Eigenspace Decompositions with Respect to
Symmetrized Incidence Mappings

Helmut Kramer

Mathematisches Seminar der Universitat Hamburg
Bundesstrafle 55
D—-20146 Hamburg

Abstract

Let K denote one of the fields Q,Fy and define H (t¢,q), t < g, to
be the K—incidence matrix of the t—sets vs. the g—sets of the n—set
{1,2,... ,n}. This matrix is considered as a linear map of K-vector

spaces
ch(n) - KCt(TL),

where xCs(n) (s < n) is the K—vector space having the s—sets as a
basis. The symmetrized K—incidence matrix (of H (¢, q)) is defined to
be the symmetric matrix H (¢, q) := H (t,q)T - H (t,q) which is also
considered as an endomorphism of gCy(n). In case K = Q we exhibit
explicitely a decomposition of gCy(n) into eigenspaces with respect
to H (t,q). A closer examination of the proof of this result yields a
canonical decomposition of ker H (¢, q) (provided (7;) < (Z)) extending
work done by J.B. Graver and W.B. Jurkat.

In case K = Fy denote H (q | n) := H (¢ —1,q). Then H (q | n)
is a projection hence diagonalizable if n is odd (otherwise nilpotent).
In both cases the rank of H (¢ | n) is determined; among other results
an explicit decomposition of r,Cy(n) into the two eigenspaces with
respect to H (q | n) is obtained provided n is odd.

As a basic tool we use the graded commutative K—algebra

kCi(n) =K[TY,... , Tn)/(TE, T2,...,T3).



Here the K—vector spaces of the elements of degree g of x€.(n) are
isomorphic to gCy(n).

1. We denote forn € N

={1,2,...,n},

let in additon K be a field. Assume 0 <t < g < n. Then H (¢, q) denotes the
K-incidence matrix <L (N, M )> Here M runs through the g-sets of n, NV
runs through the ¢-sets of n and we define

3

1, NCM,

t(N, M) = { 0, otherwise. 0,1 €K).

Let xC,(n) be the Q-vector space with basis {[M]}ME( ) such that H (t,q)

n
q

defines a linear mapping

Nt
which again is denoted by the same symbol H (t,q). The transposed matrix
H (t,q)T defines a linear mapping

KOt(n) - KOQ(n)> [N] - Z L(N7 M)[M]7

M,
|M|=q

which again is denoted by the same symbol H (t,q)”. Finally we define an
“augmentation map”

H(—l,O) . KC()(TL) — 0.

We are dealing here with the “symmetrized incidence mapping” H (t,q). This
is defined to be the mapping

H(t.q) = H (t,q)" o H (t.q) : xCy(n) — xCq(n)

which is already diagonalizable in case K = QQ as we soon will see.

The following proposition is well known.



Proposition 1. We have

Aa(in) = X - (M) o

M/,
|M'|=q

Proof. We have

At (M) = >0 > e(N, M) (N, M) - [M],

, M7,
IN|=t |M!|=q
in addition

S LN, M) - (N, M) :1-#{N“N| —t, NngM'}
|N|=t
=1- (M),

O

Therefore all entries of the matrix H (t,q) are non—negative in case K = Q.
If 3(M) denotes the row sum of the matrix H (¢, q) indexed by the g—set M

we have - Z (\MFZM'|)

M/,
| M |=q

and this sum is independent from M; so we denote the constant row sum
by 3.

e ([3], Lemma 5.1.1) Suppose A is a real n X n—matriz with non—negative
entries and constant row sum k. Then (1,1,...,1)T is an eigenvector of A
with eigenvalue k. Moreover if p is another (complex) eigenvalue of A then
it holds that

|l < k.

Suppose now n > 1. Then k is an eigenvalue of geometric multiplicity 1 if
and only if A is irreducible.

The last assertion follows from the so—called Perron—Frobenius—Theory.

We note another result which applies to the matrix H (¢, q):



ee ([3], Theorem 3.2.1) Suppose that A is a real or complex n X n—matriz.
Then A is irreducible if and only if the directed graph D (A) associated to A
15 strongly connected.

Now if A = ]:l(t,q), t < q, K = Q, the graph D (A) has (%) as set of
vertices V. If L, M € V then the directed arc (L, M) is in the set E of edges
of D (A) if and only if (")) £ 0, that is [LN M| > ¢ ist. In this case (M, L)
is an arc in D (A), too.

