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ABSTRACT. We present here a transparent proof of the hook length formula. The
formula is reduced to an equality between the number of integer point in certain
polytopes. The latter is established by an explicit continuous volume-preserving
piecewise linear map.

Introduction

About one hundred years ago, Alfred Young realized that the dimension of the
irreducible representation of the symmetric group is given by the number of what
we now call standard Young tableaux. About fifty years ago, Frame, Robinson and
Thrall discovered a remarkable and somewhat mysterious hook length formula for
this dimension. Ever since, a quest for a simple combinatorial proof has been under
way. Although several beautiful proofs have been found, it is our personal view
that the real meaning of the formula is yet to be understood. Thus the current
paper as another meager attempt.

Roughly, our proof consists of three steps, which can be outlined as follows. In
the first step we reduce the hook length formula to Stanley’s hook content formula
for the number of reverse plane partitions. Since we do not need the full power of
Stanley’s theorem, we use a simple geometric argument to prove the claim. Then we
extend the result, by switching from the cone of reverse plane partitions to certain
finite polytopes. Finally, we prove that the integer volumes of these polytopes are
identical by using an explicit continuous volume-preserving map between them. We
enclose three “bonus” sections which describe special properties of the map defined
above. We conclude with brief remarks and pointers to the literature, which are
completely absent in the main body of the paper.

The goal of this paper is not to invent a completely new approach or a new
bijection, but rather to create a simple and transparent proof with virtually no
technical details. In the process, we utilize some well known ideas and simplify the
existing bijections. After certain reservations about the merit of such an exercise,
we decided that it has both scientific and educational value. We defer the final
judgement to the reader.
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A few words about notation. Throughout the paper we use [\] to denote the

set of squares of a Young diagram X (see below). We write [n] = {1,2,...,n},
Z4 = {0,1,2,...}. Furthermore, we write f ~ g for functions f,g : Ry — Ry,
when f(2)/g(z) — 1 as z — oo. Also, for any array d = (di,...,dy), we write

|d| = dy + - - - + d,. We will abbreviate the hook length formula as HLF, the hook
content formula as HCF, etc. A small warning: the proof of Lemma 1 should not be
skipped even if the result is well known to the reader. The proof contains definitions
and notation we use thereafter.

1. THE HOOK LENGTH FORMULA

Let A = (A1,A2,...,A¢) be a partition of n (denotes A F n), if \y > Ay >
<+ > Agy |A| = X, A = n. From now on, let ¢ denotes the number of parts;
let m = A; denote the length of the largest part. Define the conjugate partition
A= (AL, AR) by A = [{i: A >}

A Young diagram [)\] corresponding to ), is a collection of squares (4, 5) € Z2,
such that 1 < j < A;. Define the hook length h(r) = A\; + \; —i — j + 1, where
r = (i,]) € [A].

We say that (i1,71) < (i2,72) if i1 <2, j1 < ja. A standard Young tableau A of
shape A is a bijective map f: [\] = [n] = {1,...,n}, such that f(i1,j1) < f(iz, J2)
for all (i1, 1) < (i2,j2). We denote the set of standard Young tableaux of shape A
by SYT(M).

4|6

FIGURE 1. Young diagram [\], where A = (6,6,5,3,2). A hook at
r =(2,3), h(r) = 6. A standard Young tableau of shape (3,2,2).
Theorem 1. (Hook Length Formula) :

n!

SYT(V)| = —" .
| ‘ Hre[)\] h(I‘)
2. REVERSE PLANE PARTITIONS

A reverse plane partition A of shape A is a function f : [A\] = Z4 ={0,1,2,...},
such that f(i1,j1) < f(i2, j2) for all (i1,71) < (i2,72). We denote the set of reverse
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FIGURE 2. A reverse plane partition A of shape A = (4, 3,2); |A| = 37.

plane partitions of shape A by RPP()). Let |A] =3 ., f(r) denote the size of
A. One can think of A as of a two-dimensional array (z;,;) of shape [)].

