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Abstract

We introduce generalized permutation patterns, where we allow the
requirement that two adjacent letters in a pattern must be adjacent in
the permutation. We show that essentially all Mahonian permutation
statistics in the literature can be written as linear combinations of such
patterns. Almost all known Mahonian permutation statistics can be
written as linear combinations of patterns of length at most 3. There are
only fourteen possible such Mahonian statistics, which we list. Of these,
eight are known and we give proofs for another three. The remaining
three we conjecture to be Mahonian. We also give an explicit numerical
description of the combinations of patterns a Mahonian statistic must
have, depending on the maximal length of its patterns.

1 Introduction and preliminaries

The simplest, and best known, Mahonian permutation statistic is the number
of inversions. Its distribution, which is the defining criterion of a Mahonian
statistic, was given already in 1839, by Rodriguez [20]. However, it was with
MacMahon [16], almost a century ago, that the systematic study of permuta-
tion statistics saw the light of day and it is his name that the Mahonian ones
bear. Among other things, MacMahon defined the major index of a permuta-
tion, and showed that it is equidistributed with the number of inversions.

Since then, and in particular in the last decade, many new Mahonian statis-
tics have been described in the literature. Apart from “pure” permutation
statistics, they have arisen in different contexts, such as the study of Motzkin
paths, orthogonal polynomials and algebra, and they also have strong connec-
tions to rook theory.

Seemingly, these statistics have very different character, which is under-
scored by their disparate definitions. However, we shall show in this paper
that almost all Mahonian permutation statistics in the literature essentially
belong to a class of statistics containing only fourteen different such.

This class of statistics can be seen as the next step in complexity after
the simply defined number of inversions. For each integer n ≥ 2 there is



a corresponding class of Mahonian statistics, whose complexity in definition
grows with n. For each such class we give strong numerical conditions that
the definitions must satisfy in order to give Mahonian statistics.

We define a permutation in the symmetric group Sn to be a word (or
sequence) a1a2 · · · an of length n consisting of all the elements of {1, 2, . . . , n}.
It is convenient to define S∞ as the disjoint union of the Sn for n = 1, 2, 3, . . ..

A k-pattern is a function from S∞ to N that counts the number of occur-
rences of certain subsequences (not necessarily contiguous) of length k in a
permutation in S∞. We write our patterns as words in the alphabet a, b, c, . . .,
where two adjacent letters may or may not be separated by a dash. The ab-
sence of a dash between two adjacent letters in a pattern indicates that the
corresponding letters in the permutation must be adjacent, and in the order
given by the pattern. Also, the ordering (by size) of the letters in a subword
matching a certain pattern (and thus counted by that pattern) must be the
same as the ordering of the letters in the pattern, which is based on the usual
ordering of the alphabet a, b, c, . . .. Here are some examples:

• The pattern (a b c) counts increasing subsequences of length 3 in a
permutation. This is a “classical” permutation pattern (see below).

• The pattern (b a) is the well known number of inversions in a permuta-
tion (denoted inv here).

• The pattern (ba) counts the descents in a permutation π = a1a2 · · · an,
that is, the number of i’s such that ai > ai+1. (We frequently also refer
to the descent i as consisting of the two letter subword aiai+1.)

• The pattern (b ca d) counts the number of occurrences of letters
ai, ak, ak+1, aj with i < k < j and ak+1 < ai < ak < aj. Thus, the
permutation π = 314265 has two occurrences of (b ca d), namely
3 42 6 and 3 42 5, so we write (b ca d)π = 2.

The pattern (a b c), and any pattern that in our notation has dashes
between every pair of adjacent letters, is of a type that might be called classical.
These patterns, usually written with the positive integers and without the
(implicit) dashes, have mostly been studied with respect to avoidance, that is,
how many permutations in Sn have no occurrence of the pattern in question.
For example, the number of 132-avoiding permutations π in Sn is known to be
the n-th Catalan number

(
2n
n

)
/(n+ 1). In our notation, this is the cardinality

of the set {π ∈ Sn | (a c b)π = 0}.
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Although the study of pattern avoidance is scarcely more than a decade
old, there is already a sizable, and rapidly growing, literature on the subject.
In recent years, this has also been extended to counting the permutations with
a given number of occurrences of a pattern. For some background on this, and
for more references, see [2, 18, 21, 23]. Pattern avoidance for our generalized
patterns has been studied by Claesson [4].