We conclude therefore that D (A) is strongly connected if and only if the

corresponding undirected graph is connected. This is indeed the case as can

be easily seen as follows: Fix L, M € V. Then there exist ¢—sets L = Ly, Lo,
., L, = M with the property

If one denotes the eigenspace of H (t,q) with eigenvalue A € R by

Eig (H (t,q), /\> C »Cy(n)

then the arguments stated above yield
Big(H (q).5) =R- [ > [M]

In the following we make the convention () = 0.

Theorem 1. We assume K = Q and 0 < t < ¢ < n. Then f[(t,q) is
diagonalizable (as a mapping of Q—vector spaces). More exactly the following
holds: In case 0 < s < min{q,n — q} we define

q—s n—t—s
t;s) = . .
1 (g, t;s) (q_t) ( ot )
1) Assume t > min{q,n — q}. Then we have
i) 1(q,;0) > p(g,t;1) > ... > p(g t;min{g,n — g}) > 0 and

i) Big (A (t,0). p(a.t:5)) = H (s,0)" (ker H (s = 1.5)),
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tii) dim H (s,q)T(kerH (s =1, 8)) = () =),

such that

min{q,n—q}

iv) oCylm) = @ H(s,q)T(kerH(s—l,s))

is a decomposition of gCy(n) into eigenspaces with respect to the endo-
morphism H (t,q).

2) Assume t < min{q,n — q}. Then we have
i) p(g,t:0) > p(g, ;1) > ... > p(g,t;t) >0,

M(qat;Hl)=~-=u<q,t;min{q,n—q}> = 0.

In case 0 < s <t we have
i) Eig (ff (t,q), 1 (g, t; 8)> =H (s,q9)" (kerH (s — LS));

i) dim H (s,q)T(kerH (s =1, s)) = ()= (M)
Furthermore it holds that

iv) Big (1 (t,q),0) = ker H (t,q),

v) dimker H (t,q) = (Z) -,

such that

) oCylw) = (@ H (s, 0)" (ker s = 1,5)) ) @ ker (1)

is a decomposition of oCy(n) into eigenspaces with respect to the endo-
morphism H (t,q).

Corollary 1. We assume g+t =n. Then the following identity holds

et H (t,)| = ﬁ (q - s) (’;)—(sil).

s=0 q t



This statement can also be derived from [7], Theorem 2.

2.  For the proof of the theorem we make use of a graded K-algebra which
was essentially introduced in the previous paper [6]. We denote this algebra
by x€.(n). It is defined by

kC.(n) =K[T,... , T,]/(TE, ..., T?) =K[Xy,...,X,],

here Ty,... ,T, are algebraically independent elements and X; denotes the
residue-class Tymod(T%,... ,T2),j € n. This algebra will be used in the
sequel in the cases K = Q and K = Z/2Z = Fy. Let x€,(n), denote the
K—vector space of the elements of degree p in this algebra; then we have that

k€ (n), =0, p > n,

and

The isomorphisms under consideration are induced by the mappings
K>1 — [0],
Xjy - Xy oo Xy, — [{Jnd2s 5ot ]
(1<ji<ja<...<jp<n).

In case 0 < ¢ < n we will identify the spaces x€.(n), and xCy(n). — To the
incidence mappings H (¢ — 1,¢), 0 < g < n, corresponds the K-linear map
A of g€, (n) with degree —1 induced by

Al =0, A% =1, j€n

k

q ~
A X X)) = 3 X K

where we assume that the X, are pairwise distinct and ~ denotes the deletion
operator.

Finally we define X := )" Xj.
j=1



Proposition 2. We agree upon A° =id,X° = 1. Then we have
i) in case K= Q

(q—t"H(t,q) = AT ,

(q—t)' H(t,q)T(w) = Xt.w, we Cin),

ii) in case K = Fy
A? =0, X? =0,
H(tt+ 1) (w) =X -w, we Cn), 0<t<n-—1.

Proof. For the proof of i) we refer to [6], Proposition 1. —

In the second statement it is obvious that A? vanishes on the vectorspace
F,C1(n). In case 2 < ¢ < n we rewrite

AXG o X)) =D (FDFX XX,
k=1

and apply a standard argument from simplicial homology. The remaining
assertions are obvious. U

We remark that ( x,&.(n), A) is isomorphic to a Koszul-complex. We will
return to this topic in the last section of this paper.

Let us write w € x€,(n) as a sum of monomials (with respect to Xi,...,X,)
with coefficients from K. Then we have defined in [6] the foundation of
w (in signs Fund (w)), to be the product of all X; which appear in this
decomposition with non—vanishing coeffients. Sometimes we will identify
Fund (w) with a subset of n. This convention is used in the next proposition.