Theorem 2. (Hook Content Formula) :

1
Z t4 = H 1_¢h(0 °

AERPP()) ref)]

Lemma 1. The Hook Content Formula implies the Hook Length Formula.

Proof. Let V ~ R™ be the vector space of all real functions f : [\] = R, and let
f(i,5) = z; ;. Consider the cone C(A) C V of all real functions f : [A\] = Ry, such
that f(i1,j1) < f(i1,J2) for all (i1,71) < (i2,72)- In other words, C(A) is defined by
the inequalities Tij > 0, Tiy i1 < Tigjos for all 41 < s, 71 < J2. Let ¢ : C()\) —- Ry
be a linear function ¢ = 3, ey i

Similarly, let W ~ R™ be the set of functions g : [\] = R, ¢(4,j) = y;,;, and let
D(A) = R} be the cone of nonnegative functions: y; ; > 0. Denote by ¢ : D(\) =
Ry the hnear function ¢ = 3, 1y h(r) yr

Now we can restate the HCF as follows

e(CAN{p=N})=e(DAN)N{y=N}), forall N € Zy,

where e(P) denotes the number of integer points in the polytope P. Let us rewrite
this as follows:

e(CN)N{p <N}) =e(DA)N{ <N}), forall N€Z,.
This implies that
(*)  vol(CA) N{p < 2}) ~vol(DN) N {y < 2}), as z — .

Now, for every bijection ¢ : [\] = [n] we can define the cone C(c) C V to be
the cone of functions f : [\] = Ry such that f(o=1(i)) < f(o~1(j)) for all i < j.

Clearly,
C(A) =Ugesyr(n) Clo), UsC(o) =R} CV,

vol(C (o ﬂ{cp<z}) =vol(C(a") N{p < 2}),
vol(C (o) )N{p <z}) =0, for everyo # o'
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Therefore

vol(C(N) N{p <2}) = Z vol(C(o) N{p < 2})
sESYT())
_ ISYT(V)]
B n!

[SYT(V)I

vol(D(A) N{p < 2}) = "

2" vol(D(A) N {p < 1}).

On the other hand, the change of coordinates y; ; = @ Yi,; gives:

vol(D(A) N{y < 2}) = ( H ﬁ) vol(D(X) N {g < 1}).

re[A]

We conclude

vol(C(A) N{p < 2}) = SYTO) Tll_![rep\] h) vol(D(A) N {y < 2}).

Substituting this into (x) and letting z — oo, implies the result. O

3. TWO POLYTOPES
Denote by r. = (i¢,j.) the maximal element in [)A] along diagonal i — j = ¢ :
re = max {G,5) e[\ :i—j=c}.
Now, let a., 1 —m < ¢ < {—1, be the diagonal sums :
Q. = Z T .
(i) €N i—j=c

We think of . as of linear functions on V. Clearly, ), a. = ¢.
Similarly, consider rectangular sums :

Be = Z Yi,j-
r:(iaj)'<rﬂ

Again, we think of 3. as of linear functions on W. Later we prove that > 8. =

F1GURE 3. The area of the diagonal sum a_» and the rectangular sum
B_5. The corner square ry = (4, 2).
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Now, for every integer array d = (d1_yy,--.,d¢_1), consider the two polytopes:
Py(d) = COO)N{as-m =d1m,---,0 =do,...,0p 1 =dg 1} CV,
Qk(d) = D(/\) N {/Blfm = dl*ma .. ‘7ﬁ0 = d07 v 7ﬂé*1 = défl} cwW.

Theorem 3. (Two Polytopes Theorem)
For any integer array d = (di—m,...,de—1), we have e(Px(d)) = e(Q,(d)).

Lemma 2. The Two Polytopes Theorem implies the Hook Content Formula.

