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A DERIVATION OF KOHNERT’S ALGORITHM FROM MONK’S
RULE

RUDOLF WINKEL

Abstract. Kohnert’s algorithm for the generation of Schubert polynomials is derived
from Monk’s rule for the multiplication of Schubert polynomials.

1. Introduction

The theory of Schubert polynomials is a beautiful blend of geometric, algebraic and
combinatorial ideas: on one hand Schubert polynomials faithfully represent the co-
homology calculus of Schubert varieties of flag manifolds; on the other hand Schu-
bert polynomials are a generalization of the classical Schur polynomials and can be
studied in a purely algebraic and combinatorial setting. The primary references for
Schubert calculus and Schubert polynomials are the papers of Borel [Bo], Bernstein,
Gelfand, and Gelfand [BGG], Demazure [D1,D2] and Lascoux and Schützenberger [LS]
(see also [L]). Introductory and comprehensive accounts of both the “classical” theory
and newer research are [F,FP] (for the algebraic-geometrical side) and [M1,M2,W3] (for
the algebraic-combinatorial side).

The purpose of the present paper is to give a short and natural proof of a combina-
torial rule for the generation of Schubert polynomials which was conjectured first by
Kohnert in his Ph. D. dissertation [K] and subsequently proven in [W1]. The proof in
[W1] has two advantages:

• It is the first and only one so far.
• It incorporates as an intermediary step the proof of two other (more complicated)

rules for the generation of Schubert polynomials, namely the rules given by Ber-
geron [B] and Magyar [Ma].

The proof in [W1] has also two disadvantages:

• It is the first and only one so far — and first proofs are rarely the most simple
and elegant ones.

• It incorporates as an intermediary step the proof of two other (more complicated)
rules for the generation of Schubert polynomials, namely the rules given by
Bergeron [B] and Magyar [Ma] — and (as we will make more precise below)
these two rules do not provide a natural context for the proof of Kohnert’s
algorithm thus severely complicating matters.
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Subsequently in this introduction we collect the basic necessary information about
Schubert polynomials, describe Kohnert’s algorithm and introduce some useful nota-
tion. In Section 2 the proof is outlined and illustrated in two simple special cases,
whereas Section 3 deals with the general case.

To every permutation π on numbers 1, . . . , n contained in the symmetric group Sn

one can associate a multivariate polynomial with non-negative integer coefficients Xπ ∈
Z[x1, . . . , xn] as follows: Let ωn := n (n− 1) . . . 1 ∈ Sn be the permutation of maximal
length, i.e., with the maximum number of inversions. Every other permutation π ∈ Sn

can then be reached from ωn by going down in (right) weak Bruhat order where π′ covers
π in weak Bruhat order, if π′ = π ◦ σk with σk the elementary transposition (k, k + 1)
and π(k) < π(k + 1). In other words: π results from π′ by removing the inversion of
numbers on adjacent places k and k + 1. If for all such pairs π, π′ with π′ = π ◦ σk

one defines recursively Xπ := ∂kXπ′ where ∂k is the divided difference operator acting
on the variables xk and xk+1 and if one starts at Xωn := xn−1

1 xn−2
n . . . xn−1 then this

leads to well defined polynomials Xπ for all π ∈ Sn, the Schubert polynomials. It is
interesting to note that this (classical) approach to Schubert polynomials by divided
difference operators reflects the relative geometric positions of Schubert varieties in a
flag manifold where one variety lies on the boundary of another.

Alternatively, one can compute the Schubert polynomials without divided differences
by going down from ωn in (right strong) Bruhat order where π′ covers π in Bruhat
order, if π′ = π ◦ (k, j) and j ∈ J>k(π) for any fixed k with J>k(π) :=

(1) {j | k < j, π(k) < π(j), and |{ν | k < ν < j, π(k) < π(ν) < π(j)}| = 0 } .

Then for every π 6= ωn in Sn and k := π−1(1) one has

(2) Xπ =
1

xk

 ∑
j∈J>k(π)

Xπ◦(k,j)

 ,

i.e., if k is chosen such that π(k) = 1 then xkXπ equals the sum of Xπ′ where π′ runs
through certain π′ covering π in Bruhat order. This formula has been noted first in
[W2, Sec. 6] as a simple consequence of Monk’s rule [Mo] for the multiplication of an
arbitrary Schubert polynomial by any of the polynomials Xσk

= x1 + · · ·+xk. Since (2)
is essential for our new proof of Kohnert’s algorithm we explain this point a bit more
thoroughly: Monk’s rule is

Xσk
Xπ =

∑
(i,j)∈J(k,π)

Xπ◦(i,j)

where J(k, π) :=

{(i, j) | i ≤ k < j, π(i) < π(j), and |{ν | i < ν < j, π(i) < π(ν) < π(j)}| = 0 } .

