:

Aut(A,) = Stabawa,)(H) (1+ Rad(A,)), (1)

where (1 + Rad(A,)) denotes the group of automorphisms induced by con-
jugation by the elements of 1 + Rad(A,,).

Now we construct a complement H of Rad(A,,) to which the above men-
tioned theorem and lemma will be applied.

In [2], D. Blessenohl and H. Laue define elements? v?, p - n, with the
following properties [2, 1.2 Proposition]:

(a) vP is an idempotent for each p - n.
(b) vPv" = 0 for all partitions p, r such that p # r.
(©) S = 1.
!'Though the lemma is only stated for finite groups, it holds for infinte groups, too.

2In [2] these elements are not indexed by the partitions themselves but by listing them
in the lexicographically decreasing order: v9) instead of v? if p is the j-th partition.
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(d) A, = (v’ | pFEn)e® Rad(A,).

The set H := ( v? | pF n )g is a subalgebra-complement of Rad(A,,) in
A,,. We observe that
H=Q6 -8Q,
—_——

p(n)

and that {v? | p+ n} is the unique set of p(n) mutually orthogonal idempo-
tents # 0 of H.

By Equation (1) it suffices to show that Stabaye(a,)(H) is generated by
inner automorphisms in the case that n is even and by inner automorphisms
and an involutionary outer automorphism in the case that n is odd.

3 Directed graph of partitions

Now we define a directed graph I',,, the nodes of which are the partitions of
n. The node r is called connected with p (rpv- ;p) if [r| = |p| +1 and there
exist letters ¢, d € N such that ¢ # d, a.(r) = a.(p) + 1, aqs(r) = aq(p) + 1
and acyq(r) + 1 = acrq(p), i.e. p can be obtained from r by coalescing two
different letters of r and reordering the letters to obtain a partition.

The shape of the graph I'; is shown in Figure 1.

Obviously I',, has two (three resp.) connected subgraphs in the case that n
is odd (even resp.). More precisely, the partition 1...1if nisodd and 1...1
and 2...2 if n is even are not connected with any other node. We observe
further that for each k& < n the subgraph of I',, induced by all partitions
which include the letter £ is isomorphic to I',,_x. It is not at all trivial to see
that, if ¢ is an automorphism of I',,, for each k£ € N this subgraph is invariant
under ¢. We get by an inductive argument the following lemma about I',:
Lemma 1 For the automorphism group of I',, holds:

Aut(T,) = {id} if n odd,
{id, 7} ifn even,

where T is the automorphism of I',, that exchanges the nodes1...1 and 2. ..2
and fixes the other nodes.

4 The action of Stabyya,)(H) on I,

Now let ¢ be an automorphism of A,, such that H¥ C H.
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Figure 1: The graph I';



Since the elements v?, p F n, are mutually orthogonal idempotents, ¢
acts on the set {v? | p F n}. Therefore ¢ induces an action on the set of
partitions of n.

It turns out that the action of ¢ on the set of partitions of n is compatible
with the relation pv b 1-€. for all partitions r, p of n we have:

r ~'\/ ‘pfp — TSD kv'pfp@'

Therefore ¢ induces an automorphism of I',,.

By Lemma 1 we see that the spaces v?PA, " are p-invariant for all parti-
tions p,r such that r - p.

By [1, 2.2 Corollary] ® we get then

Lemma 2 Let p,r partitions of n such that r}v'pfp. Then VPA, V" is a
one-dimensional p-invariant space, and p|,pa,,» has an eigenvalue # 0.

By [1, 2.4 Corollary| we can deduce
Rad(A,) = (vPA" [ riv ‘ptP )(+,)

from which we see that the action of ¢ on Rad(4,) is determined by the
action on the subspaces VP A, ", r ot D-

Now we define a certain subgraph I} of I',,, the nodes of which are the
partitions of n, too. At first, we set

Py={peP,|p=pi...0k01 # Dk},

i.e. the set of all partitions of n that have at least two different letters. For
each partition p =py...pp € P let

tp) :=min{i | i e {1,...  k},pi #p1}

and
C(p) :== (1 + D)) P2 - - - Pulp)—1Pu(p) 41 - - - Phs

i.e. we form the sum of the two largest different letters that occur in p, delete
these two letters from p and add the sum as a new letter. If p € P’ then
((p) is a partition of n and it holds p - ((p).