Another type of patterns implicitly present in the literature is the set of
patterns of length 3 with no dashes in our notation. These are the valleys
((bac) and (cab)), the peaks ((acb) and (bca)), the double ascents (abc) and
the double descents (cba) in a permutation, the study of which was pioneered
by Françon and Viennot [11], and which is intimately related to Flajolet’s [8]
generation of Motzkin paths by means of certain continued fractions.

A pattern function is a linear combination of patterns and a d-function is
a linear combination of patterns that have length at most d. The length of a
pattern is its number of letters, disregarding dashes.

In this paper we show that most known Mahonian permutation statistics
can be written as linear combinations of patterns and that there is a finite
number of Mahonian d-functions for each d. In particular, we show that, up
to some simple equivalences, there are (at most) fourteen different Mahonian
3-functions. Eight of these are known to be Mahonian (and these include
almost all Mahonian statistics in the literature) and we provide proofs for
three more. For the remaining three, which we conjecture to be Mahonian,
there is overwhelming evidence that they are.

2 Mahonian statistics and pattern functions

A permutation statistic is Mahonian if it has the same distribution as inv, the
number of inversions. It is easy to see, and was proved by Rodriguez [20], that
the distribution of inv is given by the generating function∑

π∈Sn

qinvπ = [n]! := [n][n− 1] · · · [1], (1)

where [k] = 1 + q + q2 + · · ·+ qk−1.
Clearly, inv is identical with the pattern (b a). MacMahon [16] showed

that the major index of a permutation, maj, is Mahonian. The usual definition
of maj is the sum of the descents in a permutation. For example, maj 41523 =
1 + 3 = 4, since π has descents in positions 1 and 3.

A naive way of computing maj is to count, for each descent in π, the letters
in π preceding the latter of the two letters constituting the descent. If a letter
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thus preceding a descent is smaller than both letters in the descent it will be
counted by the pattern (a cb). If the size of the letter lies between that of
the descent letters it will be counted by (b ca), and if it is larger than both,
then it is counted by (c ba). Finally, we need to count the first letter in the
descent, which is done by the pattern (ba), which of course counts the descents
in a permutation.

Thus, we can write maj as a combination of patterns:

maj = (a cb) + (b ca) + (c ba) + (ba).

Another Mahonian statistic is mak, introduced by Foata and Zeilberger
[10]. It was essentially defined as the pattern (b ca) plus the sum of the
descent bottoms in π. A descent bottom is simply the smaller (rightmost)
letter in a descent. It is easy to see that the sum of descent bottoms in π
equals the sum of patterns (a cb) + (cb a) + (ba). Thus, we can write mak

as follows:
mak = (b ca) + (cb a) + (a cb) + (ba).

The Mahonian statistic mad introduced in [5] is obtained from mak by
replacing descent bottoms with descent differences , that is, the sum of the
differences in size between the two letters of a descent. Thus,

mad = (b ca) + (b ca) + (ca b) + (ba).

In [22], Simion and Stanton defined 16 different Mahonian statistics, each
of which is a combination of the patterns (b ca), (ca b), (ab) and (ba). (One of
these statistics equals mad on permutations, but not on words (permutations of
multisets), where mad is still Mahonian.) As it turns out, these are 4 genuinely
different statistics, the others being images under the “trivial” bijections from
the symmetric group to itself. These trivial bijections will be treated later on
in this paper.

All the Mahonian statistics mentioned above, except for inv, are descent-
based , that is, they are defined in terms of the descents (or ascents) in a
permutation and the number of descents appears “transparently” in the def-
inition. There are some Mahonian statistics in the literature that are based
instead on excedances . An excedance in a permutation π = a1a2 · · · an is an i
such that ai > i, and the number of excedances in a permutation is denoted
exc. The first of these statistics was Denert’s statistic, den, introduced by
Denert [6]. It was shown by Foata and Zeilberger [10] that the pair (exc,den)
has the same distribution as (des,maj). In particular, den is Mahonian.