Proposition 3. Assume v,w € x€.(n) and Fund (v)N Fund (w) = 0. Then
it holds that
A (v-w) =wA (v) +vA (w).



For the proof we refer to [6], Prop. 2. O
Finally we define the “falling factorial”

rlk=r(r—1)r—=2)-...-(r—k+1), [r]o=1.

Proposition 4. i) In case K = Q let a, B be non—negative integers. We
assume 0 < s<n—1,1<a, a+s<n, 0< 3 <a, andw € gCs(n).
Then the following identity holds

B
AKX w) = (ﬂ) [aluln — @ — 25 + Bl - X0k APK(w).

k
k=0

ii) In case K = Fy we assume 0 < s <n—1 and w € 5,Cs(n). Then the
following identity holds

AXw)=X-A(w)+ (n-1) - w.

Proof. For the first statement we refer to [6], Prop. 4.

The second statement is obvious in case s = 0. Assume now s > 1. Let
w € gCs(n) be a sum of monomials (with respect to X1,. .., X,,) with integer
coefficients. Then as we have seen in the first part of the proof it holds that

AXw)=X-A(w)+ (n—2s)-w.
Reducing this equation modulo 2 now yields the claim. O
Proposition 5. ([4], Chapt. 15, COROLLARY 8.5).
We assume K = Q and s < min{q,n — q}. Then the mapping
H(s,9)" : oCs(n) — oC4(n)

18 1njective.



Proof. We use the relation derived in Prop. 4, i) and assume
a=[F=¢q—s > 0. Let us rewrite this relation in terms of matrices. The
left hand side of the relation is ((g — s)!)2 H (s,q) o H (s,q)T; the right hand
side is sum of the positive semi—definite matrices

H(2s—q+ks) oH(2s—q+k,s), ¢g—2s<k<q-—s,
with non—negative integer coefficients. Also the unit matrix occurs here (take
k = q — s) with the coefficient
[ = slg—s - [0 — 28]gs
which doesn’t vanish since s < n — q. We conclude that in case s < n —q
H(s,q) o H(s,q)"

is an isomorphism, hence the mapping H (s, q)? is injective. O

3. In this section we first come to the proof of Theorem 1.
Ad 1) So assume ¢t > min{q,n — q}. Suppose (Z:‘:) = 0. This yields

t < s <min{g,n — q},

a contradiction. In the same straightforward manner we conclude that the
second factor occuring in pu(q,t;s) doesn’t vanish. Now it is easily seen
that the p(q,t;s), k=0,1,..., min{g,n — q} are strictly decreasing. This
establishes statement i). —

Assume now w € ker A = ker H (s — 1,s) C Cs(n). According to Prop. 4 we
have that

ATHXT5w) = [q—8]gt - [n— 85—t - X0 .
We multiply this equation with X¢~¢ and obtain
(X9 AT (X)) =g — 8]gt - [n— s =t - XT° - w.
Now we use Prop. 2. This yields
X7 w = (¢ — )l H (s,9)" (w),

2

xot - At w) = (g = 0)!) H (£ g)(w)

9



Therefore we have now

H (t,q) (H (S7Q)T'w) = n(a.t;s) - (H (S,Q)T-w>,

and in turn

(1)... H(s,q)T(kerH(s — 1,5)) C FEig (ﬁ (t,q), ul(q,t; s))
Since s < min{g,n — ¢} the inequality s < [%] holds.

Now we use the following

Lemma. Assume h,k € {0,1,... ,n} and (Z) < (Z) Then the mapping
H (h,k) : Cx(n) — Cy(n) is surjective.

For a proof of the Lemma we refer to [5], 2.3., 2.4.
For another independent proof see [6], Theorem 1. O

According to the Lemma we have

dimker H (s — 1, ) = (Z) - (Sﬁl).

We now invoke Prop. 5 and obtain

dimH(s,q)T<kerH(s . 1,5)) - (Z) - (521)‘

Since eigenspaces to different eigenvalues are independent, we conclude
min{g,n—q} min{g,n—q}
Z H(s,q)T(kerH(s — 1,5)) = @ H(s,q)T<kerH(s — 1,5)),
s=0

s=0

and this subspace of ¢C,(n) has the dimension

min{é—q} ( <Z) ) (8 n 1)) _ <Z> — dim oCy(n).

