SIMULTANEOUS MAJ STATISTICS

DoNGsuU KIM AND DENNIS STANTON

ABSTRACT. The generating function for words with several simultaneous
maj weights is given. New maj-like Mahonian statistics result. Some appli-
cations to integer partitions are given.

1. Introduction.
The usual maj statistic [2] on words w is defined by adding the location
of the descents of the word w,

maj(w) = Z i

LW > W41

This definition presumes that the alphabet for the letters of w have been
linearly ordered, for example 2 > 1 > 0,

maj(1102201) = 2 4+ 5 = 7 = magjai0(1102201).

However a similar definition can be made assuming any linear ordering o;
here we take 1 > 2 >0, 0 =120, and 2 >0 > 1, 0 = 201

maji20(1102201) = 2 +5 =7, magae1(1102201) = 5+ 6 = 11.

In this paper we consider the generating function for several such simulta-
neous maj statistics (see Corollary 1). A more general generating function is
given (Theorem 3), and some applications to Mahonian statistics (Corollary
2) and integer partitions (Theorem 4) are stated.

We first give a 3 letter theorem, which motivates the general result (The-
orem 3). Let W(m,n, k) be the set of words of length m + n + k with m 0’s,
n 1’s and k 2’s.

Theorem 1. For any non-negative integers m, n, and k we have

Z xmajlgo(w)ymajz(n(w)zmaj(ng(w) _ xn+kykz |:m +n+k— 1:| i
yz

m—1,n,k
weW (m,n,k)

o {m+n+k—1] L mingn {m+n+k—1} .
xYz Yz

m,n—1,k m,n, k—1
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Proof. We prove a stronger statement, that the three terms in Theorem 1
are the generating functions for the words in W (m,n, k) ending in 0, 1, and
2 respectively.

We proceed by induction on m +n + k. If w ends in a 0, the penultimate
letter must be either 0, 1 or 2. Using induction we must verify that

nik k|mtn+k—1 _ omtk k| |MmAnt+k—2
vy [ m—1,n, k xyz_x y m—2,n,k Iyz—i_

m+4n+k—1, m+k—1_m—1 m+n+k—2
v y * [m—l,n—l,kz xyz-i_

(xy)m+n+kflzm+n71xn |: m+n+k—2 :| :
TYz

m—1,n, k—1

which is the well-known recurrence formula [1] for the zyz-trinomial coeffi-
cient.
The other two cases are verified similarly. [J

It should be noted that if any two of z,y, z are set equal to 1, then the
usual maj generating function as a g-trinomial coefficient results.

2. A T7-variable theorem.

Theorem 1 contains three free variables, z,y and z. In this section we
generalize Theorem 1 to Theorem 2, which contains seven free variables.
Then we indicate how to specialize Theorem 2 to obtain new explicit classes
of Mahonian statistics on words of 0’s, 1’s, and 2’s.

Suppose that the weights of the various possible ascents and descents in
position m +n + k — 1 of a word w of m 0’s, n 1’s, and k 2’s are given by
(wt10) ap'ta}ak for a descent 10,

(wt21) bbbk for a descent 21,
(wt20) cf*~tciek for a descent 20,
(wt01) dird?~'ds for an ascent 01,
(wt12) eprelreh ™t for an ascent 12,
(wt02) for frf5=1 for an ascent 02.

Also suppose that the generating function for all such words w has the form

m+n+k—1 m+n+k-—1
po(n,k‘){ m-—1,n, k }B—Fpl(k,m){ m,n—1,k ]B

m+n+k—1
(2.1) +p2(m,n)[ m,n, k—1 }B
for some base B, and po(n,k) = piipksy, pi(k,m) = phphs, pa(m,n) =
pYips,. We also assume that the three terms in (2.1) correspond to the w
which end in 0, 1, and 2 respectively.
Thus we have 25 free variables

UZ_o{ai, bi,ci, di, e, fi, pin, pin} U {B}.
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These 25 variables are related by the three equations which we require by
induction

m+n+k—1 (m+n+k—2
i) | | =miy [ en?]
2 m—1,n-1,k]|,

_m—l—n—i—k—Q}
B7

m—1 k
(2.2a) +ci' et es pe(m—1,n) m—1.n k-1

m+n+k—-1 (m+n+k—2
pl(k:,m){ m,n—1, k }B—pl(k:,m)_ m,n—2,k ]B

(m+n+k—2
m,n—1,k—1 B

[ m4n+k—2
m—-1n-1Fk|,

b b0 po(m,n — 1)