Several authors, namely Biane [1], de Médicis and Viennot [17], and Foata
and Zeilberger [10], have defined bijections from Sn to the set of labeled Motzkin
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paths in order to prove, among other things, equidistribution results for Maho-
nian statistics. It was shown by Clarke, Steingŕımsson and Zeng [5] that these
bijections are all essentially equivalent and based on that a bijection from Sn
to itself was given. This bijection was shown to prove not only the equidistri-
bution of (exc,den) and (des,mak) but also the equidistribution of (exc, inv)
and (des,mad).

In fact, this bijection can even be used to translate an excedance-based
statistic of Haglund [13, Theorem 5], which we call hag, into a descent-based
statistic dag, which then can be written as a combination of patterns. The
statistic dag has patterns of length up to 4, and this is the only Mahonian
statistic we are aware of in the literature that has patterns of length greater
than 3. In Section 6 we show how to rewrite Haglund’s original statistic into
an excedance-based form and then translate it, using the bijection in [5], into
a descent-based statistic, which then is written as a pattern-function.

We know of no excedance-based Mahonian statistic in the literature that
can not be translated into a descent-based Mahonian statistic via the bijection
in [5]. Moreover, all descent-based Mahonian statistics defined directly on
permutations that we are aware of can be written as combinations of patterns.

However, there are two families of statistics, due to Dworkin [7] and Haglund
[13], respectively, that are Mahonian, but these statistics are defined relative
to arbitrary boards considered in rook theory. Thus, the definitions must vary
as the length of the permutations varies. Some families of boards, nevertheless,
give coherent definitions of the statistics for all n. One of Dworkin’s statistics,
based on the triangular board for each n, turns out to be equivalent to den, as
shown by Haglund [13]. Haglund’s statistic for the same boards is the statistic
hag mentioned above. There may well be other families of statistics among
these that can be defined directly on the permutations, but we have not made
a systematic study of this.

There are also many Mahonian statistics that interpolate betwen known
Mahonian statistics, or otherwise are defined on subwords of a permutation
(or word) [3, 12, 14, 15, 19]. We will not treat these here.

Apart from these execptions, it seems that all Mahonian permutation statis-
tics in the literature can be written as pattern functions or else are equivalent,
via the bijection in [5], to such functions.

This leads to an obvious question: How many Mahonian d-functions are
there, in particular, is there a finite number for each d? Moreover, which pat-
tern functions are Mahonian? We answer these questions (almost) completely
for 3-functions and we give an explicit numerical description of the combina-
tions of patterns a Mahonian d-function must have for all d.
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3 The main results

So far, our patterns have had an implicit dash at the beginning and the end,
in the sense that they have been allowed to begin, and end, anywhere in a
permutation. Strictly speaking, we should write ( ba ) instead of (ba). The
generalization that consists of allowing patterns to have or not to have a dash
at the beginning/end is worth studying, and causes slight changes in the results
presented in Section 4, as will be mentioned later. However, we relegate this
generalization to the sidelines and treat (a limited part of) it separately in
Section 5.

Nevertheless, in this section we will consider patterns that are required to
begin at the first letter in a permutation and/or end at the last letter. We write
such patterns with square brackets to indicate this. For example, the pattern
[b a) counts the number of letters in a permutation that are smaller than the
first letter, and [c b a] counts decreasing subsequences of length three that
contain both the first and last letter in a permutation. Most importantly here,
a pattern that has no dashes (not even implicit ones at the beginning or end) is
identically zero on Sn except when n is the length of the pattern. For example,
[bac] is zero except on the single permutation 213.

In this section, a k-pattern with i dashes , or (k, i)-pattern, is a pattern of
length k with i dashes, where we count implicit dashes at the beginning or
end. Thus, [bac] is a (3, 0)-pattern and [b a) is a (3, 2)-pattern.

