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1. Introduction.

In his own contribution to this volume, George Andrews has touched on
a number of themes in his research by looking at the early influences on him
of Bailey, Fine, MacMahon, Rademacher and Ramanujan.

In this paper, I propose to present a survey of his work organized on a
different theme. George has often alluded to the fact that his 1975–76 year
in Madison was extremely important in his work. So it seems a reasonable
project to survey his career from a Madison perspective. To make this story
complete, I must begin in Sections 2–4 with Andrews’ work in the late
1960’s that led inexorably to our eventual lengthy collaboration. The year
in Madison set in motion three seemingly separate strands of research that
were fundamental in much of his subsequent work. These are described
in Sections 5–8. Section 9 briefly describes his collaboration with Rodney
Baxter. Section 10 describes the discovery of the crank. Section 11 contains
a few concluding and summarizing comments.

2. Partition Identities.

From the time Rademacher taught him about the magic and mystery of
the Rogers-Ramanujan identities, George was fascinated with such results.
At first, he pursued them purely for their esthetic appeal. Rademacher [79;
Lectures 7 and 8, pp. 68–84] presented the Rogers-Ramanujan identities as
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follows:

(2.1)

1 +
q

1− q
+

q4

(1− q)(1− q2)
+

q9

(1− q)(1− q2)(1− q3)
+ · · ·

=
∞∏
n>0

n≡±1 (mod 5)

1
(1− qn)

,

(2.2)

1 +
q2

1− q
+

q6

(1− q)(1− q2)
+

q12

(1− q)(1− q2)(1− q3)
+ · · ·

=
∞∏
n>0

n≡±2 (mod 5)

1
(1− qn)

,

and he noted following MacMahon and Schur [79; pp. 69–72] that each may
be interpreted partition – theoretically.

Identity (2.1) is equivalent to the assertion that the partitions of n in
which parts differ by at least 2 are equinumerous with the partitions of n
into parts congruent to ±1 modulo 5.

Identity (2.2) is equivalent to the assertion that the partitions of n into
parts each > 1 in which the parts differ by at least 2 are equinumerous with
the partitions of n into parts congruent to ±2 modulo 5.

Rademacher [79; pp. 72–73] goes on to say

“The unexpected element in all these cases is the association of
partitions of a definite type with divisibility properties. The left-
side in the identities is trivial. The deeper part is the right side.
It can be shown that there can be no corresponding identities for
moludi higher than 5. All these appear as wide generalizations of
the old Euler theorem in which the minimal difference between
the summands is, of course, 1. Euler’s theorem is therefore the
nucleus of all such results.”

Now while it may be argued that Rademacher was making a narrow
statement here, it was taken by George to mean that there are no more
results of this type.

So in his first year at Penn State much to his surprise, he discovered a
generalization of the Rogers-Ramanujan identities by studying a paper of
Selberg [83] which was quoted in a paper of Dyson [60] which in turn was
quoted in Hardy and Wright [72]. Several months after his discovery, he
learned that it had already been found by Basil Gordon [67].
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Selberg based his extension of the Ramanujan-Rogers [80; pp. 214–215,
344–346] proofs of (2.1) and (2.2) on the following function

(2.3) Cki(x; q) =
∞∑
n=0

(−1)nxknq
1
2 (2k+1)n(n+1)−in(xq; q)n(1− xiq(2n+1)i)

(q; q)n
,

where

(2.4) (a; q)n = (1− a)(1− aq) · · · (1− aqn−1) .

George’s proof [19; Ch. 7] of Gordon’s generalization follows quite directly
from the elegant functional equation found by Selberg [83]

(2.5) Ck,i(x; q)− Ck,i−1(x; q) = xi−1qi−1(1− xq)Ck,k−i+1(xq; q) .

However, what really got his attention was a review by W. Schwarz [82]
of the Ph.D. thesis of Heinz Göllnitz [65]. The first paragraph of the review
reads as follows:

“Continuing work of Schur [S.-B. Deutsch. Akad. Wiss. Munich
1926, 488–495] and Gleißberg [Math. Z. 28 (1928), 372–382], the
author states about 15 theorems on partitions; for instance, the
number of partitions of n (n = a1 +a2 + · · · , a1 = a2 = · · · ) into
positive integers ai ≡ 2, 5 or 11 (mod 12) is equal to the number
of partitions of n into different parts bi ≡ 2, 4 or 5 (mod 6), and
is equal to the number of partitions of n into parts ci 6= 1, 3,
where ci − ci+1 = 6 and ci − ci+1 > 6, if ci ≡ 0, 1 or 3 and
ci+1 ≡ 0, 1 or 3 (mod 6).”