The partitions p,r of n are called connected in I'} (p > r), if p € P} and
r = ((p) or if r = d* for some d,k € N and p = d*}(d — 1)1.

The relation > is coarser than (v o and defines a spanning tree for the
“big” connected component of I, seen as an undirected graph, that contains
the node n. Figure 2 shows I';.

We obtain

3In [1], the spaces w,A" are treated. But these are isomorphic to vPA,v".
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Main Lemma Let ¢ € Stabayya,)(H) such that ¢|wa,,» = id for all
partitions p,r such that r = p. Then ¢|raq(a,) = id.

The proof of the Main Lemma needs hard conclusions. For this reason
we give only some instructive examples in Section 5 that demonstrate the
important ideas.

But now we may easily construct for each ¢ € Stabua,)(H) an invert-
ible element A € H such that the conjugation by h coincides with the action
of ¢ on the subspaces v?PA,v", r = p. By the Main Lemma, we see that the
action of h and ¢ coincide on Rad(A,,).

Therefore the automorphism ¢ : A, — A,z — (2¥) centralizes
Rad(A,) and stabilizes the set {v? | p = n}. By what we have observed
above, ¥ induces an automorphism of I',. Now Lemma 1 implies, that v is
the identity or an involution. Hence, it follows

h—l

Lemma 3

mner automorphisms induced by H if n odd,
Stabaua, (H) — {{ Z y H} f

{inner automorphisms induced by H} x Cy if n even.

5 Example for n =7

We illustrate the proof of the Main Lemma by discussing the example of
n = 7 which provides a spectrum of all three typical cases which may occur
in general. This discussion therefore does not only give a flavour of the
general proof but presents all its basic elements in a concrete form.

In [1, p. 718] a basis of A, consisting of idempotents v,, ¢ = n, is given.
In the following, we consider the linear extension v : (¢ | ¢ = n)go — A, of
the mapping {¢ | ¢ En} — A,, ¢— 1,

We use the Lie product o on QN* defined by a o b := ab — ba for all
a,b e QN*.

E.g. we write

Viog = V12—21 = V12 — V21.

In order to illustrate the proof of the Main Lemma we may assume
¢ fixes elementwise the subspaces v"A, v, VA2 vTA L4, VOTA LA
VOLA 2L PPN 1322 BN 3L PILA AL SN 3201 322 A 2901
PUTLA 3T R21LA 322101 BILLLA g 211001

We have to show that the subspaces v°2A,, %21, vB3A, 1421 V421 A 13211
v33AL 321 are fixed elementwise by ¢, too.

Figure 3 shows this situation. The thick edges represent the subspaces
on which the action of ¢ is assumed as identity. The thin edges represent
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the subspaces on which the action of ¢ is not known. The eigenvalues of ¢
on these eigenspaces are denoted by a, b, ¢ and d. We have to show that

a=b=c=d=1.

In the following considerations we use rules described in [1, 1.5 Theorem,

2.1 Proposition].

Case 1: The calculation of @ and b. There are the one-dimensional spaces

with eigenvalue 1,

with eigenvalue a,

with eigenvalue b.

Applying the Jacobi identity ((zoy)oz+ (yoz)ox+ (z0x)oy

get
0 = 0¥

7
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V(102)01 + V(104)02 + V(201)04)7
V(402)01 + AV(104)02 + DV(201)04)
(—V(104)02 — V(201)04) + aV(104)02 + DV(201)04)
= (1/7 ?((a — 1)Voa)02 + (b — 1)V (201)04)-

0) we

The summands in the last equation are linearly independent. It follows
that a =1 and b = 1.
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Figure 3: I'; with the eigenvalues as weights



In a similar manner we treat the other two cases.
Case 2: The calculation of ¢. There are the one-dimensional spaces

(V61Any511)<l/511Any3211)(V3211Anl/22111) — < V61I/(((201)02)01)1) >Q
with eigenvalue 1,
<V61Anl/421)<V421Any3211)(V3211Any22111> — < V61V(((201)01)02)1) >Q

with eigenvalue c.

The anticommutative law and the Jacobi identity imply that both spaces
are generated by the same element. It follows that ¢ = 1.

Case 3: The calculation of d. There are the one-dimensional spaces

(W BAA)(AA, ) = 1/43u(301)(201) bo
with eigenvalue b = 1,
(BN, (VBIA, 52 = 1/43y(301)(201) )o

with eigenvalue d. Both spaces are generated by the same element. It follows
that d = b = 1.
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