Therefore strict equality must hold in Eq (1). At the same time all other
statements are proved.

10



ad 2): The proof of assertion i) is straigthforward. Also, along the same lines
as in the corresponding statement in case 1) we conclude

(2)... H(s,q)T<kerH(s — 1,3)) - Eig(ﬁ] (t,q), p(q,t; s)),
0 <s<min{l,n—q},

dim H (t,q)" (ker H (s = 1,5)) = (Z) - <£1)

provided 0 < s < min{g,n — ¢}.

and

Now we assume ¢ < min{q,n — ¢} and obtain t + ¢ + 1 < n. This inequality

is equivalent to the condition (}) < (Z) According to the Lemma in the first
part of the proof H (t,q) is surjective, in turn

dimker H (t, ) = (Z) - (?)

Obviously it holds that
3)... ker H (¢, q) gEig@(t,q),o).—
Now we apply the first half of assertion i) and obtain
St H(s,q)7 (kerH (s —1, s)) +ker H (t,q) =
= @ _,H(s,q)" (kerH (s —1, 3)) @ ker H (t,q).

This subspace of ¢C,(n) therefore has the dimension

=((0)-(20)+ () - ()= () -m o

We conclude that strict equality must hold in Eq (2), (3). At the same time,
all other statements have been proved. 0

11



Remarks:

a) We note the particular result

Eig<H (t,q), u(q,t;O)) =Q- [ Y [M]

M,
|M]|=q

This allows us to compute the constant row—sums 3 of H (t,q). We obtain

ot (1) (10).

b) From the second part of the proof we derive
ker H (¢, q) = Eig (fl (t.q), 0) — ker <H (t,.q)" o H (1, q)).
Of course this is also a consequence of the following well-known equality
rankH (t,q) = rank(H (t,q)" o H (¢, q)) (: rank(H (t,q) o H (t, q)T)>,
(see for instance [1], Chapt. II, 2.5 Lemma).

Now we turn to the proof of the corollary.
Assume first t = ¢. The claim is trivially true since H (¢, ¢) is the unit matrix.

Now assume t < q. Of course

| det H (t,q)| = 1/det H (t,q),

and det H (t,q) is the product of the eigenvalues counted with the corre-
sponding multiplicities.
Since ¢ = n —t, case 1) of the Theorem applies and yields

2
),Ogsﬁt:min{q,n—q}. 0

pig t;s) = (q_s

q—1
Let us once again return to the proof of the Theorem, case 2). We consider

the sum
mln{(Ln_q}

U= Z H (s,q)" (ker H (s — 1,5)).

s=0
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Our arguments have shown that all subspaces occuring in this sum are sub-
spaces of eigenspaces with respect to H (t,q) but the eigenspaces under
consideration do not necessarily have distinct eigenvalues. In fact the last
min{q,n — q} —t eigenvalues are zero according to assertion i). So in general
we cannot conclude by standard arguments that U is a direct sum. However,
this is true as can be seen from our next result which was announced in the
previous paper ([6], Theorem 3).

Theorem 2. Assume (T;) < (Z) Then it holds that

min{q,n—q}

ker H (t,q) = @ H(s,q)T<kerH(s — 1,5)).

s=t+1
Proof. Assume t + 1 < s < min{q,n — ¢} and define
Vs = H(s,q)T<kerH(s — 1,5)).

We have already remarked that the condition imposed in Theorem 2 is equiv-
alent to t + ¢+ 1 < n. Now we use the following

Lemma. Assume 0 < s < min{q,n—q} and ws € ker H (s — 1, s). Then we
have

q—r (Y9-S5 . _ Oé(q, S) * Ws, Oé((bs) #Oﬂ Zf?" =S,
ATTX ws)—{ 0, if r < s.

Proof (of the lemma): From Prop. 4 we derive
AT5(XI° - wy) = a (g, s) - ws
a <Q7 8) = [q - S}q—s : [n - zs]q—s # 0

provided s < min {g,n — ¢}.
Now assume r < s. Then we obtain

ATT(XI7 ) = AT (AQ*S(Xq*S : ws)) =AY (a (4,5) - w8> —0.