It was easy enough for anyone to check this theorem for say n 5 20;
however, George had no idea from his previous work how to prove this.
So he wrote to Schwarz to see if he could obtain a copy of the Göllnitz
thesis, and Schwarz sent him the review copy. This paper was challenging
to say the least. The proof of the “mod 12” theorem alluded to above was
elementary but absolutely overwhelming; it is a reasonably safe guess that
no one (including George) has ever read it in detail. Indeed the study of the
“mod 12” identity led to one stream of thought that has continued to this
day and involved fruitful collaborations [2], [8], [9], [15], [16], [46]. However,
the work in Göllnitz’s thesis refers to work by Göllnitz undergraduate thesis
[64] and that had the most profound impact on George’s research. Namely
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Göllnitz proved the following identities: [64; p. 37]

(2.6) 1 + q
1 + q

1− q2
+ q4 (1 + q)(1 + q3)

(1− q2)(1− q4)

+ q9 (1 + q)(1 + q3)(1 + q5)
(1− q2)(1− q4)(1− q6)

+ · · ·+ qn
2

n∏
k=1

1 + q2k−1

1− q2k
+ · · ·

=
∞∏
n=0

1
(1− q8n+1)(1− q8n+4)(1− q8n+7)

;

(2.7) 1 + q3 1 + q

1− q2
+ q8 (1 + q)(1 + q3)

(1− q2)(1− q4)

+ q15 (1 + q)(1 + q3)(1 + q5)
(1− q2)(1− q4)(1− q6)

+ · · ·+ qn(n+2)
n∏
k=1

1 + q2k−1

1− q2k
+ · · ·

=
∞∏
n=0

1
(1− q8n+3)(1− q8n+4)(1− q8n+5)

.

Göllnitz based his entire development on proving q-difference equations for
the following function [64; p. 37]

(2.8) G(s) = 1 =
∞∑
n=1

(−1)ns2nqn(4n−1) (1− sq4n)

× (1 + q)(1 + q3)() · · · (1 + q2n−1)
(1 + sq)(1 + sq3) · · · (1 + sq2n−1)

· (1− sq2)(1− sq4) · · · (1− sq2n−2)
(1− q2)(1− q4)(1− q6) · · · (1− q2n)

= 1− s2q3 (1− sq4)(1 + x)
(1 + sq)(1− q2)

+ s4q14 (1− sq8)(1 + q)(1 + q3)((1− sq2)
(1 + sq)(1 + sq3)(1− q2)(1− q4)

− s6q33 (1− sq12)(1 + q)(1 + q3)(1 + q5)(1− sq2)(1− sq4)
(1 + sq)(1 + sq3)(1 + sq5)(1− q4)(1− q6)

+ · · ·

George saw that G(s) and Ck,i(x; q) had to lie in a general family of such
series. By extrapolating from these results, he was able [7] to provide a gen-
eralization of (2.6) and (2.7) (known as the Göllnitz–Gordon identities [64],
[68]). From there he was led to a study of very-well-poised q-hypergeometric
series [8] and their combinatorial implications [9], [15]. The culmination of
this effort yielded the main theorem of [15].

Definition 1. If λ is an even integer, we denote by Aλ,k,a(n) the number
of partitions of n into parts such that no part 6≡ 0( mod λ + 1) may be
repeated and no part is ≡ 0,±(a− 1

2λ)(λ+ 1) ( mod (2k − λ+ 1)(λ+ 1)).
If λ is an odd integer, we denote by Aλ,k,a(n) the number of partitions of
n into parts such that no part 6≡ 0( mod 1

2 (λ + 1)) may be repeated, no
part is ≡ λ + 1( mod 2λ + 2), and no part is ≡ 0, ±(2a − λ) 1

2 (λ + 1) (
mod (2k − λ+ 1)(λ+ 1)).
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Definition 2. Let Bλ,k,a(n) denote the number of partitions of n of the
form b1+b2+· · ·+bs, with bi = bi+1, no parts 6≡ 0( mod λ+1) are repeated,
bi−bi+k−1 = λ+1 with strict inequality if (λ+1)

∣∣bi, and finally if fj denotes

the number of appearances of j in the partition, then
λ−j+1∑
i=j

fi = a − j for

1 5 j 5 1
2 (λ+ 1), and f1 + f2 + · · ·+ fλ+1 5 a− 1.

Theorem. If λ, k, and a are positive integers with λ/2 < a 5 k, k = λ,
then

Aλ,k,a(n) = Bλ,k,a(n)

The Rogers-Ramanujan identities are the cases λ = 0, k = a = 2 and
λ = 0, k = 2, a = 1. Gordon’s generalization is the case λ = 0. George’s
generalization of Göllnitz-Gordon is λ = 1, and his generalization of Schur’s
theorem in [14] is λ = 2.

Ironically, H. Alder [1] proved that Bλ,2,2(n) is never equal to the number
of partitions of n taken from a fixed subset S of the positive integers unless
λ 5 2. The above theorem states clearly that while the particular gener-
alization of Schur’s theorem considered by Alder does not exist, there are
indeed valid Gordon-like generalization of Alder’s non-existence theorems
for Bλ,k,a(n). Indeed all that is necessary is that k = λ.

This number-theoretic tour deforce made inevitable our meeting and col-
laboration. I too had been led into considering very-well-poised series of
the ordinary (i.e. q = 1) type. They arose naturally in the solution of the
connection coefficient problem for Jacobi polynomials [55; p. 63], [56].