Proof. Consider the linear function ¢ = Zﬁ;}fm Bc- Let us first prove that
o = 1. Indeed,
-1 -1 I=As
0= D fe= 2 D wg= D, D vw= ), My =v.
c=1-m c=1-m (4,j)<r. (3,5)E[A] e=1—X: (4,7) €[N

Therefore, Theorem 3 implies that

e(CMN{p=2})= > e(Pr(d) = e(Qx(d))
= Y €e(Q,(@) =e(DN)N{p=2}).
d: Y=z

From the proof of Lemma 1, this implies HCF. O

Proof of the HLF. From above, Theorem 3 and Lemma 2 imply the HCF. Now
the HLF follows from the HCF by Lemma 1. O

Corollary 1. For all A, d, the polytopes Py(d) and Q,(d) have the same
Ehrhart polynomial.

Proof. For any polytope P,let N-P = {Nz: 2 € P}. The Ehrhart polynomial
is defined as E(P,t) = e(t- P). We use N - a to denote (Nai, Nas,...).
By definition of polytopes Py and Q,, we have:

E(PA(d),N) = e(N - Py(d)) = e(PA(N - d))
= e(Q/\(N~d)) =e(N~Q/\(d)) = E(Q/\(d),N),

for every N > 1. This implies the result. O

4. PROOF OF THE TwO POLYTOPES THEOREM

In this section we prove TPT by induction on n = [A|. When n = 1, we have
A = (1), Py = Q,, and the result is trivial. We define an identity map & : Py = Q,
in this case.

Now, let r. be the maximal element on diagonal ¢ — 5 = ¢ in A. We say
that r. = (i¢, jc) is a corner in [A], if re_y,rcy1 < r.. We have ro_1 = (ic — 1, j¢),
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ret1 = (ic,jo.—1) in this case. Observe that if r. is a corner in [A], then [u] = [A]—r,
is a Young diagram of a partition g = (A1,..., A1, i, —1, Nj.41,...) F n—1. The
step of induction we present below is a reduction of TPT from [A] to [u] = [A\]—r..

Let d = (di—m,-..,ds—1) be as above. We shall construct an explicit map
& Pa(d) — Q,(d), which gives a bijection between integer points in Py (d) and
in Q,(d). Indeed, let A = (z;,;) € Px(d). Define

i, ifi—j#e

@i j — max{zi 1, Tij1}, if (i,5) = (ic, o)

max{z;_1,;, Tij—1} +min{zit1,;, Tijt1} — i,
if i —j=¢(27) # (i, Je)-

Z,j =

Here we use the convention x;0 = 20,; = 0. Let A’ = (x;]), ¢ = et (wij) =
(@ ;)-

Notice that by construction, ¢ is a continuous piecewise linear map, with the
inverse ("' : (] ;) — (xi;) given by
o, ifi—j#e
x;,j + mw{x§—1,j ) x;,j—l}v if (4,7) = (ic, Je)
max{m;_lvj ) x;,j—l} + min{w;—f-l,j ) x;,j+1} - x;,j7

if l—] =, (17.7) # (ic,jc)-

Tij =

Now let &) : A — B, where B = (y; ;) € Q,(d) is defined as follows:

!

Wi) tpenny = 64 (F6s) (pepay A Yiese = Tio s

One can think of &, as of a composition &, =§,0(: A —¢ A" % B.

Note that one can define £, as a map &, : V — W, with an obvious inverse
5/\_1 =("1o 5;1. Now the inductive assumption implies that &, is one-to-one.

We need to show that &, : Px(d) — Q,(d) is a bijection. First, observe that
E\(A) € D(\) C W for all A € C()). Similarly, £~3(B) € C(\) C V for all
B € D()\). We use here the inductive assumption and construction of . Now it
remains to show that a,.(A) = §,(B) for all B = £,(A4), 1 —m <r < {—1. Note
that we will prove this for all A€ V, B € W, B = £,(A).

Clearly, a,(A) = a,(A') = B.(B) for all r # c. Indeed, z;; = z;; by con-
struction, and x;] = y;; by induction, for all ¢ —j = r # c. Checking that
ac(A) = B.(B) is a simple but delicate computation. First, observe that

OéC(A' — I'C) - x;c,jc = Z max{xz',l,j s :Ci,jfl} + min{$¢+1,j 5 xi,j+1} - l’i,j
i—j=c,i<i.