(2.2b) +d7d 1 dE po(n —1,k)

m,n, k—1 = p2(m;n)

mi+n+k—1
pQ(mvn)
B

‘m+n+k—2
L o m,n, k=2 |,

m en pk—1 . _m+n+k_2
+f0 fl 2 pO(n7k 1) m—l,n,k:—l 5

k—
(2.2¢) +egletes 1 pi(k—1,m) ne1k—1

_m+n+k—2}
B

We do not know the general solution to the equations (2.2a-c). However, we
will give the general solution to (2.2a-c) if we make another assumption. If
we specify that the coefficient of the second term on the the right side of
(2.2a) is B™~! times the coefficient of the first term, and the coefficient of
the third term is B™1t"~! times the coefficient of the first term, then the
B-trinomial recurrence relation verifies (2.2a). These two equations are

m—1 k. k _m—1_ pm—1_n k
(2.3a) ay'”ayaspyipys - =B Po1Po2s
-4 m—1_n k_m—1 _Bm+n 1
CoClCopy|  Phy = p01P02

Similarly, we assume the B-trinomial recurrence for (2.2b) and (2.2¢), which
become

by b~ 1b2p21p22 =B""'pl,p}s,

2.3b
( ) dmdn 1d12<:p611 1 k2 _Bn+k lpllp?%'
and
k—1 n -1 m_ n
(2 3(:) fo f1 117011702 =B* 1P21p22,

m n k—1_k—1 k+m—1
s =B

€y €162 P11 P1 P51 D5
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Since these equations should hold for all m, n and k, each of these 6
equations contains 3 equations (one each in m, n, and k). Thus we have 18
equations in the 25 free variables, which are written in a matrix form, where
the first column comes from the equations in (2.3a):

pi2ao  p21bo  fo B P12 P21
ar  pabi poifi Po1 B P22
puaz bz poafa | _ | po2z  pu B
p21co do  Ppi2eg B P12 pa1B
p22c1  poidr el poiB B P22
c2  po2da  prie2 po2 puB B

One may find the general solution to these 18 equations, leaving 7 free
variables

{ag, a1, asz,bg, b1, b, B}.

The explicit solutions for the remaining 18 variables are given below. The
weights (wt) become (W):

(W10) ay" 'a}al  for a descent 10,

( ) bmb" vk for a descent 21,

( ) (aobo) (albl)”(agbg)k for a descent 20,

(WO01) (B/ag)™(B/a1)"~*(B/az)* for an ascent 01,

(W12) (B/bo)™(B/b1)"(B/by)*~1  for an ascent 12,

(W02) (B/agbo)™(B/a1by)™(B/agby)k~1  for an ascent 02,

and

po(n, k) = a?(GQbQ)k7 pl(kvm) = b’;(B/CLO)m,
pg(m,n) = (B/a()bo)m(B/bl)n

Theorem 2. The generating function of all words w € W(m,n,k) with
weights given by (W) is

n m+n+k—1 mlm+n+k—1
al(ang)k[ m-—1,n, k } +b’§(B/a0) { m,n—1,k } *
9 ) B 9 ) B

(B/agbo)™(B/by)" [mmf Z;k_—l 11 R

Theorem 1 is the special case of Theorem 2 for which B = xyz,
ap —=a1 = a2 =&, andbozblzbgzyhold.

There are 7 other versions of Theorem 2. These 8 theorems arise by inde-
pendently replacing the pair of factors (B™~!, Bm+n—1) by (Bm+k=1 pm-1)
in equation (2.3a), (B"~1, B"*+~1) by (B"+™~1 Bn~1) in equation (2.3b),
and (BF~1, BFtm=1) by (BF+n=1 BF-1)in (2.3c). The B-trinomial recur-
rence still holds. For instance if we make a replacement in (2.3a),
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m—1_n kE m-—1 :Bm+k—1

k n k
Ay G1G9P11P12 Po1Po2;
m—1 n k_m—1

(2'33/) n m—1_n _k
Co  C1CoDyy Doy =B Po1Po2s

then the explicit solutions to (2.3a’) and (2.3b-c) give the weight (W’):

(W'10) af* 'a}al  for a descent 10,

(W'21) bpb?~'vs  for a descent 21,

(W'20) (agbo)™ t(a1b1/B)"(azba/B)*  for a descent 20,
(W'01) (B/ag)™(B/a1)""*(B%/a3)¥ for an ascent 01,
(W'12) (B/bo)™(B/b1)™(B/by)*~1  for an ascent 12,
(W'02) (B/agbo)™(B/a1by)"(B?/asbe)*~1  for an ascent 02,

and the corresponding theorem is the following:
Theorem 2'. The generating function of all words w € W{(m,n, k) with
weights given by (W) is

m+n+k-—1
m—1,n,k

k mlm+n+k—1
]B—H)Q(B/GO) [ m,n—1,k :|B+

m+n+k-—1
m,n, k—1 |5°

al (azby/B)* [

(B agho)™ (B/b,)" [

We do not state the remaining 6 variations here.