3. More q-Series.

By now, George was thoroughly engrossed in the study of q-series. His
discovery that very well-poised series led to grand generalizations of the
Rogers-Ramanujan identities caused him to look at a variety of q-series. In
light of his work extending Watson’s proof [85] of Ramanujan’s fifth order
mock theta function identities [4] [5] [6], George eventually considered q-
Appell series. In a short paper [11], he showed that if

(3.1) Φ(1)[a; b, b′; c;x, y] =
∞∑
n=0

∞∑
m=0

(a)m+n(b)m(b′)nxmyn

(q)m(q)n(c)m+n
,

and

(3.2) r+1φr

[
a0, a1, . . . , ar; q, z

b1, . . . , br

]
=
∞∑
n=0

(a0)n(a1)n · · · (ar)nzn

(q)n(b1)n · · · (br)n
,
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where

(3.3) (a)n = (1− a)(1− aq) · · · (1− aqn−1) ,

then

(3.4) Φ(1)[a; b, b′; c;x, y] =
(a)∞(bx)∞(b′y)∞

(c)∞(x)∞(y)∞
3φ2

(
c/a, x, y; q, a

bx, b′y

)
.

I found this result quite disturbing. At first glance, it is unreasonable. The
Appell function F (1) [54; Ch. IX] certainly does not reduce to an ordinary
3F2, and yet the above result asserts that a generalization of F (1) reduces
to an ordinary q-hypergeometric function. Indeed, as George subsequently
pointed out [18], all the known theorems for Φ(1) are merely specializations
of classical 3φ2 transformations. It turns out that there is a satisfying and
benign explanation of (3.4) as a q-integral which we both came to under-
stand several years later during his visit to Madison in 1975–76. Namely, it
is the q-analog of the integral representation of F (1).

In addition to this work, George was also considering q-series from the
point of view of Rota’s theory of functions of binomial type. Again he pro-
duced a study that disturbed me in quite a different way. In his paper on
Eulerian differential operators [8], George suggests that there is probably
no q-analog of the Rodrigues formula. His discussion was clearly inadequate
to say the least; indeed, we found numerous q-Rodrigues formulas during
the year he spent in Madison.

4. The Evanston Meeting.

Given the variety of ways that our interests converged (although start-
ing from vastly different viewpoints), I wanted to get George and q-series
involved in the world of special functions. The most immediate opportunity
for this was the AMS Special Session on Special Functions that I was or-
ganizing for the regional meeting of the A.M.S. at Northwestern on April
27–28, 1973.

Inviting George to this meeting had several beneficial effects. First it did
introduce him to many workers in special functions. Second, it induced him
to prepare a SIAM Review survey article [16] out of the talk he gave; this
was the first survey in a long time (if ever) that attempted to provide a
variety of applications of q-series.

Finally, it provided one of those rare moments when one discovers that
someone else shares one of your own pet peeves. For years I had been trying
to point out that the rather confused world of binomial coefficient summa-
tions is best understood in the language of hypergeometric series identities.
Time and again I would find first-rate mathematicians who had never heard
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of this insight and who would waste considerable time proving some appar-
ently new binomial coefficient summation which almost always turned out
to be a special case of one of a handful of classical hypergeometric identities.

To my great delight, George devoted a substantial portion of his talk to
this exact topic. He even made the point more emphatically by illustrating
that the hypergeometric understanding led naturally to the almost auto-
matic construction of q-analogs. He finished his comments on this topic by
asserting that 80% of the formulas in Table 3 of Henry Gould’s Tables [70]
yielded to this approach. This was the first portion of his talk with which
I disagreed. I pointed out during the question period that the correct per-
centage was at least 90% if not 95%. Independently, I had worked through
the same chapter.

5. The Madison Special Functions Meeting.

After the Evanston meeting, George and I corresponded extensively, and
I invited him to the CBMS conference in Blacksburg during June, 1974.

The following year I invited George to give one of the addresses at the
MRC Advanced Seminar on Special Functions (March 31–April 2, 1975).

I had only heard George speak twice before; so I had reasonable confi-
dence that he would give an interesting and comprehensible talk. He spoke
in Session IV, at 3:15 pm on Tuesday, April 1, 1975. My confidence in his
mathematical taste started to disintegrate immediately. His first slide read
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Q-ANALOG OF EXTENDED MEIJER’S G-FUNCTION

Gn,ν1,ν2,m1,m2
p,t,s,r

x
y

∣∣∣∣∣∣∣
(εp)

(γt); (γ′t)
(δs)

(βr); (β′r)

∣∣∣∣∣∣∣ q
 =

m1∑
h=1

m2∑
k=1

xβhyβ′k

t∏
j=ν1+1

(q/γjβh)∞
t∏

j=ν2+1

(q/γ′jβ
′
k)∞

ν1∏
j=1

(γjβh)∞
ν2∏
j=1

(γ′jβ
′
k)∞

·

r∏
j=m1+1

(q βh/βj)∞
r∏

j=m2+1

(q β′k/β
′
j)∞

m2∏
j=1
j 6=k

(β′j/βk)∞
n∏
j=1

(qβ′hβ
′
k/εj)∞

·

p∏
j=n+1

(εj/βhβ′k)∞
s∏
j=1

(δjβhβ′k)∞

m1∏
j=1
j 6=h

(βj/βh)∞

To my horror a second slide was required just to complete this definition.
Here is the content of the second slide:

· Φ



p

t

s

r − 1

∣∣∣∣∣∣∣∣∣∣
(q βhβ′k/εp)

(γtβh); (γ′tβ
′
k)

(δsβhβ′k)

(q βh/βr)h6=r; (q β′k/β
′
r)k 6=r

∣∣∣∣∣∣∣∣∣∣
(−1)m1+p−n+t−ν1x

(−1)m2+p−n+t−ν2y


where

Φ



p

t

s

r

∣∣∣∣∣∣∣∣∣
ε1, ε2, . . . , εp

γ1, γ
′
1, . . . , γt, γ

′
t

δ1, δ2, . . . , δs

β1, β
′
1, . . . , βr, β

′
r

∣∣∣∣∣∣∣∣∣
x

y


q



THE WORK OF GEORGE ANDREWS 9

=
∞∑
m=0

∞∑
n=0

(ε1)m+n · · · (εp)m+n(γ1)m(γ′1)n · · · (γt)m(γ′t)nx
myn

(δ1)m+n · · · (δs)m+n(β1)m(β′1)n · · · (βr)m(β′r)n(q)m(q)n

where
(a)n = (a; q)n = (1− a)(1− aq) · · · (1− aqn−1) ,

(a)∞ = lim
n→∞

(a)n .

Had he lost his mind? This was the worst possible beginning of a talk on
q-series that I could imagine. I started to hiss at him. Apparently he was
waiting for this reaction, because the third slide followed saying:

APRIL
FOOL

What a relief! His talk (without reference to these first 3 slides) appears
in the proceedings of the conference [18]. It contained the seeds of several
subsequent important research topics.

This is where the q-analog of the Dyson conjecture first appeared. Even-
tually Doron Zeilberger and David Bressoud [86] proved the conjecture.
More importantly Ian Macdonald recognized the relationship of this conjec-
ture with his own work [76] on identities, and he subsequently made much
more general conjectures which have led to an explosion of research [77].

As bad as those first 3 slides were, George managed to put up a few more
complicated formulas, such as Watson’s q-analog of Whipple’s theorem [57,
p. 69]:

(5.1) 8φ7

[
a, g
√
a,−q

√
a, b, c, d, e, q−N ; q,X√

a,−
√
a, aqb ,

aq
c ,

aq
d ,

aq
e , aq

N+1

]

=
(a)N (aq/ef)N

(aq/e)N (aq/f)N 4

φ3

[ aq
cd , e, f, q

−N ; q, q
efq−N/a, aqc ,

aq
d

]
,

where

X =
a2qN+2

bcde
.

George presented the natural full generalization of this in [18], and this
contains the basic mechanism of the Bailey chains that he first described
fully in [26].
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Namely, for k = 1, N a nonnegative integer,

2k+4φ2k+3

[
a, q
√
a,−q

√
a, b1, c1, b2, c2, . . . , bk, ck, q

−N ; q, akqk+N

b1...bkc1...ck√
a,−
√
a, aq/b1, aq/c1, aq/b2, aq/c2, . . . , aq/bk, aq/ck, aq

N+1

]
=

(aq)n(aq/bkck)N
(aq/bk)N (aq/ck)N

∑
m1,...,mk−1

(aq/b1c1)m1(aq/b2c2)m2 . . . (aq/bk−1ck−1)mk−1

(q)m1(q)m2 . . . (q)mk−1

× (b2)m1(c2)m1(b3)m1+m2(c3)m1+m2 . . .

(aq/b1)m1(aq/c1)m1(aq/b2)m1+m+2(aq/c2)m1+m2 . . .

×
(bk)m1+···+mk−1

(aq/bk−1)m1+···+mk−1

·
(ck)m1+···+mk−1

(aq/ck−1)m1+···+mk−1

×
(q−N )m1+m2+···+mk−1

(bkckq−N/a)m1+m2···+mk−1

× (aq)mk−2+2mk3+···+(k−2)m1qm1+m2+···+mk−1

(b2c2)ml(b3c3)m1+m2 . . . (bk−1ck−1)m1+m2+···+mk−2
.

Now let’s be honest. This proves George is an analyst. No one but a hard
core analyst would have the nerve to extol a formula like this especially
after his outrageous April Fool joke.

His comments [18; p. 205] about the work of Holman, Biedenham and
Louck [75] caught the attention of Steve Milne (see for example [78]) who
has subsequently in a work spaning two decades revealed what a rich theory
was being hinted at in [75].

As is frequently the case, there was a sequel to his marvelous April Fool
joke. A bit over a year ago, Doron Zeilberger sent out a three page paper
titled “Mathematical Genitalysis: A Powerful New Combinatorial Theory
that Obviates Mathematical Analysis.” The abstract claimed that this new
combinatorial theory would supersede and sometimes trivialize mathemat-
ical analysis, and illustrated this by an exact determination of Bloch’s con-
stant, and two other results. The last paragraph of the paper commented
favorably on the NCTM Standards and Calculus Reform, and said that the
new theory propounded in the note sent was consistent with these important
movements.