+ max{xic_lijc ? xicajc_l} - xicmjc
Yo @iy D Ty — ) Ty
i—j=c—1 i—j=c+1 i—j=c

= O‘C—I(A) + O‘c+1(A) - ac(A),
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where the first equality follows by definition of (, the second equality is obtained
by collection of terms, and (A’ —r.) stands for restriction of A to [u]. Therefore
we obtain:

Be(B) = Be—1(B) + Bet1(B) + Yicrje — Be(B —r.)

= ac—1(A) + acy1(A) — (ac(A" —r) — x;c,jc)

= a.(A).

This completes the proof. O

5. A GENERAL BIJECTION

The inductive proof of TPT given in Section 4 can be extended to a piecewise
linear map & : Pa(d) — Q,(d), which preserves the volume and maps integer
points to integer points. However, it is unclear from the construction that this
bijection is independent of the choice of corners r. in the proof.

1114 0|14 14 2|4
3|4 —|2|3|4| — (1|34 —|1/3]|0

4145 41411 0|1 0|1

1112 112]2 112]2 1124

1)1 ~— |1|1]|0|=~=— |1]1 -~ |1]|1|0

3|01 01 01 01

1112 1112

0|1/0| — 1/0

3/0|1 3/0|1

FIGURE 4 A bijection 5(3’373) = CO [e] Cl [e] C_l O:+++0 CO‘
Theorem 4. The bijection &\ defined as above does not depend on the choice
of corners r. in the construction.
Proof. By induction, we can write &) as follows:

(*) §>\ = C)\,c o é_()\—rc),c’ o C()\—l‘c—rc:),c” o ...

From now on we drop A in () if it is clear what partition is meant.
Clearly, ¢, commutes with (., for all |¢c — /| > 2. In other words, if r = r,
and r' =ry are corners of [A]; [u] = [A\] —r, [¢] = [A] — 1/, then

C,LL,C' o Ck,c = Cp’,c o §>\,c’-
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Thus it suffices to prove that every two products as in (x) can be obtain from each
other by use of these commutations.

Note that the sequence of squares r., ry, ren, ..., defines a standard Young
tableau A of shape A. Consider a graph I'(\) with vertices being standard Young
tableaux of shape A (incidentally, there are n!/ ], h(r) of them by the HLF), and
edges (A4, A"), whenever A’ is obtained from A by exchange of values ¢ and ¢ + 1.

Lemma 3. The graph T'()\) is connected.

Note that the edges of I'(\) correspond to the commutations as above. Indeed,
by definition of a Young tableau, the values ¢ and ¢ + 1 cannot be in the same or
adjacent diagonals. Thus the Lemma implies that any two products as in (x) can
be obtained by a sequence of commutations and thus give the same result. O

13[4
/25 \
1[3]s 1[2]4 TRE
24 35 45
\125/
34

FIGURE 5. Oriented graph I'(3, 2).

Proof of Lemma 3. Let Ag be the standard Young tableau of shape A given by
f(lvl) =1, f(172) =2,... 7f(17)\1) = A1, f(271) =M+1,... 7f(27)\2) = A1+,
f3,1)= A1+ X2+1,... Let us orient all edges of T'(\), so that A — A’ if A and A’
exchange the values of 7 and 7 + 1, and 7 occurs in a row of A’ smaller than that of
A. Observe that Ay is the only vertex with no outgoing edges in I'(X). Therefore,
every A is connected to Ag in I'(\), which proves the result. O

6. THE Two POLYTOPES THEOREM AND RSK

In this section we deduce from Theorem 3 the numerical result of the Robinson-
Schensted-Knuth correspondence.

Let A = (n™) = (n,n,...,n), n times. In this case [\] = [n] x [n], £(A) = m = n.
Letd = (di-n,-.-,do,-..,dn_1) be as above. Suppose

() ai=di—n —di—n_1, b =dn_; —dn_sy1, foralll <i<n.