Using this, we can show that any d-function, when restricted to Sn for
n ≥ d, can be written as a linear combination of d-patterns. As an example,
if a 4-function contains the (3,1)-pattern [ba c], that pattern can be rewritten
as a combination of four (4, 1)-patterns and a (3, 0)-pattern:

[ba c] = [ba dc] + [ba cd] + [ca bd] + [cb ad] + [bac]. (2)

Namely, any occurrence of the pattern [ba c] in a permutation π will be de-
tected by exactly one of the patterns in the RHS of (2). Which of the patterns
in the RHS will detect this depends on the size of the letter in π preceding
the letter corresponding to the c, relative to the size of other letters in the
pattern [ba c]. If there is no letter in π between those corresponding to the a
and the c this will be detected by the pattern [bac]. Conversely, any pattern in
π detected by the RHS of (2) must correspond to a unique occurrence of the
pattern [ba c].

Now, [bac] is 0 except on S3, so we have written [ba c] as a linear combina-
tion of 4-patterns, when considered as a function on Sn for n ≥ 4. In general,
any k-pattern with i dashes can be written in terms of (k+ 1)-patterns with i
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dashes, and one k-pattern with i− 1 dashes. Given a d-function, we can thus
successively strip each of its k-patterns, for k < d, of its dashes, and end up
with a function whose k-patterns for k < d have no dashes and thus vanish on
Sd and higher. We record this as follows.

Proposition 1 Any d-function, when restricted to Sn for n ≥ d, can be writ-
ten as a linear combination of d-patterns.

We call the rewriting of which (2) is an example upgrading . Observe that
the number of dashes never increases in an upgrading of a pattern. Thus, for
any d ≥ 2, the above procedure can be used to write the Mahonian pattern
(b a), that is, the number of inversions, as a combination of d-patterns with
one, two or three dashes plus some shorter patterns with no dashes. A simple
inductive argument then yields the following lemma.

Lemma 2 The statistic inv, when restricted to Sn for n ≥ d, can be written
as a combination of d-patterns, of which d!/2 have three dashes, (d − 2)d!/2
have two dashes, and

(
d−1

2

)
d!/2 have one dash.

We now wish to determine which linear combinations of d-patterns can be
Mahonian (on Sn for n ≥ d). First a definition and a proposition.

Definition 3 The weight on Sn of a function f is the sum
∑
π∈Sn

f(π).

To compute the weight of (b a), the number of inversions, on Sn, we pro-
ceed as follows. We wish to count the total number of inversions in all permu-
tations in Sn. Each inversion consists of two letters x and y in a permutation,
where x < y and y precedes x in π. There are

(
n
2

)
such pairs and it suffices to

count how many inversions one such pair is involved in, over all permutations
in Sn. There are

(
n
2

)
ways to choose the two places in a permutation where we

put the x and the y. The remaining (n− 2) letters in the permutation can be
arranged arbitrarily, in (n − 2)! ways, as we are only counting the inversions
involving x and y. Thus, the total number of inversions, that is the weight of
(b a), is (

n

2

)
·
(
n

2

)
(n− 2)! =

n!

2

(
n

2

)
.

A simple generalization of the above argument yields the following propo-
sition. Note that a pattern with k+ 1 dashes has k blocks of letters separated
by the dashes and recall that we are counting dashes at the beginning/end of
a pattern. Also, we define

(
m
−1

)
to be 1 if m = −1 and 0 otherwise.
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Proposition 4 The weight on Sn of a d-pattern with k+ 1 dashes is given by

Wn(d, k) =
n!

d!

(
n− d+ k

k

)
.

In particular, the weight of a d-pattern with no dashes (k = −1) is 1 if n = d
and 0 otherwise.

Now, two functions with the same distribution must have the same weight
so, by definition, a Mahonian function must have the same weight as (b a),
the number of inversions. We record this for later use.

Corollary 5 The weight of a Mahonian function on Sn is n!
2

(
n
2

)
.

Clearly, the weight of a sum of patterns is the the sum of the respective
weights. As it turns out, this gives significant restrictions on the possible
combinations of patterns in order for a function to be Mahonian.