George wrote me a note which said in part: “It is 100% certain that
Doron sent this to you . . . Whatever the merits of the sketchy body of the
text, the last paragraph is vintage stuff.”

My reply was to suggest that George look at the date this was posted
on, April 1. He replied: “Why do I always fall for these things?” To which,
my reply was: “Since you gave one of the best April Fool’s jokes I have seen
or heard, it is fitting that you get fooled at times.”
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6. The Year in Madison.

By 1975, we were both aware of many areas of common interest. In partic-
ular each of us had looked seriously at the papers that Wolfgang Hahn had
published in the late 1940’s and early 1950’s (see especially [71]). Each of us
recognized that Hahn was pioneering a topic that was quite important. So I
obtained money from the Mathematics Research Center and the Graduate
School of the University of Wisconsin for George to spend the 1975-1976
academic year in Madison. Our plan which we followed fairly closely was to
work through Hahn’s paper [71].

This seminar led to our extended collaboration culminating many, many
years later in the publication of Special Functions [42] (a project whose
appearance would have never occurred without the resolute efforts of our
co-author, Ranjan Roy).

In addition to our own collaboration, my two students, Jim Wilson and
Dennis Stanton were introduced to q-series, and each has made substantial
contributions to this topic.

The year (so George tells me) was one of the most fruitful of his career. He
wrote and submitted The Theory of Partitions during that year. While he
was writing Chapter 11 on plane partitions, I happened to mention to him a
recent Russian book I had just obtained on the evaluation of determinants.
This discussion reminded George of the tale he describes in Section 5 of [38],
and simultaneously, unknown to me at the time, he was studying the Bender-
Knuth paper [59] which reduced MacMahon’s then 75 year old conjecture
on symmetric plane partitions to the following identity:

If

gj(q) =
s∏
i=1

{
(1− qj+2i−1)
(1− q2i−1)

s∏
h=i+1

(1− q2(j+i+h−1)
(1− q2(i+h−1)

}
,(6.1)

then
g2n(q) = det(Ci−j + Ci+j−1)n×n ,

and

g2n+1(q) =

[
m∏
i=1

(1− q2i−1)

]
det(Ci−j − Ci+j)n×n ,(6.2)

with

Ck = qk
2
(

2m
m+ k

)
2

.(6.3)
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N
M

)
r

is the Gaussian polynomial (or q-binomial coefficient) defined by
(6.4)

(
N

M

)
r

=


(1− qNr)(1− q(n−1)r) · · · (1− q(N−M+1)r)

(1− qMr)(1− q(M−1)r) · · · (1− qr)
, 0 < M 6 N ;

1 , M = 0 ;
0 , M < 0 , M > N .

This problem so consumed him that, apart from his appearances at our
seminar, I saw almost nothing of him throughout October, 1975. Fortunately
he was able to prove the MacMahon conjecture during that month [20], [22]
and his interest in Hahn’s paper resumed.

The seminar yielded a number of joint papers, for example [39], [40], and
[41]. Probably [39] and [41] are most representative of our work. In [39] we
developed the full solution of the connection coefficient problem for little
q-Jacobi polynomials. Namely, if

pn(x;α, β|q) =
n∑
j=0

(q−n; q)j(αβqn+1; q)jqjxj

(q; q)j(αq; q)j
,

then

pn(x; γ, δ|q) =
n∑
k=0

ak,npk(x;α, β|q),

where

ak,n =
(−1)kqk(k+1)/2(γδqn+1; q)k(q−n; q)k(αq; q)k

(q; q)k(γq; q)k(αβqk+1; q)k

×
n−k∑
j=0

(q−n+k; q)j(γδqn+k+1; q)j(αqk+1; q)jqj

(q; q)j(γqk+1; q)j(αβq2h+w; q)j
.

From here it is a simple matter to deduce Watson’s q-analog of Whipple’s
theorem (namely (5.1)). This was all based on the analogous results for the
classical Jacobi polynomials [55; p. 63].

This inexorably led George to a mild generalization in [23] and eventually
to the Bailey chains [26], a powerful method that has its genesis in a theorem
of Bailey [58]. It was George’s good fortune that Bailey was so diffident
about his result that he only gave the recipe for it rather than displaying it
and realizing its power.

In the next section, I shall describe the most bizarre event connected
with George’s year in Madison.

7. Ramanujan’s Lost Notebook.

In the spring of 1976, Dominique Foata invited George to speak at the
Table Ronde, Combinatoire et Représentation du Groupe Symétrique to
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be held in Strasbourg on April 26–30, 1976. George felt that his proof of
MacMahon’s conjecture was old news by now and that our joint work on
q-analogs of the classical orthogonal polynomials was not ready for presen-
tation.