We can find Mahonian statistics by requiring that the generating function
in Theorem 2 is the B-trinomial via the B-trinomial recurrence. There are
six choices for this recurrence, one for each ordering of the 3 terms. So
Theorem 2 gives a total of 6 possible Mahonian statistics, one of which
(majo12), is found by setting ag = a3 = as = bg = by = by = 1. Theorem 2’
also gives a total of 6 possible Mahonian statistics, one of which is found by
setting ag = a1 = bg = by = by = 1, ay = B. Similarly there are 6 possible
Mahonian statistics for each of other 6 versions of Theorem 2, for a total of
6 x 8 = 48. Six of them are the six possible maj, statistics, the remaining
42 come in 7 classes of six each, and they are all variations on maj. Each
class of size 6 consists of a maj variation, and 5 others which correspond to
5 non-trivial reorderings of {0, 1,2} of that maj variation. We give below
one member of each class, eight in total.

We start with an example from Theorem 2'. If we set ag = a1 = by =
by = by =1, ay = B in Theorem 2’ the weight (W’) reduces to

(W’10) B*  for a descent 10,

( ) 1 for a descent 21,

( ) B~ for a descent 20,
(W’01) B™+n+k=1  for an ascent 01,
( ) Bmtntk=l - for an ascent 12,
( ) BmtntE=l o for an ascent 02.
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Note that the above weight (W’) is a perturbation of majgi2 involving the
descents 10 and 20. We write it as majg12 + Sg, where sq is defined in the
following way. We define sg by giving the non-zero values at adjacent letters.
One then adds these values to find sg. It is assumed that if w is truncated
after the adjacent letters, w has m 0’s, n 1’s, and k 2’s.
so(w):

(1) £ for an adjacent 10,

(2) —n  for an adjacent 20.

For example,

$0(22012110201) = —0 + 3 — 3 = 0.

It turns out (we do not write down the details here) that the eight statis-
tics (including majo12) can be defined by three independent perturbations
of majoi2: S0, s1, and sy. For any subset A C {0,1,2} put

sa(w) = Zsi(w).

i€A

Then the eight Mahonian statistics are majgi2 + sa4. In fact the set A
indicates which replacements are made in (2.3a-c). For instance the above
(W’) is magjo12 + s{0y and if we make replacements, say in (2.3b) and (2.3c),
then the corresponding statistics will be majoi2 + s{1,21, and so on. We
define s1, so analogously by giving the non-zero values at adjacent letters.
One then adds these values to find the statistic. It is assumed that if w is
truncated after the adjacent letters, w has m 0’s, n 1’s, and k 2’s.
s1(w):

(1) m  for an adjacent 21,

(2) —k  for an adjacent 01.

So(w):
(1) n for an adjacent 02,
(2) —m  for an adjacent 12.

For example,
51(22012110201) = -2+ 1 -4 = =5, $2(22012110201) = -1+3 = 2.

Below is a table evaluating majoi2, So, S1, and sg at the 6 permutations of
012. Note that the majoio generating function is 1+ 2B + 2B + B3, which
is also the generating function for majoi2 + sa, for any subset A C {0, 1, 2}.

word majoi2 S0  S1 S

012 3 0 0 -1
021 1 0 1 0
102 2 0 0 1
120 1 -1 0 0
201 2 0 -1 0
210 0 1 0 0
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We repeat that all 48 Mahonian statistics may be found from these 8 by
permuting the letters 0, 1, and 2. In this case majy12 becomes maj,, and
each s; is found by applying ¢ to 0, 1, and 2 in the definition of s;.

3. N letters.

In this section we briefly generalize Theorem 2 to words with N letters
in Theorem 3. We state the N letter version of Theorem 1 in Corollary
1. There are N!2Y Mahonian statistics, which come in 2V families each
of size N!. We explicitly give the corresponding 2 Mahonian statistics in
Corollary 2.

Let W(ag,a1, - ,an—1) be the set of all words w with a; i’s, 0 < i <
N —1.