Theorem 6 Let f be an arbitrary Mahonian d-function, written so that all
of its k-patterns, for k < d, have no dashes. Then f has d!/2 (d, 3)-patterns,
(d− 2)d!/2 (d, 2)-patterns, and

(
d−1

2

)
d!/2 (d, 1)-patterns.

Proof: Observe first that each d-pattern has value 1 on precisely one permu-
tation in Sd and 0 on the others. Thus, we can only have positive integral
combinations of patterns. Therefore a Mahonian linear combination of pat-
terns cannot contain any patterns with more than three dashes. Namely, the
weight of such a pattern is P (n) ·n!/d! where P is a polynomial in n of degree
greater than two, whereas the weight of inv = (b a) is n!/2 times a polynomial
in n of degree two.

It therefore suffices to consider the possible combinations of d-patterns with
0, 1, 2 or 3 dashes. If the respective numbers of these patterns are x, y, z and
w then, by Proposition 4 and Corollary 5, they must satisfy the equation(

n− d− 1

−1

)
x+

(
n− d

0

)
y +

(
n− d+ 1

1

)
z +

(
n− d+ 2

2

)
w =

n!

2

(
n

2

)
for all n ≥ d, where, as in Proposition 4,

(
k
−1

)
is 1 if k = −1 and 0 otherwise.

Solving this equation for n = d, . . . , d + 3 is equivalent to solving a system of
linear equations corresponding to the following matrix.

1 1 1 1
0 1 2 3
0 1 3 6
0 1 4 10
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This matrix is easily seen to be invertible, so there is a unique possible solution
to the above equation. By Lemma 2 this solution is as claimed, and holds for
all n ≥ d.

Let f be a Mahonian d-function. If we allow k-patterns with any number
of dashes for k < d then such a function can be written in more than one way
as a d-function, possibly including combinations of patterns with arbitrary real
coefficients. However, any such combination can be put into the standard form
of Theorem 6 (while remaining the same function) so the theorem essentially
rules out anything but positive integral combinations.

Even if we consider the more natural situation with k-patterns, for k < d,
that don’t vanish above Sk, we can give a unique standard way of writing any
Mahonian d-function, if we add a modest requirement.

Namely, if we demand that all patterns in f contain at least two dashes (in
particular if a pattern is required to have dashes at the beginning and end),
then we can again write f in a certain standard form and say exactly how
many patterns of each type there must be in f .

Corollary 7 Let f be a Mahonian d-function whose patterns all have at least
two dashes. Then f can be written as a sum of k!/2 patterns of length k with
two dashes, for 2 ≤ k < d, and d!/2 patterns of length d with three dashes.

Proof: If we repeatedly upgrade all the (k, 3)-patterns for k < d, we are left
with a combination of (d, 3)-patterns and (k, 2)-patterns for k = 2, 3, . . . , d.
It follows from Theorem 6 that there must be exactly d!/2 (d, 3)-patterns.
Now, f must contain exactly one 2-pattern (in order to be Mahonian on S2),
and this 2-pattern has two dashes, by hypothesis. That is not enough weight
to make a function Mahonian on S3, so f must contain some 3-patterns. In
fact, f must contain exactly three 3-patterns in order to have the weight of a
Mahonian function on S3. An easy induction argument shows that, under the
assumption that all the k-patterns have two dashes, there must be exactly k!/2
such patterns for each k < d. That, in turn, leaves no room for d-patterns,
other than the d!/2 (d, 3)-patterns already shown to be present.

4 A classification of the Mahonian 3-functions

According to Corollary 7, a Mahonian pattern function all of whose patterns
have dashes at the beginning and end must contain one of the patterns (ba) and
(ab). In order to find all such Mahonian functions, however, we can restrict to
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the pattern (ba). In fact, for each pattern function f with a given distribution,
there are three others that obviously have the same distribution. These are
functions obtained from f by one of the three trivial bijections of Sn to itself,
namely reversion, R, complementation, C, and the composition R ◦ C.