He decided to prove the Bender-Knuth conjecture, a conjecture related
to MacMahon’s conjecture. Basil Gordon had announced a proof of the
Bender-Knuth conjecture but did not publish anything on it until 1983 [69]
and George assumed that his own methods would at least be novel. This
was a dismaying prospect; I could envision him effectively disappearing for
another month, if not more. Fortunately he took the approach of proving
that Bender-Knuth and MacMahon were equivalent, a task that only took
a few days [21].

As the time of the conference came closer, fate, in the guise of interna-
tional airline fare irrationality, took a hand. In the spring of 1976, if you
stayed in Europe at least 3 weeks, you could purchase a ticket for only a
fraction of the amount required for any shorter stay. George asked for and
received permission to stay in Europe for two weeks after the conference.
He layed out an itinerary that included talks in Paris and Southampton,
and a visit to Lucy Slater in Cambridge. Slater had told him about boxes
deposited in the Trinity College Library which contained papers from the
estate of the late G. N. Watson, the English analyst. This seemed at the
time to be a rather minor aspect of his trip. Watson was a good analyst
and had done good work (after all, he was the Watson of Whittaker and
Watson); however, it would have been overly optimistic to expect to find
much in these boxes. To his surprise, in one of the boxes was a 100+ page
manuscript in Ramanujan’s inimitable handwriting [22].

In his own contribution to this volume, George has told the story of his
discovery, so I won’t repeat it here. I first found out about it the day he
arrived back in Madison. “How did the trip go?” I asked. “Pretty well,”
he said. “I have in my briefcase, a Xerox of a 100+ page manuscript in
Ramanujan’s handwriting. I’m charging 256c a peek!”

It would fill most of this volume if I were to recount in any detail the
cornucopia of results that flowed from the Lost Notebook. George provided
a survey in his introduction to the published version of the Lost Notebook
[29] in 1988. Currently he and Bruce Berndt are collaborating on a fully
edited version of the Lost Notebook.

A couple of summers later, George stopped in Madison on his way to
the summer math meetings where he was to talk on the Lost Notebook.
He gave a general talk and a specialized talk in Madison. At the second of
these, there were six to eight people in the room and all of them knew a
reasonable amount about q-series. I told George that this would probably
be the largest audience he would have of people who knew a lot about basic
hypergeometric series, so he could use the standard notation without fear.
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Little did either of us know how this field would develop, so that now an
audience of 50 experts is not uncommon.

8. The Mock Theta Function and Bailey Chain.

I have already touched on the themes of Bailey chains and Ramanujan’s
Lost Notebook. In the early 80’s, George started substantial use of com-
puter algebra packages. This combined with the Bailey chains led to real
breakthroughs in the study of mock theta functions.

The study of mock theta functions began with Ramanujan’s last letter to
Hardy in January, 1920, four months before he died. Here are a few excepts
from that [80; pp. 354–355].

“If we consider a ϑ-function in the transformed Eulerian form, e.g.,

(A) 1 +
q

(1− q)2
+

q4

(1− q)2(1− q2)2
+

q9

(1− q)2(1− q2)2(1− q3)2
+ · · · ,

(B) 1 +
q

1− q
+

q4

(1− q)(1− q2)
+

q9

(1− q)(1− q2)2(1− q3)
+ · · · ,

and determine the nature of the singularities at the points

q = 1, q2 = 1, q3 = 1, q4 = 1, q5 = 1, . . . ,

we know how beautifully the asymptotic form of the function can be ex-
pressed in a very neat and closed exponential form. For instance, when
q = e−t and t→ 0,

(A) =

√(
t

2π

)
exp

(
π

6t
− t

24

)
+ o(1) ,

(B) =

√(
2

5−
√

5

)
exp

(
π

15t
− t

60

)
+ o(1) ,

and similar results at other singularities.
If we take a number of functions like (A) and (B), it is only in a limited

number of cases the terms close as above; but in the majority of cases they
never close as above. For instance, when q = e−t and t→ 0,

(C) 1 +
q

(1− q2)
+

q3

(1− q2)(1− q2)2
+

q6

(1− q2)(1− q2)2(1− q3)2
+ · · ·

=

√(
t

2π
√

5

)
exp

[
π2

5t
+ a1t+ a2t

2 + · · ·+O(aktk)
]
,
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where a1 = 1/8
√

5, and so on. The function (C) is a simple example of a
function behaving in an unclosed form at the singularities.

Now a very interesting question arises. Is the converse of the statements
concerning the forms (A) and (B) true? That is to say: Suppose there
is a function in the Eulerian form and suppose that all or an infinity of
points are exponential singularities, and also suppose that at these points
the asymptotic form of the function closes as neatly as in the cases of (A)
and (B). The questions is: Is the function taken the sum of two functions
one of which is an ordinary ϑ-function and the other a (trivial) function
which is O(1) at all the ponts e2mπi/n? The answer is it is not necessarily
so. When it is not so, I call the function a Mock ϑ-function. I have not proved
rigorously that it is no necessarily so. But I have constructed a number of
examples in which it is inconceivable to construct a ϑ-function to cut out
the singularities of the original function. Also I have shown that if it is
necessarily so then it leads to the following assertion—viz. it is possible to
construct two power series in x, namely