(Concise and simple proofs of Monk’s rule can be found in each of [M1,M2,W2,W3].)
From this formula one easily derives that the product xkXπ is of the form “sum on
the r.h.s. of (2) minus a similar sum”; but the subtracted sum is zero, if for example
k = π−1(1) (see [W2] or [W3] for details).
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Note that formula (2) relates the calculation of Schubert polynomials directly to their
multiplicative properties, respectively, the intersection calculus of Schubert varieties.

It is time now to describe the diagram rule for the generation of Schubert polynomials
previously conjectured by Kohnert [K].

A (box) diagram is a finite collection of unit squares or boxes with vertices in the
integer lattice Z × Z; the diagram D(π) of a permutation π ∈ Sn is the diagram that
originates from the set of boxes {[i, j] | 1 ≤ i, j ≤ n} by cancellation of the ‘hooks’

{[π(j), j′] | j′ ≥ j} ∪ {[i′, j] | i′ ≥ π(j)}
for j = 1, . . . , n. For example, if π = 263154 ∈ S6, then D(π) =

·

·

·
·

·
·

1
2
3
4
5
6

1 2 3 4 5 6

where we have added hooks in the positions (π(j), j), row numbers i = 1, . . . , 6 at
the left and column numbers j = 1, . . . , 6 at the bottom of the diagram. Kohnert’s
algorithm says that all monomials occurring in a Schubert polynomial Xπ can be found
by looking at the set K(D(π)) of box diagrams derivable from D(π) by (repeated)
application of K-moves:

Definition 1. (K-moves) Let [i, j] ∈ D with {(i′, j) | i′ > i} ∩ D = ∅, i.e., there is
no box above [i, j] in D, and assume that

MD(i, j) := {(i, j′) | j′ < j, [i, j′] /∈ D} 6= ∅ .

Then [i, j] is allowed to move to the position in MD(i, j) with the greatest column number
j′, i.e., the closest empty position left to [i, j] in row i of D. A K-move of the box [i, j]
will be called free, if (i, j − 1) ∈ MD(i, j), and a tunnelling move (through the boxes
[i, j − 1], [i, j − 2], · · · ∈ D) otherwise.

For any diagram D let D[j,j′], D[i,i′] and D
[j,j′]
[i,i′] denote the sub diagrams (“minors”) of

D that contain only the boxes in the intervals of columns [j, j′], rows [i, i′] and in both
columns [j, j′] and rows [i, i′], respectively. A special case of this notation can be used

to associate a monomial to a diagram D by xD := xβ1

1 xβ2

2 . . . where βj := |D[j]| and
D[j] := D[j,j]. The purpose of the present paper is to give a simple and natural proof of

Theorem 2. For any natural number n ∈ N and permutation π ∈ Sn let K := K(D(π))
be the set of diagrams derivable from D(π) by repeated application of K-moves. Then

Xπ =
∑
D∈K

xD .

Example 3. For the permutation π = 31542 one computes algebraically Xπ = x2
1x

2
3x4+

x2
1x2x3x4 + x3

1x3x4 + x2
1x

2
2x4 + x2

1x2x
2
3 + x3

1x2x4 + x2
1x

2
2x3 + x3

1x2x3. And indeed, the set
K for this permutation contains all elements of the following poset:
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where D(π) is the top element and all K-derived diagrams are ordered such that D′

covers D, if D originates from D′ by an irreducible (or minimal) K-move. We have used
straight lines for the free K-moves and a dotted line for the tunnelling move. More
information about these posets can be found in [W1] where they form an integral part
of the proof. Here we have exhibited the partial order only as a means to make the
process of successive generation of diagrams more transparent. Note that the two boxes
in the first column of D(π) never move; such boxes are called inertial. (Why certain
boxes are marked with an ‘r’ will become apparent later in Section 3.) �

A “natural” proof of Kohnert’s algorithm is one that “explains” the definition of
K-moves and in particular the occurrence of tunnelling moves. Since Schur polynomials
are special Schubert polynomials, the definition of K-moves must include moves which
guarantee the realization of all monomials of Schur polynomials by box diagrams. But
as already observed and proven by Kohnert in [K] the free K-moves are in fact in natural
correspondence to the columnstrict numbering of semistandard Young tableaux which
are used in the well known combinatorial definition of Schur polynomials (see also
[W1, Section 4]). On the other hand free K-moves alone are obviously not sufficient
to generate the monomials of general Schubert polynomials. Therefore Bergeron has
included in his rule certain “backward” moves, i.e., moves of boxes from the left to the
right; these backward moves were used to model in a combinatorial fashion the divided
differences used in the classical approach to Schubert polynomials. Similarly Magyar’s
rule, which is a simplification of Bergeron’s rule, has the divided difference approach as
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its starting point (cf. [W1, Section5]). Whereas the proof of these rules in [W1] with
the help of the poset structure on the sets K(D(π)) and a suitable recursion argument is
relatively transparent and easy, the subsequent derivation of Kohnert’s rule is done by
an exhaustive study of cases which establishes correctness without leading to a deeper
understanding.

In the next section we will see that the generation of Schubert polynomials via formula
(2) (without divided differences) makes the use of tunnelling moves virtually inevitable
thereby suggesting the possibility of finding analogs of Kohnert’s rule in more general
settings: since the symmetric groups are Coxeter (and Weyl) groups of type A, one
could use the generalization of Monk’s (or ”Pieri’s”) rule as the starting point for such
an investigation.

2. Outline of the proof and two special examples

The proof proceeds by induction over n and k. It is not hard to verify Theorem
2 for n = 1, 2 and 3 and as induction hypothesis we assume that it is true for all
permutations π ∈ Sn−1. Setting

(3) Sn,k := {π ∈ Sn | π(k) = 1}

one can define a bijection between Sn−1 and Sn,n with the help of the mapping

(4) π 7→ 1+(π) 1 := (π(1) + 1) . . . (π(n− 1) + 1) 1 .

But because the diagram D(1+(π) 1)[2,n] has the same shape as D(π) and the n − 1
boxes in the row D(1+(π) 1)[1] are inertial, the formula

(5) X1+(π) 1 = x1 · · · · · xn−1 Xπ

from [W2, Prop. 3.3] (or [W3, Prop. 4.3.3]) shows that Theorem 2 is valid also for all
π ∈ Sn,n.

Subsequently we will assume that π is contained in some Sn,k with 1 ≤ k < n and
that the assertion of Theorem 2 is true for all π′ ∈ Sn,n, . . . , Sn,k+1. Moreover, let

(6) J>k(π) = {k0, k1, . . . , kq} with k + 1 = k0 < k1 < · · · < kq ≤ n

and for ν = 0, . . . , q set πν := π ◦ (k, kν), Bν := D(πν), Kν := K(Bν) and iν := π(kν).
Recall also that K := K(D(π)).

In view of formula (2) the following steps will constitute a proof of Theorem 2:

(1) There is a bijection between the sets Kν and certain subsets Hν of K that is
faithful with respect to columns. By this we mean that the image D ∈ Hν K
of some diagram B ∈ Kν has the same number of boxes in every column as B
except for column k where |D[k]| = |B[k] − 1|.

(2) Hν ∩Hν′ = ∅, if ν 6= ν ′.
(3) K ⊂

⋃q
ν=0 Hν .
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Since K ⊃
⋃q

ν=0 Hν by 1, points 2 and 3 show that K =
⊎q

ν=0 Hν ; and since the
bijections of step 1 are faithful w.r.t. columns, one gets the desired conclusion by
induction:

Xπ
(2)
=

1

xk

q∑
ν=0

Xπν =
1

xk

q∑
ν=0

∑
B∈Kν

xB =

q∑
ν=0

∑
D∈Hν

xD =
∑
D∈K

xD .

To carry out the above steps we compare first of all the diagrams of π and any of the
πν :

D(π) = ·

·s s s

t
t

1

iν

k kν

Bν := D(πν) = ·

·

s s s
t
t

1

iν

k kν

The diagrams of D(π) and Bν are identical outside of the array of boxes formed by
the intersection of rows 1, . . . , iν with columns k, . . . , kν where the dashed rectangle is
completely filled with boxes except for possibly empty rows on levels π(1), . . . , π(k−1).
(These levels are of course also empty in the columns containing the t-boxes for both
D(π) and Bν .) Note the additional box [1, k] ∈ Bν corresponds to the fact that πν

covers π in Bruhat order thereby having exactly one more inversion than π.
The diagram in K that corresponds faithfully w.r.t. columns and “naturally”, i.e.,

with a minimal number of differences to Bν , is the diagram Dν that results from D(π)
by “swapping” the boxes (marked with a ‘t’) in column kν to column k. By the recur-
siveness inherent in our induction this “swapping” is therefore a necessary supplement
of the free moves. In fact, it is a sequence of valid tunnelling moves in the sense of
Definition 1, because column kν is empty above level iν and because of the structure of
the dashed rectangle.