13



Now take r =t in the lemma and apply Prop. 2. Then we have proved anew
that V; are contained in ker H (¢,q). — Let us show now that the sum

mln{Q7n_q}
vy,
s=t+1
is direct.
We take v € V and write
mln{Qﬂl*q}

4)... v = Z X" %ws =0, ws € ker H (s — 1, 5).

s=t+1

In case t + 1 = min{q,n — ¢}, nothing is to be proved. Otherwise apply
A1) in Eq (4). According to the Lemma we obtain

Aq_(t+1)(v) =a(qg,t+ 1) w, =0,

which in turn shows w;,; = 0. Suppose now that it has already be shown
that in Eq (4) the following equalities hold

Wiy = Wio = ... = w, = 0, p < min{g,n — q}.
Then we obtain again according to the Lemma
Aqf(erl)(U) =a(g,p+1) wy =0,

and therefore w,1; = 0. -

We recall from the proof of Theorem 1

= ()-(2)

This in turn implies now

=20 -(20) = () () -amwr

which finishes the proof of the Theorem. 0
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We recall that the two conditions imposed in Theorem 1, viz “4 > min

{¢,n — ¢} and “t < min{q,n — q}”, respectively, are equivalent to the
conditions “(7) > (Z)” and “(}) < (Z)”. In the first case H (t,q) is an
isomorphism according to Theorem 1. If we use only [6] in the proof of that
theorem, which is possible, then we have proved anew independently from [5],
2.3, 2.4 that H (t,q) is an isomorphism provided (7;) > (Z)

(Of course this proof is (much) more complicated.) In particular we conclude
that ker H(q — 1,q) # 0 if and only if ¢ < |%]. Now we quote

eee ([5], 4.2, [6], 4.). Assume q < [§]. Then ker H (¢ —1,q) is generated
by elements of the type

(Xj — X)) ( Xy — Xj0) o oo - (X — Xiy)-

2g—1

If we combine this result with Theorem 2 we obtain systems of generators
of ker H (t,q); however, these systems are in general different from those
exhibited in [5]. — In the same way we have explicite systems of generators
of the eigenspaces with respect to H (t,q).

Finally we make a remark concerning the eigenspaces of H (t,q) o H (t,q)*.
We restrict ourselves to quote the following result:

eeee ([4], Chapt. 10, LEMMA 3.2)  For any matriz A the non—zero eigen-
values of AAT and AT A are the same, and have the same multiplicities.

4. In this last section we take K = 5. We investigate now the mappings
Hq<Q|n) = H(Q - 17Q) : cmq(n) B F20q<n)7

using the algebra y,&,(n). According to Prop. 1 we have

|M'|=q
H{gln)([M]) = (a- D) [M]+ > 1-[M)
|MNM'|=q—1

The reader might have wondered why we admit a field of positive character-
istic. In fact, as we soon will see, H (¢g|n) is a projection (hence diagonaliz-
able) if n is odd (otherwise nilpotent). We have already observed in 3. that
(r,€«(n), A) is a complex in the sense of homological algebra. Let us rewrite
this complex K,, in the following way

0 — Co(n) 22 Chi(n) 225 .. 22 Ci(n) 25 Cy(n) — 0

15



where of course we use the notation A, = A '
Cq(n

Proposition 6. The complex R, is exact.

This can be seen in different ways: First, the homology of the ball vanishes
over any field. Or secondly, &, is isomorphic to a Koszulkomplex. The claim
now follows from standard arguments about the vanishing of the homology
modules of this complex. Third, the claim follows also from the much more
general considerations in [2].

However, it will be useful for our purposes to prove the exactness of K, as
follows: Since the statement is trivial if n = 1, we assume in the sequel
always n > 2.

Proposition 7.

i) Im A, is already generated by the images of the elements X,, - u, where
u€ Cyi(n—1).

ii) rank A, = ("7)).

q—1

Proof. The elements different from zero recorded in assertion i) are exactly
those w € Cy(n) with the property Fund (w) N {X,} # 0. If ¢ = n, the
claim is obvious. So assume now 1 < ¢ < n — 1 and take w € C,(n),
Fund (w) N {X,} = 0. It follows that X,, - w € Cyy1(n) and according to
Prop. 3

Ap1(Xp-w) =w+ X, - Ay(w).

But A, 0 A,y =0, so we obtain

which proves the first claim.

To prove ii) it is sufficient to show that A, restricted to the subspace
X, - Cy1(n — 1) is injective. So assume X, - u is contained in that subspace.
Then again according to Prop. 3 we obtain

0=A,X, u)=u+ X, A,_1(u)

16



and hence u = 0, since X, is no factor of u. Combined with assertion i) we
obtain now

rank A, =dimC,_1(n — 1) = <n a i)
q—

As announced we prove again the exactness of K, as follows: Assume
1 < q<n—1. Then it holds that

dimker A, = (n) — (n— 1) = (n— 1) =dimImA ;.
q q—1 q

The exactness of K, at the positions 0,7 is obvious.