∑
anx

n and
∑
bnx

n, both of which
have essential singularities on the unit circle, are convergent when |x| < 1,
and tend to finite limits at every point x = e2rπi/s, and that at the same
time the limit of

∑
anx

n at the point x = e2rπi/s is equal to the limit of∑
bnx

n at the point x = e−2rπi/s.
This assertion seems to be untrue. Anyhow, we shall go to the examples

and see how far our assertions are true.”
Ramanujan concludes the letter with a list of mock theta functions to-

gether with identities satisfied by them. In G. N. Watson’s LMS Presidential
Address [84], he provides a method (relying on (5.1)) for a deep analysis of
one collection of mock theta function (those that Ramanujan named “third
order”). However Watson failed to produce an analysis of any comparable
depth for the fifth order and seventh order functions.

In the Lost Notebook, George found a number of identities which would
provide the missing analysis. For example, if φ0(q) defined by

φ0(q) = 1 +
∞∑
n=1

qn
2
(1 + q)(1 + q3) · · · (1 + q2n−1)

is one of the fifth-order functions, then in the “lost” notebook we find a
result equivalent to

φ0(−q) =
∞∏
n=0

(1− q5n+5)(1 + q5n+2)(1 + q5n+3)
(1− q10n+2)(1− q10n+8)

+ 1−
∞∑
n=0

q5n2

(1− q)(1− q6) · · · (1− q5n+1)(1− q4)(1− q9) · · · (1− q5n−1)
.
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It follows immediately by an application of (5.1), that

φ0(−q) =
∞∏
n=0

(1− q5n+5)(1 + q5n+2)(1 + q5n+3)
(1− q10n+2)(1− q10n+8)

+1−
∞∏
n=0

(1−q5n+5)−1

{
1

1− q
+ (1− q−1)

∞∑
n=1

(−1)nqn(15n+5)/2(1 + q5n)
(1− q5n+1)(1− q5n−1)

}
.

This and similar identities for the other fifth order mock theta functions
were central to their study as George noted [22].

The key to unlocking such formulas lay in a subtle application of the
Bailey chain. George has given an account of the basic properties of the
chain in Some Debts I Owe; so I will restrict myself to one portion of the
study. Namely the objects he calls Bailey pairs. Sequences of functions {αn}
and {βn} satisfying

βn =
n∑
r=0

αr
(q; q)n−r(q; q)n+r

.

The pair key to the understanding of φ0(q) is

βn =
(−1)nq−n(n−1)/2

(q; q)n

and

αn = qn
2+n

n∑
j=−n

(−1)jq−j(3j+1)/2 − qn
2−n

n−1∑
j=1−n

(−1)jq−j(3j+1)/2 .

The form of αn is sufficiently surprising not to mention complicated that
without the help of SCRATCHPAD (a.k.a. AXIOM) to compute many αn’s,
these discoveries never would have occurred.

From this point on, Dean Hickerson played a vital role eventually proving
all the Mock Theta conjectures [73] and proving comparable theorems for
the seventh order functions [74].

9. Physics.

George’s collaborations with physicists began with Rodney Baxter and
Peter Forrester in [46]; the resulting model, generalizing Baxter’s Hard
Hexagon Model, is succinctly called the ABF Model.

The mathematics background that George brought to bear on this is best
laid out in his only single author physics publication [25]. Here he observes
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that a number of the functions produced by the method of Corner Transfer
Matrices are limits of nice polynomials. The prototype example is Schur’s
theorem [81].

If D0 = D1 = 1, and Dn = Dn−1 + qn−1Dn−2 for n = 2, then

Dn =
∞∑

λ=−∞

(−1)λqλ(5λ+1)/2

[
n⌊

n−5λ
2

⌋ ]

where bxc is the greatest integer in x and
[
A
B

]
is the familiary Gaussian

polynomial defined in (6.4).
George had already studied generalizations of Schur’s theorem in [12] and

[13]. It turned out that the ABF model could be treated by an analysis of
polynomials similar in nature to Schur’s polynomial version of the Rogers-
Ramanujan identities.

In a subsequent collaboration with Baxter [45], they discover q-analogs
of the trinomial numbers. The latter are the entries in the following table
where each entry is the sum of the 3 entries directly above it

1
1 1 1

1 2 3 2 1
1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1
− − − − − − − − −

− − − − − − − − − − −

An example of the polynomials in question is [43; p. 299]

(
n;B; q
A

)
2

=
∑
j=0

qj(j+B)(q; q)n
(q; q)j(q; q)j+A(q; q)n−2j−A

.

Besides solving the model with Baxter in [43], [44] and [45], George found
a variety of applications including a full explanation of a mathematical mys-
tery that had been called by Euler: “A remarkable example of misleading
induction.” [31]. More recently he has worked with physicists A. Berkovich
[47] and A Schilling and O. Warnaar [54] on further extensions of the Bailey
chain.
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10. The Crank.

There are many sides to George Andrews. The one which will proba-
bly have the most long lasting impact is the problem solver. His ability in
this regard can be illustrated in many ways. Here is one instance of what
happened when he felt challenged in an area that most of us think of as his.