The reverse of a permutation π = a1a2 · · · an is the permutation πr =
anan−1 · · · a1 and the complement of π is the permutation πc = b1b2 · · · bn
where bi = n+ 1− ai. As an example, since

maj = (a cb) + (b ca) + (c ba) + (ba),

reversing each of the patterns in maj yields the function

maj
r = (bc a) + (ac b) + (ab c) + (ab)

and clearly maj
r πr = maj π for any permutation π.

In what follows, we will make use of this, and we will in particular only
consider pattern functions whose 2-pattern is (ba). A Mahonian 3-function all
of whose patterns have dashes at the beginning and the end must thus consist of
the pattern (ba) and three 3-patterns with one “internal” dash each. Allowing
the pattern [b a) instead of (ba) yields a few more Mahonian statistics different
from those with 2-pattern (ba) but we will treat this separately in Section 5.

The number of ways of combining one of the 2-patterns (ba) and (ab)
and three 3-patterns with one internal dash each is 2 ·

(
14
3

)
= 728 and only

728/4 = 182 if we take into account the trivial bijections mentioned above.
Computer-aided calculations show that of these 182 3-functions, all but 14
fail to have the Mahonian distribution already on S5. Among these fourteen
statistics, eight are known, but six seem to be new. For three of those six we
prove in Proposition 9 that they are Mahonian.

This leaves three possible Mahonian statistics for which proofs are miss-
ing. However, we have verified by computer that they have the Mahonian
distribution for n ≤ 11 so the following conjecture is a safe bet.

Conjecture 8 The following statistics (number 6,11,13 in Table 1) are Ma-
honian:

(ac b) + (ba c) + (c ba) + (ba),

(a cb) + (b ca) + (b ca) + (ba),

(bc a) + (ca b) + (ca b) + (ba).
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In Table 1 we give a list of all fourteen (possible) Mahonian 3-functions.
We group them into the seven equivalence classes induced by the relation ∼,
where two statistics S and T satisfy S ∼ T if the distribution of the bistatistics
(des, S) and (des, T ) is the same. Here des is the number of descents, and thus
equals (ba).

The equidistributions of such bistatistics have been much studied (see e.g.
[5, 7, 9, 10, 13, 17]) and the fact that all Mahonian 3-functions must contain the
pattern (ba) = des “explains” why this is a natural classification. Note that if
S = S ′+ (ba) and T = T ′+ (ba) are two equidistributed functions and (des, S)
and (des, T ) are also equidistributed then so are S ′ and T ′. The converse of this
is not true, of course, so stripping two statistics with different distributions of
the pattern (ba) may result in statistics with the same distribution. It is easily
checked, however, that this does not happen with any two different classes in
Table 1. Because of this, and for simplicity, we omit writing the pattern (ba)
in the statistics in Table 1. In Table 2 we give the distribution of the bistatistic
(des, S) for the statistics S in each of the seven equivalence classes in Table 1.
Observe that in Table 2 the statistics S do contain the pattern (ba).

We now prove that the statistics number 5, 10 and 12 in Table 1 are Ma-
honian.

Proposition 9 The following statistics are Mahonian:

stat = (ac b) + (ba c) + (cb a) + (ba),

stat
′ = (ac b) + (ca b) + (cb a) + (ba),

stat
′′ = (a cb) + (c ab) + (c ba) + (ba).

Proof: We prove, by induction on the length of a permutation, that stat is
Mahonian. The proofs for the other two statistics are similar and are omitted.
We analyze how the value of stat changes as we prepend k = 1, 2, . . . , n to
a permutation π ∈ Sn−1 and add one to those letters in π that are greater
than or equal to k. For example, prepending 3 to the permutation 4132 we get
35142. (In the case of stat

′′, the letter should be appended to the end of π.)
Let the first letter of π be m and suppose we are prepending k to π. There

are two cases, depending on whether k is greater than m or not.
If k is smaller than or equal to m, then the only pattern in stat that

is affected is (ac b). If k = m then there is no effect. If k = m − 1 then
the value of (ac b) will increase by one, since the one letter between k and
m′ = m+ 1 (the “new value” of m) in size will appear after m′ in the resulting
permutation. In general, if k = m − i, where 0 ≤ i < m, then the value of
(ac b) will increase by i.
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1 (ac b) + (ac b) + (b ac)
2 (ac b) + (ac b) + (b ca)
3 (ac b) + (b ca) + (b ca)
4 (b ca) + (b ca) + (ca b) mad