The rank—formula in Prop. 7 is also a consequence of the more general
considerations in [7]. Here the rank of the integer valued incidence matrix
H (t,q) reduced mod pZ, p any prime, was determined. The rank—formula
obtained there (loc. cit., Theorem 1) applied to our case yields

rank A, = (qil) — (qﬁz) + (qi?)) :F...+(—1)‘1“<g).

For a proof that both expressions obtained for the rank of A,, coincide we
refer to [6], Theorem 2, Lemma.

- H (q|n), ifn is odd,
Theorem 3. i) H (q|n)? =
0, if n is even.

ii) If n is odd then

rank 7 (g|n) = (Z: i)

Assume 1 < q<n—1. Then

ker H (q|n) = ImH (¢, q + 1).

ii1) If n is even then

rank 7 (g|n) = (Z B f)

Assume 1 < q<n—1. Then

ker H (g|n) = X, - Im H (¢ — 1jn — 1) ® Im H (¢, ¢ + 1).

17



Proof. ad i). Suppose u € Cy_1(n). Then according to Prop. 4, ii) we have
that
AXu)=X-Au)+(n-1)-u.

But X2 = 0, so we obtain
XAX (u) = (n - 1)Xu.
Now we take u = Aw, w € Cy(n). This yields
XAXA (w) = (n-1) - XA (w).

We observe XA (w) = H (q|n)(w). The claim now follows.

To prove the remaining assertions let us make some preliminaries: Denote by
H (g|n), the restriction of H (g|n) to the subspace X, - Cy_1(n —1) of Cy(n).
Then according to Prop. 7, i)

Im H (g|n) = Im H (¢|n),.

n—1

Take now v € Cy—;(n — 1) and denote Xpn-1) = > X;. Then according to
=1
Prop. 3

XA (X, 1) = (Kppop) + Xn) (u X, Aq,l(u)) _
= X+ (4 XAy 1 () + Xy -
We rewrite this equation as follows
(5)...  Hgn)(Xn-u) =X, - (u Y H(g—1jn— 1)(u)> T

(Observe that H (0|n — 1) is the zero-mapping.)

Now assume in Eq (5) that X,, - u is contained in the kernel of H (¢|n). Since
X(n—1) - u does not contain X,, as a factor both terms on the right-hand side
in Eq (5) must be zero, in particular

(6)... w+ H(q—1n —1)(u) = 0.

18



ad ii).  We derive from the first part of the proof that now H (¢ — 1|n — 1)
is nilpotent. Therefore Eq (6) possesses only the trivial solution v = 0, so
H (g|n), is injective. In turn

~ ~ —1
rank H (g|n) = rank H (¢|n), = dim Cy_1(n — 1) = (n 1).
q —
Now take 1 < ¢ < n — 1. Since R, is exact

Im Ay C ker H (g|n).

According to Prop. 7, ii) we have

dim Im H (g|n) + dimTm Ay = (n i 1) + (n B 1) — (n) = dim C,(n).

qg—1 q q

This proves the remaining assertions.

ad iii).  Assume first ¢ > 2. Let X, -u be in the kernel of H (¢|n),. Then as
it was stated above u must solve Eq (6). Now according to i) H (¢ — 1|n —1)
is a projection. Therefore Eq (6) has exactly all u € Im H (¢ — 1jn — 1) as
solutions. Now we apply i) and obtain

dimker H (¢|n), = dim (X, - Im H(qg—1ln— 1) =
. )
=dimIm H(g—1jn—1) = (Z_Z),

n turn

~ ~ -1 -2 -2
rank H (g|n) = rank H (¢q|n), = (Z_ 1) — (Z_ 2) = (Z_ 1).
(Observe that H (n|n) = 0.) These arguments carry easily over to the case
q = 1; we leave the details to the reader whom we remind of our convention

() =0

Assume now 1 < g <n —1. Then we claim that the subspaces X,, - Im H
(¢ —1n —1) and Im A 4, of ker H (g|n) are disjoint. In fact according to
Prop. 7,1) Im A,y is already generated by the A1 (X, - u), u € Cy(n—1).
But

Agi1( Xy -u) =u+ X, - Ay(u).
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Therefore we conclude

dimImH (g|n) + dim (Xn Im H(n—1lg—1)+ ImAq+1>
()G )G (0
- (Z) = dim C, (n).

This finishes the proof. O
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