Dν = ·

·s s s

t
t

1

iν

k kν

In Example 3 we have introduced already the notion of inertial boxes. They were
defined as the boxes in D(π) that can never K-move. Equivalently, they could be defined
as the boxes that are not in the upper right area included by any of the hooks that
were removed for the generation of the diagram D(π). Clearly, the inertial boxes form
a ”partition” (with respect to columns or rows) in the lower left corner of D(π) since
there are no empty positions available. All other boxes can move (column wise from left
to right) at least one position to the left. Below we will use the notion of inertial boxes
in a slightly more general form, namely, a box is called inertial in an arbitrary diagram
D, if it can not K-move relative to this diagram, and movable otherwise. Therefore the
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set of inertial boxes increases monotonically with every K-move executed on a diagram
until all boxes are inertial (compare again the poset of Example 3). Furthermore, every
rectangle of positions in D formed by the origin as lower left and an inertial box as
upper right corner contains only inertial boxes (or empty positions).

Observe now that the s-boxes of Bν above, i.e., the boxes marked with an ‘s’, are
inertial (in Bν) so that all diagrams of Kν = K(Bν) can be derived “as if the s-boxes
were not there”. Since we want to represent Kν faithfully w.r.t. columns by a set
Hν ⊂ K the following definition is natural:

Definition 4. For π, πν and Dν as above let S(Dν) := {[iν , k0], [iν , k0 +1], . . . , [iν , kν −
1]} denote the set of s-boxes of Dν. Let KS(Dν) denote the set of all diagrams in K(Dν)
which can be derived without moving any s-box S(Dν). Then Dν is called s-independent,
if

KS(Dν) = K(Dν \ S(Dν)) ∪ S(Dν) ,

where the union with the set S(Dν) is of course taken for every diagram in K(Dν \
S(Dν)). Dν is called s-dependent, if it is not s-independent.

Note that (Dν) is s-independent iff all boxes below S(Dν) in Dν are inertial.
Moreover, we remark that similarly to the notation S(Dν) of Definition 4 one defines

the sets of s-boxes S(Bν) := {[1, k0], . . . , [1, kν − 1]} and the sets of t-boxes T (Bν) :=
(Bν)

[k] \ {[1, k]}, T (Dν) := T (Bν), Tν(D(π)) := D(π)[kν ].

Lemma 5. For every π ∈ Sn,k with k < n and J>k(π) as in (6) the diagrams D0 and
Dq are s-independent.

Proof. For D0 this is trivial, because S(D0) = ∅. For Dq one observes that (Dq)
[k0,n]
[1,iq−1]

and (Dq)
[kq ,n]

[iq ,iq ] are empty so that no boxes in Dq \ S(Dq) can be obstructed in their

movability by the boxes in S(Dq). (Compare D3 in Examples 6 and 11.) �

If for some π all diagrams Dν are s-independent then it is easy to carry out the steps
1, 2 and 3 of the proof:

Example 6. Let π = 15432 ∈ S5. Then D(π) = and

D0 = t
t
t

, D1 = t
t

s

, D2 = t
s s

, D3 = s s s .

Clearly, all Dν are s-independent, because the boxes below the sets S(Dν) are inertial.
Hence the faithful w.r.t. columns bijection of step 1 is simply given by setting Hν :=
K(Dν \ S(Dν)) ∪ S(Dν) (remember the removal of [1, k]).

For any finite permutation π the number of boxes in S(Dν) is kν−k−1 by definition.
For any diagram D ∈ K(D(15432)) in our example (or more generally any D contained
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in a s-independent Dν) set

µ(D) := max {ν | S(Dν) ⊂ D} .

Since for all ν the s-boxes of Dν are fixed for the D ∈ Hν and since all boxes in rows
below level iν are inertial, one has D ∈ Hν ⇔ µ(D) = ν. This shows both step 2 and
step 3. �

The case that for given π all Dν are s-independent is of course a rare one. To get a
first idea about how to deal with a Dν that is s-dependent, we close this section with
another simple example.

Example 7. Let π = 21543 ∈ S5. Then D(π) = and (omitting the empty
second row)

D0 =
t
t

, D1 =
rt
s

, D2 =
s s

.