5 (ac b) + (ba c) + (cb a) stat

6 (ac b) + (ba c) + (c ba)
7 (a cb) + (b ca) + (cb a) mak

8 (a cb) + (b ca) + (c ba) maj

9 (a cb) + (ca b) + (cb a) makl

10 (ac b) + (ca b) + (cb a) stat
′

11 (a cb) + (b ca) + (b ca)

12 (a cb) + (c ab) + (c ba) stat
′′

13 (bc a) + (ca b) + (ca b)

14 (bc a) + (ca b) + (cb a) inv

Table 1: All Mahonian 3-functions (omitting the pattern (ba)), up to trivial
bijections. The first four belong to those defined by Simion and Stanton [22].
The statistic makl appears in [5, Prop. 13].
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1 0 0 0 0 0 0 0 0 0 0
0 4 3 5 5 5 3 1 0 0 0
0 0 6 6 11 12 12 9 6 3 1
0 0 0 4 3 5 5 5 3 1 0
0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0
0 4 9 9 4 0 0 0 0 0 0
0 0 0 6 14 22 14 6 0 0 0
0 0 0 0 0 0 4 9 9 4 0
0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0
0 4 9 5 6 1 1 0 0 0 0
0 0 0 10 14 20 12 7 3 0 0
0 0 0 0 0 1 7 8 6 4 0
0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0
0 4 3 8 4 5 1 1 0 0 0
0 0 6 3 14 12 14 8 6 2 1
0 0 0 4 1 5 5 6 3 2 0
0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0
0 4 6 8 7 1 0 0 0 0 0
0 0 3 7 12 20 14 10 0 0 0
0 0 0 0 1 1 6 5 9 4 0
0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0
0 4 3 5 3 5 2 3 1 0 0
0 0 6 6 13 9 14 7 7 3 1
0 0 0 4 3 8 4 5 1 1 0
0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0
0 4 6 6 6 2 2 0 0 0 0
0 0 3 9 12 18 12 9 3 0 0
0 0 0 0 2 2 6 6 6 4 0
0 0 0 0 0 0 0 0 0 0 1

Table 2: Distribution of (des, S) on S5 for the seven different equivalence classes
of statistics S (together with (ba)) in Table 1, in the same order. Rows are
indexed by number of descents, columns by value of S; both start at 0.
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If k is greater than m then we are creating a descent at the beginning of
the permutation, thus increasing (ba) by one. Also, each letter in π that is
smaller than m (and thus to the right of m) will contribute an increase of one
to (cb a). Therefore, the total increase to (cb a) and (ba) will be precisely m.
In addition, if k = m+ i, where i ≥ 1, then (ba c) will increase by n−m− i.
The pattern (ac b) is not affected in this case.

Thus, prepending the letters 1, 2, . . . , n to π will increase the value of stat

by 0, 1, . . . , n−1, respectively (but not necessarily in this order). Given that the
distribution of stat on S1 is 1, this implies, by induction, that its distribution
on Sn is the same as that of inv, given in (1).

We conjecture that stat belongs to the same equivalence class as maj and
mak. As is the case for all conjectures in this paper, this has been verified by
computer for n ≤ 11.

Conjecture 10 The distribution of the bistatistic (des, stat) is equal to that
of (des,maj).

5 A generalization

If we allow patterns with no (implicit) dash at the beginning, as in Section 3, we
find several candidates for Mahonian statistics among the 3-functions (where
we only consider the 2-pattern [b a) and we have restricted the 3-patterns to
have dashes at the beginning and end). All but four of these can be shown
to equal some of the ones in Table 1, as functions, and so are not new. We
conjecture that the remaining four are Mahonian and that they belong to the
equivalence class of (des,maj).

