THREE CLASSICAL RESULTS ON
REPRESENTATIONS OF A NUMBER

MIicHAEL D. HIRSCHHOR

Introduction

Three classical results concern the number of representations of the pos-
itive integer n in the form x? + 3y? with =,y € Z, the form (22 + z)/2 +
3(y? +y)/2 with x,y € Z" and the form x? + zy + y* with z,y € Z.

Indeed, if s(n), t(n) and u(n) respectively denote the three numbers, then

(1) s(n) = 2<d173(n) — d2,3(n)) + 4(d4,12(n) _ d&lg(n)),

(2) t(n) =di1s(2n+1) —da3(2n+1)
and
(3) u(n) = G(dl,g(n) _ d273(n)>.

where d, ,,,(n) is the number of divisors d of n with d =r (mod m).

(1) is equivalent to the g-series identity

2 g2 q3n—|—1 q3n—|—2
m n- o __ —
> 1Y (s - )

m,nezl n>0

g2+t q'2n+8
(4) +4 Z (1 —glantd 1 — q12n+8)

n>0
or to
3n+1 3n+2
2 2 q q

5 I =142 — ,
(5) m;ezq + nz>0 (1 —(—Dngdn 1+ (_1)nq3n+2)
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(2) is equivalent to the g-series identity

3n 3n+2
(6) Z q(m2+m)/2+3(n2+n)/2 _ Z q g +
1 —gbntl 1 — gbnts

m,nezZt n>0

and (3) is equivalent to the g-series identity

3n+1 3n+2
m2+mn—|—n2 _ q q
(7) Z q _1+6Z(1_q3n+1_1_q3n+2)'

m,n€’l n>0

Both (5) and (6) appear in Ramanujan’s second Notebook [12, p.239], and
Berndt [2, pp.223-224 and p.116] shows how they follow from Ramanujan’s
191 summation [12, p.196], [2, p.32]. (7) appears in Berndt and Rankin [5,
p.196] and a proof is given by Berndt [3]. The reader is referred also to [6],
[7], [9] and [4] for related developments and generalisations, and to [1] and
[10] for applications in statistical mechanics.

It seems that Dirichlet (1840) may have known (1), since he gives [8,

p.463] the corresponding results for the forms 22 + y? and z? + 2y2, and
continues “And so on in similar fashion.” (“Et ainsi de suite.”)
However, Lorenz (1871) [11, p.420] states both (4) and (1), and in reference
to (1) says (my translation) “From this equation one can deduce a theorem
which must be considered new in the theory of numbers because it cannot
immediately be deduced from known theorems:

If a number N contains prime factors pi,p2, --- of the form 3m + 1
with exponents aq,ao, --- and if the prime factors of the form 3m + 2
appear to nothing but even powers, the number of solutions of the equation
m? 4 3n? = N is given by

pn =2(a1 + 1)(ag+1)...

if N is odd and by

pn =6(a; +1)(az+1)...
if N is even. If, on the contrary, N contains a prime factor of the form
3m + 2 to an odd power, one has py = 0.”

Lorenz also [11, p.424] states (7), and a proof is provided by his reviewer/
translator Valentiner [11, p.430].

So perhaps credit rests with Lorenz.

We shall give proofs of (4), (6) and (7) which demonstrate that all three
results are intimately related.
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2. Proof of the result involving s(n)

Let a(q) denote the left hand side of (7). Then

(8) a(q) +2a(q*) =3 3
k,l€Z
For,
2 2 2 2 2 2
a<q) _ Z qm +mn+n + Z qm +mn+n + Z qm +mn+n
m odd m odd m even
n even n odd n odd
2 2
+ qm +mn+n )
2
n even
In the first sum, let k = m + g, [ = g (and conversely, m = k—1, n = 2l),
in the second sum, k = m 2_ n, = ;— n (conversely m = k+1, n =1—k),
in the third sum, k = % +n, l= % (conversely m =21, n=Fk — )
and in the fourth sum, k = mn 2_ n, = ;_ n (conversely m =k +1, n =
I — k)v
and we find
9) ag)=3 Y. N+ ST R
k#l (mod 2) k=l (mod 2)
Also,
(10)
a(q4) _ Z q4m2—|—4mn—&—4n2 _ Z qm2—|—mn—l—n2 _ Z qk2—|—312’
m,ne” m,n even k=l (mod 2)

as with the fourth sum above. (8) follows from (9) and (10). (4) follows
from (7) and (8).