By Lemma 5 (or direct inspection) one sees that D0 and D2 are s-independent. But
D1 is s-dependent. If one K-moves the boxes of D1 as if the s-box were not there, one
would get

s s s

.

But then the second move would not be a valid K-move. The way out is to fix the
r-box of D1 (marked with an ‘r’) instead of the s-box. Then the above diagrams are
faithfully w.r.t. columns represented by:

r r r

.

It is very important to note that simply fixing the r-box in D1 allows for more K-
derived diagrams than just the two depicted above, namely:

r r r

.

But these three diagrams are already contained in KS(D0) = K(D0)! The key to
distinguish between the “right” three the “wrong” three diagrams which fix the r-box is
to maintain the order of the two moving boxes “as if they were on the same level”. The
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sub diagrams , , etc. where the boxes are in ascending order or form an

ascending step are the “right” one’s in KS(D1). The subdiagrams , , etc. (the

latter being in descending order or forming a descending step) are the “wrong” one’s.
It is clear by the forgoing discussion that H2 contains all diagrams derivable from D2

with the two s-boxes fixed, that H1 contains the diagrams derivable from D1 with the
r-box fixed and the two movable boxes maintaining ascending order, that D0 contains
all remaining diagrams of K and that the Hν thus defined form a partition of K. (For
a similar situation examine again the poset of Example 3.) �

3. The general case

Since the discussion of Example 6 (and in particular the equivalence D ∈ Hν ⇔
µ(D) = ν) applies to all s-independent diagrams Dν , the work in the general case has
to focus on the s-dependent Dν . Example 7 pointed out how to proceed: In case of an
s-dependent diagram Dν one must choose r-boxes as substitutes for the s-boxes. They
must be below the s-boxes in the same columns (because of faithfulness w.r.t. columns)
and the must guarantee optimal movability of the other boxes (“as if they were not
there”) without being inertial themselves (because the original s-boxes in Bν are not
inertial, too). These requirements solicit the following definition:

Definition 8. Let the permutation π be element of some Sn,k with k < n and with
J>k(π) as in (6). For any diagram Dν the set of r-boxes R(Dν) ⊂ (Dν)

[k0,kν−1] contains
the unique box in every column in question that is directly above the highest inertial box.

Lemma 9. Let π, J>k(π) and the sets R(Dν) be given as in Definition 8 above. Then:
a) No r-box is above an s-box.
b) If a diagram Dν is s-independent, then the r-boxes of Dν are identical to the s-boxes:
R(Dν) = S(Dν). Otherwise the r-boxes are strictly below the s-boxes.
c) All r-boxes of an s-dependent Dν are in the same row.
d) If not all Dν are s-dependent, then

(7) ρ := max {ν | Dν is s-dependent }
exists and D0, Dρ+1, . . . , Dq are s-independent, whereas D1, . . . , Dρ are s-dependent.
Moreover, the r-boxes of the s-dependent Dν are all on level iρ.

Proof. a) follows from the definition of r-boxes, the fact that the s-boxes S(Dν) ⊂
(Dν)

[k0,kν−1] are never inertial and that inertial boxes can not be above movable boxes.
b) After Definition 4 we remarked that Dν is s-independent iff all boxes below S(Dν)

in Dν are inertial. Hence b) is a consequence of a).
c) Suppose that [i, j] ∈ R(Dν) has minimal column index j and that [i′, j′] is a

different box in R(Dν), which means j < j′. Then by Definition 8 the next box [i′′, j′]

below [i′, j′] is inertial and consequently every box in (Dν)
[1,j′]
[1,i′′] is inertial, whence i ≥ i′.

It remains to show that i > i′ is excluded, too. But since [i′, j′] is movable, there
must be an empty position (i′, j′′) in Dν with j′′ < j′. In fact, even j′′ < j because
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k < j < j′ < kν and all rows below S(Dν) are either completely filled with boxes or
completely empty. If now the position (i′, j′′) with j′′ < j is empty in Dν , then the
assumption i > i′ forces an empty position (i − 1, j′′) in Dν and [i − 1, j] would be
movable instead of being inertial. Hence all r-boxes are in the same row.