If the words w have N letters instead of 3 letters, then each adjacent pair
17, © # j, could be weighted by NN variables, instead of 3 variables. Also the
coefficients p;, 0 < ¢ < N — 1 would have N — 1 variables. Together with
the base B, we have a total of N(N2 = N)+ N(N —1)+1=N3—-N+1
variables. Each of the N recurrences required by induction gives N(N — 1)
equations in these variables. So N(N — 1) + 1 variables will be free in the
multivariable version of Theorem 2.

In order to fully describe the resulting theorem, some care must be taken
with notation.

The N(N — 1) + 1 free variables may be taken to be the base B along
with the N weights of the adjacent pairs (i + 1)i, for i = 0,--- , N — 2, for
which we use the variables

(Tio, Ti1, -+ ,TiN—1), 0<i< N —2.

Suppose that w ends in an adjacent pair ij, ¢ # j, and that there are ny
k’s preceding the last letter j of w. The weight of the pair ij is given by

N—-1 -1

I d]ew)™ ifi<i,

k=0 1=j

N-1 j—1
H (B/ Hxlk)nk if i < j
k=0 =1

(4.2)

As usual, we multiply the weights of adjacent pairs to find the weight of the
word w.

Theorem 3. The generating function of all words w € W(ag, a1, ,an—1)
with weights given by (4.2) is

ap+---+an-1—1

Qg, - ,0,1;—1,"' y AN—1 B
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where
i—1 i—1 N-1 l—i-1
pi(ao,ar, -+ ,an-1) = (H(B/ sz'—k,l)al)< H ( H l‘i+k,l)al)-
1=0 k=1 l=i+1 k=0
Note that p; in Theorem 3 is independent of a;.
The multivariable version of Theorem 1 occurs if
Tio =Tyt =+ =TiN—1=T;, 0<i<N -2,

and B = xgz1 -+ xn—_1. Then the weights (4.2) become
(zj - ay_q)ot TN it j <1,
(zo  @i_wy - xy—q) TN <
and the next corollary holds.

Corollary 1. We have

N-1

Z H x;naji+1..4(1\171)01~-i(w) —

weW (ag, - ,an—1) =0

N-1 - .
ao « s . a/N—]_ —

E pi(ao,alf",aN—ﬂ[a a1 a ]

=0 05 y U ) y WN -1 To - TN—1

where

piag, a1, - ,an_1) = (ﬁ(xo Ty 1T .le)az>( jﬁl (2 - -wz1)"’l).

=0 l=i+1

We next give the 2V Mahonian statistics which follow from Theorem 3.

Again they may be classified by perturbations of majgi...xy_1. For any subset
Ac{0,1,--- N — 1}, define

sa(w) = Z si(w).
€A

The individual statistics s;(w) only depend upon the subwords of w ending
in 4, as in §2. For any given i € w, suppose that ¢ is preceded by n; j’s,
0 <j < N-—1. Extend the definition of n; to be periodic mod N: njyy = n;
for all j. If the letter preceding i is i + k, the contribution to s;(w) is positive
on the circular interval [i + k + 1,7 — 1] and negative on the circular interval
i+ 1,0+ k—1],

(31)  (Migkt1 + Nigrra + o+ nG-ny) — (Rig1 + N2+ + Nigp—1).

We add the contributions of (3.1) over all ¢ € w to find s;(w). There is
no contribution if £ = 0; that is, for a repeated i:. For example,

51(41241012411312301) = 0+ (—1) + (=3) + (1 —2) + (4 — 2) + (—8) = —11.
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Corollary 2. For any set A C {0,1,---, N —1}, the statistic majoi..N—1+
sa 18 Mahonian on W(ag, a1, -+ ,an—1).

These Mahonian statistics are examples of splittable statistics [3].
One may also allow weights on the adjacent letters 00, 11, and 22 for a
more general version of Theorem 3.

4. Applications to partitions.
In this section we apply Theorem 1 and Theorem 3 to integer partitions.
The special case k =0, z =1, x = y = q of Theorem 1 is

41 > qm“jw(w”majm(wu{m*”} e . ——

m-+n
weW (m,n,0) m a? I+q

MacMahon [4, p. 139] previously gave (4.1).
The following generating function (using standard notation found in [1])
follows from (4.1),

()™ ()" (2y¢* 4o
42) 2 fmnq) (@ Dman (30GYEG D0

One way to see (4.2) is to consider the generating function for pairs of par-
titions (A, ) with distinct parts, weighted by

1’# of parts of A\, # of parts of uq|)\|—|—|u|

Y

which is

O k k 2. .2
H(“F @ v ):(yq oo

P 1—xzg®  1-—yg" (26, ¥4; @)oo

To prove (4.1), we must find a weight preserving bijection ¢ from the set
of such (A, u), # parts of A = m, # parts of u = n, to the set of ordered
pairs (w,~), where w € W (m,n,0), and v is a partition with m + n parts.