Ramanujan discovered a number of very surprising congruences for the
number of partitions of some infinite families of numbers. There were three
infinite families, with the first of each family being the following:

p(5n+ 4) ≡ 0 (mod 5)(10.1)

p(7n+ 5) ≡ 0 (mod 7)(10.2)

p(11n+ 6) ≡ 0 (mod 11)(10.3)

For the first two of these congruences, Freeman Dyson [61] discovered
a combinatorial reason for the existence of these facts, and his conjecture
was proven by Atkin and Swinnerton-Dyer [3]. The statistic found by Dyson
did not work in the third case, so he expressed a hope that another statistic
could be found. These names were appropriate, “rank” for the one he found,
and “crank” for the one still undiscovered one. Over 40 years later, Frank
Garvan, one of George’s Ph.D. students, found a pseudo crank, and talked
about this at the Ramanujan meeting in Urbana in 1987. Garvan felt that
there was a real version of this unknown statistic, and told a number of
people about an identity which he felt was the key.

George was struck by Frank’s observation that the pseudo crank gener-
ating function

(10.4)
∞∏
n=1

(1− qn)
(1− zqn)(1− z−1qn)

has only one negative coefficient (that of z0q1). Previously they had assumed
that the appearance of one negative coefficient suggested that negative co-
efficients would abound. Since the specialization z = 1 in (10.1) produced

(10.5)
∞∏
n=1

1
1− qn

=
∑
n=0

p(n)qn ,

Frank’s observation suggests strongly that the pseudo crank generating func-
tion might indeed generate the crank at least for n > 1.

On Saturday, June, 1987, the day after the Ramanujan meeting, George
undertook a melancholy journey to Onarga, Illinois to visit the graves of
his parents (who were born in the mid-west and chose to be buried there
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even though they spent all their adult lives in Oregon). He returned to
Urbana in the early afternoon in a very somber mood. He hoped to discuss
mathematics with a few people who had remained after the conference, but
no one was around in the dormitory where he was staying. To pull himself
out of the doldrums he sat down to study (10.4) with the hope of tracking
down the crank.

By the early evening, he had found the crank [49; p. 168].
Now he faced a nonmathematical problem. He was low on cash, had no

phone card and only had access to pay phones. How could he let Frank
know? He proceeded to call his wife collect. “I want you to call Richard
Askey who will know Frank Garvan’s phone number. I want you to say that
I would like to write a joint paper with Frank in which we show that the
crank of a partition is given by: [he then read the definition of the crank
symbol by symbol].”

This provided the first crank. It should be noted that further cranks (i.e.
partition statistics that provide combinatorial interpretations of (10.3) were
found by Garvan, Kim and Stanton, [63] and that Dyson [62] provided many
further insights about the Garvan-Andrews crank.

11. Conclusion.

It would be incorrect to conclude that the bulk of George’s research
concluded in the 1980’s. Indeed a full account of his work in the 1990’s
would perhaps require another paper comparable to this one. I shall only
mention a few of his themes refer you to the literature. It’s not clear which of
his current projects will have staying power similar to those I have already
described. Also the breadth of projects widens partially due to the fact that
he is undertaking many more collaborations now than in the past; indeed 27
of his 44 lifetime collaborators have written papers with him in the 1990’s.

His interest in partition identities sparked a continuing collaboration with
K. Alladi that began with [2].

The Liouville mystery [37] (referred to in Some Debts I Owe) is essentially
work on generalized Lambert series and relates to his work with Crippa and
Simon [30].

His Pfaff Trilogy as he calls it ([34], [35] and [36]) is both part of his
continuing interest in computer algebra methods and applications to plane
partitions.

The papers with the Knopfmachers (beginning with [50]) on generaliza-
tions of the Engel expansion suggest a try new line of research. The idea
here is to produce an algorithm to expand an infinite product or modular
form into an Eulerian or q-series. If this method can be expanded it may
well take its place as perhaps the converse of Euler’s ancient algorithm [19;
p. 98] for obtain infinite product representations of generating functions.



20 RICHARD ASKEY

Also in this volume we find one of his papers (joint with P. Paule) [52]
on the computer algebra implementation of the Partition Analysis of P. A.
MacMahon. This project clearly points beyond MacMahon’s horizon in that
the authors have observed and implemented the fact that Partition Analysis
is a purely algorithmic process. The success of Geroge’s work on the Omega
Package (joint with Paule and Riese [51], [52], [53]) suggests a number of
further refinements and applications.

There is much more to the story and I have probably left out a number
of George’s favorite items. This is to be expected. The topics that interested
me most are the ones I can most easily discuss.

I want to express my thanks to George. First, he provided some of the
details in this paper. I remember the start of his April 1 lecture in Madi-
son, but not the specific forumlas which were given above. He provided
them and some other facts. More importantly, he taught me about basic
hypergeometric series. My mathematical life would have been significantly
different without his teaching. There are quite a few people who could say
the same, their mathematical life would have been poorer without the aid
which George Andrews provided them.
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