Conjecture 11 The following statistics are Mahonian, where, as in Section 3,
a square bracket [ at the beginning of a pattern means that the pattern must be-
gin at the first letter of the permutation. Furthermore, the bistatistics (des, Si),
for i = 1, 2, 3, 4, are equidistributed with (des,maj).

S1 = (a cb) + (b ac) + (cb a) + [b a),

S2 = (a cb) + (b ac) + (c ba) + [b a),

S3 = (a cb) + (b ca) + (cb a) + [b a),

S4 = (a cb) + (b ca) + (c ba) + [b a).
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6 A Mahonian 4-function

We now show, without giving all details, how the statistic hag of Haglund [13,
Thm. 5] can be rewritten to make it suitable for “translation” by the bijection
in [5] into a statistic dag, which in turn can be written in terms of patterns
of lengths up to four.

We use here terminology from [5], where Ddif π is the sum of descent dif-
ferences (ai − ai+1) over all descents i in π, and Edif is the coresponding sum
of excedance differences (ai − i) over all excedances i. Moreover, exc(π) is the
subword of π consisting of those letters ai for which ai > i and nex(π) is the
complementary subword of exc(π) in π.

Haglund calls his statistic simply stat and defines it as follows, where π =
a1a2 · · · an and we take i to be less than j in all sets:

Edif π +
∑
ai≤i

(1− ai) + inv(exc(π)) + #{ai ≤ j < aj}+ #{ai < aj ≤ j}.

This can be rearranged and then rewritten as follows:

Edif π + inv(exc(π)) +
∑
ai≤i

(1− ai) + #{ai < aj ≤ j}+ #{ai ≤ j < aj}

= Edif π + inv(exc(π))−#{aj < ai ≤ i}+ #{ai ≤ j < aj}

= Edif π + inv(exc(π))− inv(nex(π)) + E,

where E is the sum of numbers defined for each excedance bottom k as the
number of letters ai with i < k and ai ≤ k.

We define a descent-based version of this statistic, dag by

dag π = Ddif π + Res(Destops)− Res(NonDestops) +D, (3)

where D is the sum of numbers defined for each descent bottom ai as the
number of descent tops smaller than or equal to ai and non-descent bottoms
smaller than or equal to ai. Moreover, Res is a function equal to the pattern
(b ca), and Res(Destops) is the number of occurrences of that pattern where
the letter corresponding to the b is a descent top, that is, the first letter ai in
a descent ai > ai+1. The term Res(NonDestops) is the corresponding number
for the non-descent tops.

Applying the bijection Φ in [5, Section 3] to a permutation π we have that
dag π = hag Φ(π). Thus dag is Mahonian since hag is.
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With some work, it is possible to write (3) as follows:

(ba) + [a cb) + (cba) + (ca b) (4)

+2 · (ca db) + 2 · (cb da) + (ab dc) + (ba dc) + (dc ab) + (dc ba).

Using the identity

[a cb) = (a cb)− [(da cb) + (ca db) + (ba dc) + (ab dc)]

(obtained by upgrading (a cb)) we can then rewrite (4) as follows:

(ba) + (cab) + (cba) + (a cb)

+2 · (ca db) + 2 · (cb da) + (dc ab) + (dc ba) + (da bc) + (db ac).

Finally, to get this into the standard form of Corollary 7, we upgrade (a cb)
and obtain

dag = (ba) + (cab) + (cba) + (acb)

+2 · (ca db) + 2 · (cb da) + (dc ab) + (dc ba) + (da bc)

+(db ac) + (ad cb) + (ac db) + (ab dc) + (ba dc).

We have compared, with the aid of a computer, the statistic dag to all the
statistics in Table 1 (and the statistics obtained from these by the bijection
R ◦ C) and found that it is not equal, as a function, to any of them. Thus,
dag is genuinely a 4-function. It was shown by Haglund [13, Thm. 5] that
(exc,hag) is equidistributed with (des,maj). Appealing to the properties of
the bijection Φ in [5, Prop. 3], it follows that (des,dag) also has the same
distribution.
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