To define w, order the m 4+ n parts of A U p into a partition #, and let
w; =0if 6, € A\, w; = 1if 6; € . This is well defined since the parts of A
and p are distinct. To define ~, let ¢; be the number of descents or ascents
to the right of position ¢ in the word w. Then we let v = 6§ — t. For example
if

A=T742, = 88661,

then
0 = 887766421, w = 110011001, ¢t = 443322110, v = 444444311.

This correspondence is the desired bijection ¢.
The natural analog of ¢ on triples (\, i, ) without pairwise common
parts produces a word w € W (m,n, k) and a partition 7. The g-statistic on
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the word w again counts all ascents and descents of w by their positions.
However, in Theorem 1, we see that the six possible ascents/descents in w
are weighted differently by position:

01 by yz,
02 by z,
10 by =,
12 by zz,
20 by xy,
21 by y.

So if we choose x = ¢%, y = ¢*, z = ¢°, an occurrence of 01 in positions
j and j + 1 of w contributes a weight of ¢7(®*¢. This in turn implies that
the bijection ¢ must be modified so that the part in A corresponding to w;
must be at least b+ ¢ larger than the part in p corresponding to wjy1. We
need six different inequalities for the six possible juxtapositions of parts. Let
®a.b,c be the modified bijection.

For example, if m=k =2, n=1,a =2, b= c =1, then the juxtaposed
parts sizes must differ by

2 for A\,
1 for A\,
2 for pA,
3 for ub,
3 for O\,
1 for Op.

The three possible triples (A, u, 8) whose weight is ¢'? are given below, along
with result of the bijection ¢ 1 1:

(22,6,11) — (10022, 31111),
(32,5,11) — (10022, 22111),
(43,1,22) — (00221, 21111).

Corollary 3. Let a, b and ¢ be positive integers. The generating function
for all triples of partitions (X, u, 0) without pairwise common parts, such that
A has m parts, p has n parts, and 6 has k parts, and any adjacent parts in
the partition AU pU 0 of type

(1) Ap differ by b+ c,

(2) A0 differ by c,

(3) pA differ by a,

(4) pl differ by a + c,

(5) OX differ by a + b,

(6) Ou differ by b,
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s given by

g (qa(n+k)+bk [m +n+k— 11 N
(Q; Q)m-l-n-l-k: m — 1? n, k qatbte

qb(m—|—k)—|—cm m+n+k—1
m,n, k—1

:| + qc(n+m)+an |:m +n+k— 1:| ) ]
m, n — 17 k qa+b+c a-+b+4c

In Theorem 3, if all x; = ¢, the following theorem results. All subscripts
are taken mod N.

Theorem 4. The generating function for all N-tuples of integer partitions
(A1, -+, AN) without pairwise common parts, such that
(a) A; has a; parts, 1 <i < N,
(b) if the partition Ay U Ao U --- U Ay has adjacent parts bc, for b € \;
and c € \j, then b—c > (i—j) mod N,

s given by

N .,
q/ [G1+"'+CLN] > i=1 4"
(;9)¢ | a1, an quﬁvzglqif’

where f =a; +as+---+an, and e; = a; +2a;41 + -+ (N — Da;n_o.

5. Remarks.

MacMahon [5, §30] defined a statistic related to maj, denoted here by
M AJ, which weights each descent by the amount of the descent. For exam-
ple,

MAJ(20211201) =21+ 1%x3+2%6 =17,

because the descent 20 in positions 1,6 are weighted by 2 — 0 = 2, while
the descent 21 in position 3 is weighted by 2 — 1 = 1. Let MIN denote the
analogous statistic using the ascents. Then MacMahon alludes [5, §40] to
the following theorem for words with three letters.

Theorem 5. For any non-negative integers m, n, and k we have

Z g MAT () MIN(w) _ pn-+2k {m+n+k—1} [m+k—1}
n y m—1 ()2

weW (m,n,k)
m—k |Mm+n+k—1 m+ k (zy)?* + (zy)™t*
+ Yy n—1 m 1 + ( m-+k
zy (zy)? y)
+y2m+n{m+n+k—1} [m—l—k—l] .
n m
zy (zy)?

Ifz =y, y=1orx =1, the three terms in Theorem 5 sum to a single
product (see [5, §38, §40]). The proof of Theorem 5 is identical to the proof
of Theorem 1. We do not know a multivariable version of Theorem 5.
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