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A CONTINUED FRACTION EXPANSION FOR A
¢-TANGENT FUNCTION

MARKUS FULMEK

ABSTRACT. We prove a continued fraction expansion for a certain
g—tangent function that was conjectured by Prodinger.

1. INTRODUCTION
In [4], Prodinger defined the following g—trigonometric functions

o (_1)nz2n+1 2

sing(2) =3 2n+1, 7

n=0

0 (_1)n22n 2
cosy(2) = Z Wq :

n=0 q

Here, we use standard g—notation:

o = T bt o= ol oy
(@;9)n = (1 —a)(1 —aq)...(1—ag"™).

These g—functions are variations of Jackson’s [2] g-sine and g-cosine
functions.
For the g-tangent function tan, =

sing

s, Prodinger conjectured the
q

following continued fraction expansion (see [4, Conjecture 10]):

—ztan,(z) = — 5 . (1)
[1]qq°® = 2
Blgg™2 = z
5 —
[ ]q [7]qq_9 .
Here, the powers of ¢ are of the form (=1)""'n(n —1)/2 —n + 1.

The purpose of this note is to prove this statement. In our proof, we
make use of the polynomials (see [3, §2, (11)]) A,(2) and B,(z), which
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are given recursively by
Ap(2) = bpAn_1(2) — 22 A,_5(2), (2)
Bn(2) = b,B,_1(2) — 22B_5(2); (3)
with initial conditions (see [3, §2, (12)])
A,=1,B =0, Ag=by, By =1,

where by = 0, b, = [2n — 1],¢"V" " "(*=D/2=741 - Ag is well known (see
3, §2]), the continued fraction terminated after the term b, is equal to
‘g—:, whence (1) follows from the assertion

A, cos, +2B, sin, = O(z*"1), (4)
i.e., the leading 2n coefficients of z vanish in (4).
In Section 2 we give a proof of (4) (and thus of (1)).
2. THE PROOF

Both A, and B, are polynomials in 2%
z) = Z cn 2™, By(z) = Zdn,jz%
J J

Observe that from the recursions (2) and (3) we obtain immediately
Cnk = bnCno1k — Cn—o -1 and dy k = bpdp—14 — dp—2k-1, (5)
with initial conditions
cop =dor =Co1p =d_1p=cCho=dn—1 =0, c11=—1, doo=1.

Given this notation, we have to prove the following assertion for the
coefficients of z?* in (4): For n > 1, 0 < k < n, there holds

k—i) ( 1)k ! k—i—1)2
n,i g dn % (k=i—1) = O 6
ZC 2k 2 'q +Z 2k —2i — 1,1 (6)
In fact, we shall state and prove a slightly more general assertion:

Lemma 1. Given the above definitions, we have for alln > 1, k > 0:
- k i_1)2 + dn,i —
2k 2o\ T ok —2i—1],)
=0
(_1> q(5+3(—1)"—12k—4(—1)”k+8k2+8n—8kn+4n2—2(—1)”n2)/8

Hs k—nl25q
X TR (7)

M
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Note that the left hand side of (7) is the same as in (6), and the
right hand side of (7) vanishes for 0 < k£ < n. Hence (6) (and thus
Prodinger’s conjecture) is an immediate consequence of Lemma 1.

Proof. We perform an induction on k for arbitrary n.
The case k = 0 is immediate. For the case k = 1, observe that

n
—Cp1 = dn,O - an
s=1

For the inductive step (kK — 1) — k, we shall rewrite the recursions
(5) in the following way:

n—2 n n—2 n
Cnk = — E Cik—1 H bj > dn,k = - E di,k—l H bj .
i=0 j=i+3 i=0 j=i+3

Substitution of these recursions into (7) and interchange of summa-
tions transform the identity into

il 1)2(1 _[2[]3]{:__1]1](1 =1 0 _|_Z (rhs ik —1) H b, ) = rhs(n, k),

Jj=i+3

where rhs(n, k) denotes the right hand side of (7).
Now we use the induction hypothesis. As it turns out, factorization

Jj=t+3
27 and 2i+ 1, whence we can group these terms together. After several
steps of simplification we arrive at the following identity:

of powers of ¢ from <rhs(i, k=TI, bj> yields the same power for

==, _ _ _
20 (g g (2 g (g 17/2 B g i(—g 17/2 kb, (h1))

q
= (47 4);(a% a*);(¢°**; ¢*);(— 9/”761)
(4:6*)ng(1 — (1 =) (1 — ") k—1v(.3. 2
(1_q)(1_q3)(1_q5> _(1_q )(q 54 )n—l
. (_1)nq(—1+(—1)"+2k—2(—1)"k+2n—4lm+4n2)/4(q2k—2n. QQ)n
+(¢;6%)n + X(n) (1 — PR g2 (PR gy =0, (8)

where x(n) =1 for n even and 0 for n odd.
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The sum can be evaluated by means of the very—well-poised ;¢5
summation formula [1, (2.7.1); Appendix (I1.20)]:

S qu)(fq)g( q);(c0)i(d;q); (aq\i
Z ¢ 9);(Va; ) (—va; @) (5 @) (% )(d7qj<bcd)

_ (065 9)oo (55 @)oo (55 D)oo (53 @)oo ()
(%5 D)oo (%3 @)oo (5 @)oo (55 D)oo
The sum we are actually interested in does not extend to infinity, so
we rewrite is as follows:

234

J=

Z (n,k, 5) anky Z s(n, k, j)
7=0 7=0 [L*ﬁ
- . 2 > s( |+ 22
= s(n,k,7) — s(n, 2 2
=0 Z o TD

where s(n, k,j) denotes the summand in (8). Novv7 replacing q by

q47 a by q—2k+8a+97 b by q—2k+4a+4’ c by q—2k+4a+6 and d by q in the
,k, 2]67‘»80,+9y 4 4; 4y .
% times the fraction Eq,%%“g,g‘l; EZ Z ;J

which cancels. So we obtain after some simplification:

x (q72k+6’q ) (q 2k+4’q ) (q17/2—k.q4)j(_q17/2—k;q4)j q(Qk—l)j
= (@5ai(@% a7 ) (=a* R ),

(1-¢)(1-¢") (1 _ @D (¢ q2)22+2) ‘
(1 —¢*1)(1 —¢*%) (4% @*)2a+42

Substitution of this evaluation in (8) and simplification yield for both
cases n even (n = 2N) and odd (n = 2N — 1) the same equation

summand of (9) gives

—2k+2 —2(k—N)(2N-1) (q2k—4N+2

(C] §q2)2N—1 = —q ;q2>2N—17

which, of course, is true. This finishes the proof. [l
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