Then the integer points in Q,(d) correspond to contingency tables (nonnegative
integer n X n matrices with given row and column sums):

n n
S wii=ai, Y yij=bj, yi; >0, forall 1<i,j<n.
=1

=1
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We say that f : [\] = Z is a Young tableau of shape A, if f(i,j) < f(i,5+1)
and f(i,7) < f(i+1,J), whenever both sides are defined. We say that A has weight
a=(ay,...,an), if |{(3,4) € [\]: f(i,j) = k}| = ax, for all 1 <k < n.

Theorem 5. (RSK) Let a = (aj,...,a,) and b = (by,...,b,) be two non-
negative integer arrays such that |a| = |b|. Then the number of contingency tables
with row sums a;, and column sums b;, is equal to the number of pairs of Young
tableauz of the same shape A - n, and weight a and b respectively.

Proof. Letd_;=a1+ --+an_i,di=bi+ - +b,_4,for0<i<n-—1,so
that do = |a| = |b|. Then a, b; satisfy (¢) and the number of contingency tables
is equal to e(Q,(d)).

Now, let A, B be Young tableaux of shape u = (u1,- .., itn) F n with weights a
and b, given by functions f4 and fg, respectively. Let X = (x; ;) be the reverse
plane partition of shape A, defined by

Kk fate =+ 1,k) <}
i = ‘{k:fB(n—i-{—l,k)SJ'}

, ifi <y
,ifi> .

1]11]1]2]2]3]
T2 21223
2146 3
257 1/1/2/2/2/3|3

21233

3

FIGURE 6. A reverse plane partition X of shape (3,3,3) and a cor-
responding pair of Young tableaux of shape (7,4,1) with weights a =
(4,5,3) and b = (2,5, 5).

Note that
zig=|{k: faln —i+1,k) <} = |[{k: fo(n —i+1,k) <i}| = pn—it1-

Also, (z;;) € C(X), since all the inequalities follow from the definition of Young
tableaux. Finally, by definition of the weight, we have

OL_i(X) =a+...+an_; =d_;, and Bz(X) =bi+...4+b,—; =d;, for 0 <i<n-—1.
Therefore, pairs of Young tableaux of the same shape pu+ n and weight a and b,

are in bijection with reverse plane partitions X = (z;;) € Px(d) of shape . This
completes the proof. O
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Denote by 6 the correspondence between reverse plane partitions X and pairs
of Young tableaux as in the proof above. Let n = 0 - £ be the bijection between
contingency tables Y = (y; ;) and pairs of Young tableaux of the same shape (as
in Theorem 5.) By Y7 denote the transpose matrix Y7 = (y;;), where y; = y;,,
1<i,j<n.

Corollary 2. If n(Y) = (4, B), then n(YT) = (B, A).
Proof. By construction, if #(X) = (4, B), then §(YT) = (B, A). It remains to

check that £(YT) = (¢ (Y))T. But this follows immediately from Theorem 4 since
the transposition simply changes the order of the corners in the definition of £,. O

7. MONOTONE PATHS

We say that the squares (i £1,7) and (i,j + 1) are adjacent to (i,7) in Z2
A monotone path « in [A], denoted by v ~~ [A], is a sequence of adjacent squares
r=<r <r" < ..., where r,r/,--- € [A\]. Let g : [\] & Ry be any nonnegative
function on [A], which defines a tableau B = (y; ;), where y; ; = g(i, j) for all (¢, j) €
[\]. Define the height of a path v to be the sum wg(y) = g(r)+g(r') +g(x")+....

Theorem 6. Let &, : Py(d) — Q,(d) be the map defined as above. Fiz a
square vo = (ic,jc), where 1 —m < c¢<Ll—1;[v.] ={(5,j) : i <ic,j < jc}. Then
for every A = (z;;), B = (yi;), B=£&\(A), we have

xi, ;. = max_ wp(7y).
Y~ vel

1114 1] 1 2
2|34l =<—>|l0]|1 0
4[4] 5 3/0/1

FIGURE 7. An example of bijection {333 : A — B (cf. Figure 4.) The
value of A at r; = (3,2) is equal to the sum along the monotone path
from (1,1) to (3,2) with maximum height: 4 =1+0+ 3 +0.