3. Proof of the result involving ¢(n)
We can write (4)

6n+1 6n—+5
k24312 _ 4q
Zq 1+22<1_q12n+2_1_q12n+10>

k,leZ n>0
iy Z q12n—|—4 B q12n—|—8
1— q12n—|—4 1— q12n—|—8
n>0
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If we extract the even powers of ¢ we obtain

(11) Z K243 . N 6 Z q12n+4 B q12n+8
q - 1 — q12n—|—4 1 — q12n—|—8
k=l (mod 2) n>0

(Note, incidentally, that (7) follows from (10) and (11), and that (11) follows
from (7) and (10)!)
From (11) we deduce

(12)
3n+1 3n+2
k24312 k2+k+31%2+31 _ q
S e 3 —1+6Y (e~ o)
k,leZ k,lez+ n>0

If we subtract (4) from (12) we find

(13)
3n+1 3n+2
k2 +k+312431 __ q
4q Z q 42(1_ 3n+l 1 — 3n—|—2>
k,lez+ n>0 q q
12n44 12n+8
_42( ! 12n+4 1 12 —1—8)
1 —qgtem 1 —qgtem

n>0

6n+1 6n—+5
iy (e -
1— q12n—|—2 1 — q12n—|—10 '
n>0

Finally, if we divide (13) by 4¢ and replace ¢*> by ¢ we obtain (6).

4. Proof of the result involving u(n)

We begin by showing that

2 2 3
(14) Z wmfnqm +mntn® _ (Q)oo
m,ne’

where w? =1, w # 1.
Let CT, {37 a"fn(q)} denote fo(q), the “Constant Term” of the Lau-

rent series in a. Then

2 2 . 2, 2, 2
§ : wm—nqm +mn+n® _ § : W™ nq(m +n“+p°)/2
m,ne” m+n-+p=0

:CTa{Zam m mQ/QZa w nqn /QZap p/Q}
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= CT.{ [0+ awg" 2) (1 +a 'w™g" 2)(1 - ¢").

n>1
JI0+aw™ g 2) A+ a wg2)(1 - g").

n>1

JIa+a )0 +a g 2)(1 - q")
n>1

= CT.{ [[a+a* ™ 2) (1 +a 3> 2)(1 - ¢")°

n>1

3
_ (Q)oo .CT, H(l +a3q3n—%)(1 +a—3q3n—%>(1 . q3n)

(@%)o0 n>1

oo CT {Za?m 3n /2}
(Q)io
(¢%)oo

as claimed.
Now the left hand side of (14) can be written

Z qm2—|—mn+n2 +w 2 /‘ qm2—|—mn—|—n2

m—n=0 (mod 3) m—n=1 (mod 3)

_|_w71 E : qm2+mn+n2.
m—n=—1 (mod 3)

m-—n m + 2n

In the first sum, let & = , 1= 3 (conversely m = 2k + 1, n =
[ —k),

in the second sum, k = m—7n—17 [ = w (conversely m = 2k +
l+1, n=1—k) and ’

in the third sum, k = %m_l, l= % (m =1-k, n =2k+I+1),

and the left hand side of (14) is seen to be

2 2 2 2
1
Z qSk +3kl4-31 w Z q3k +3kl+31"+3k+3l+

k,EZ



6 MICHAEL D. HIRSCHHOR

= a(q®) — qe(q?),

where . ,
C(q) _ Z qm +mn+n —&—m—‘,—n.
m,n€’
Thus (14) becomes
()3
15 a(¢@®) — qe(¢®) = =
(15) (@") -~ aela®) = 5=

Now, it is a celebrated identity of Jacobi that

(16) (9)% = Y (=1)"(2n + 1)gl*+m/2,

n>0

We split this sum according to the residue modulo 3 of n. For n = 0
(mod 3), we write 3n (n > 0), for n =1 (mod 3), we write 3n + 1 (n > 0),
and for n = —1 (mod 3) we write —3n — 1 (n < —1), and the right hand
side of (16) becomes

Z(—l)"(ﬁn + 1)q(9n2+3n)/2 . Z(_l)n(Gn + B)q(9n2—|—9n+2)/2

n>0 n>0
= D0 (1) (6n = 1)g /2
n<—1
i 2
=) (=1)"(6n + 1)gl® 3172 _3¢(¢%)3..

So (15) becomes

(¢%)oo

(A7) a(¢®) — qe(d®) = {Z<—1>“<6n+1>q3<3n2+”>/2—3q<q9>io}.

— 00

It follows that

oo

1

(18) A== S (1) (60 + 1)gPr /2
and (q3)3
c(q) = 3=
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Now (18) becomes

a(q) = & j fj(—l)"a““q@“”")” B
_ & j 0 H (1—a®g* ) (1 — a0 2)(1 - ¢*") N
_ ﬁ _Eu —a%P" (1= a0 ) (1 - )%
A1y (Pt - )
= ﬁ(q)oo 1+ 67; (1 q3;3n2—2 1 33;3:—1)
=1+ 6?; (1 zg;b;lﬂ 1 qg;:77,2+2>

which is (7).
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