Proof. Use induction. When n = 1 the result is trivial. Suppose it holds for
[1] = [A\] — r¢, where r, is the corner of [A]. By definition of ¢ , we have:

max_ wg(y) = max{ max wg(y), max wB(’y)} + Yi.j.
rlve] F~[ve—1] Y {vet1]

= max{xic—l,jc ) ﬂfic,jc—l} + (»’Cic,jc - max{xic—l,jc ) ﬂfic,jc—l})

= Tic,je

Since the off-diagonal values of () . remain unchanged, this implies the result. [
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8. HISTORICAL REMARKS AND QUICK GUIDE THROUGH THE LITERATURE

As we mentioned in the introduction, the hook length formula first appeared
in [FRT], after it was independently discovered by the authors of that paper (see
[Sa]). Various combinatorial proofs were later obtained in [FZ,GNW,Kr,NPS]. We
will not review these proofs here, but rather refer the reader to the textbooks
[JK,K2,M,Sa,S3] for these and other proofs, and further references.

The hook content formula was discovered by Stanley in [S2]. Note that what
we call HCF is really a special case of a more general result in [S2], when the size
of the entries f(i,J) in a reverse plane partition is bounded. Lemma 1 is a very
special case, for a poset ([A], <), of another general result of Stanley [S1]. Our
presentation is elementary and probably well known, although we could not find a
precise reference.

The idea to prove HLF via HCF goes back to [S1], and was utilized by Hill-
man and Grassl in the pioneering work [HG]. The similarity between the Hillman-
Grassl bijection and the Robinson-Schensted-Knuth correspondence was observed
by Gansner in [G1,G2], who proved versions of Theorem 3 and Lemma 2, although
by a different technique.

The proof of TPT that we present here was inspired by [PP]. The continuous
version first appeared there as well. Let us emphasize here that d can be any
nonnegative real array. The construction of a map (., remarkably similar to (.,
but for diagonals with no corners, was discovered independently in [BK]. There, the
authors also pursued “continuous combinatorics”, and obtained the Schiitzenberger
involution as a certain product [].(.. In a different direction, we believe that
our proof of TPT is equivalent to a special case of the general approach in [F].
Unfortunately, the translation is quite cumbersome and requires some extra work.

Let us note that Corollary 1 in a special case gives an interpretation of the
Ehrhart polynomial of the Birkhoff polytope [P1], long studied by combinatorialists
(see e.g. [S3]). Lemma 3 is well known. Exactly this version appeared in [P2]. An
advanced generalization, in the language of Bruhat orders, is given in [BW].

Theorem 5 is due to Knuth [K1], who proved it by a bijection, now known as
Robinson-Schensted-Knuth correspondence (see [K2,R,Sa,33]). It is known [PP)]
that our bijection £, in this special case coincides with RSK (after translation as
in the proof). The proof requires the understanding of the classical formulation of
the RSK correspondence and goes beyond this paper.

Corollary 2 is a famous symmetry property of RSK [K1], long studied in this con-
text. The result is quite nontrivial when dealing with the original correspondence,
and rather immediate from our approach?.

The ‘monotone path’ property of &£, given by Theorem 6, is well known for the
RSK correspondence (see [Sa]). The concept of monotone paths generalizes longest
increasing subsequences, which were the motivation in [Sc]. One can also extend
Greene’s Theorem [Gr] in this case.

To conclude, let us speculate about possible extensions of the HLF. Versions of
the map () exist for all differential posets and even dual graded graphs [F,S3]. The

1'We believe that our construction of ¢, has a certain advantage when compared to the original
construction of the RSK correspondence (we have A = (n™) in this case.) It seems that with a
small exception of the dual RSK (which does not seem to have a “continuous” generalization), all
properties of the RSK correspondence are easier to prove in our setting.
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proof of Lemma 1 generalizes to all posets with no difficulty. It is Lemma 2 that is
specific for the Young lattice, and is a key to possible generalizations.
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