d) Assume that Dν is s-independent for some ν > 0. Then the boxes below S(Dν)
in the interval of columns [k0, kν−1] are inertial in Dν . In particular the boxes below
[iν+1, k0], . . . , [iν+1, kν−1] are inertial Dν . Comparison of Dν and Dν+1 then shows that
consequently the boxes below [iν+1, k0], . . . , [iν+1, kν ] are inertial in Dν+1. Hence Dν+1

is s-independent by Definition 4.
This proves the first part of d). That the r-boxes of the s-dependent Dν are all on

level iρ follows by an analogous argument that proceeds from the s-boxes of Dρ+1 to
the r-boxes of Dρ, Dρ−1, . . . , D1 using Definition 8. �

The next problem is to define the sets Hν ⊂ K for the Dν as required by step 1 in
Section 2. For s-independent Dν this is done by setting Hν := K(Dν \S(Dν))∪S(Dν).
But for s-dependent Dν it is not possible to simply substitute the s-boxes by the r-
boxes. The K-derived set fixing the r-boxes would be too big in general. It is necessary
to apply the notions of ascending and descending orders of boxes from Example 7 to
suitable subdiagrams. This is done by generalizing the notion of a row or level by a
“line”:

Definition 10. a) Let π, J>k(π), S(Dν) and R(Dν) as in Definition 8 and ρ as in (7).
Then the lines of an s-independent Dν are identical to the rows of Dν; and the lines of
an s-dependent Dν are identical to the rows of Dν outside of

(8) Dν := (Dν)
[k0,kν−1]
[iρ+1,iν ]

whereas each row i with iρ ≤ i < i0 is continued inside Dν by the next higher non-empty
row of boxes.
b) The lines that have a non-empty intersection with Dν are called proper lines. The
intersection with Dν is called the middle part of the line and the parts left and right of
Dν the left and right part, respectively. The step from the left to the middle part of a
proper line is called an ascending step and the step from the middle part to the right
part of a proper line a descending step. Alternatively, one could say that the two boxes
involved in both kinds of steps are in ascending order respective descending order.
c) The number of boxes contained in the left, middle and right part of the l-th proper
line (counted from bottom to top) of Dν form the first, second and third entry of a vector
χl

ν ∈ N3
0 called the characteristic of that proper line.

Example 11. Let π = 31864752 ∈ S8. Then (without the empty third row)

D(π) = and D0 = t
t
t
t
t

,
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D1 = t
rt

t
s

, D2 = t
s s

, D3 = s s s s s .

Therefore ρ = 1 and the lines of D1 are

D1 =
�
�

PPPPPPr

with the characteristics χ1
1 = (1, 1, 0) and χ2

1 = (1, 1, 1). �

It is useful to think about the lines of an s-dependent Dν as the rows of Bν being
“pushed up” locally by the upward move of the s-boxes of Bν to the position of the r-
boxes of Dν while at the same time removing the s-boxes of Dν . (Note that the removal
of S(Dν) in the process of pushing up guarantees that the lines modify the original rows
only inside Dν and that all lines are disjoint.)

Definition 12. Let π be as in Definition 8. For s-independent Dν set Hν := K(Dν \
S(Dν)) ∪ S(Dν). For s-dependent Dν let Hν be the set of all diagrams in K(Dν) that
fix R(Dν) and which respect lines in the following sense: there are never boxes of the
same line on top of each other (except in a transitory way during tunnelling).

In other words: The boxes in a proper line move as if they were on one level. Since all
D ∈ Hν are derived by K-moves that respect lines, it is possible to extend the notions
of proper lines and characteristics of Definition 10 to all such D:

Definition 13. Let π be as in Definition 8 and Hν as in Definition 12 for any s-
dependent Dν and D ∈ Hν arbitrary. Then the proper lines of some D can be derived
recursively from the proper lines of Dν by a sequence of K-move that respect lines.

Accordingly, the notions of left, middle and right parts, of ascending and descending
steps and of a characteristics from Definition 10 b)-c) apply to the proper lines in D.
Again the middle part is exactly the elevated portion of the proper line and Again the
number of boxes contained in the left, middle and right part of the l-th proper line
(counted from bottom to top) of D form the characteristics χl

ν(D) of D.

Note that χl
ν(D) can be differ from χl

ν in a certain way: the number of boxes in the
left part of a proper line can increase at the cost of the right part through tunnelling
of a box.

We are now prepared to carry out the steps 1 – 3 of the proof of Kohnert’s algorithm
(recall Section 2) also for the s-dependent Dν where 1 ≤ ν ≤ ρ. For step 1 observe that
for every diagram D ∈ Hν there is clearly some counterpart D′ ∈ Kν = K(Bν) that is
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faithful w.r.t. columns, because the K-moves in Hν respect lines. But conversely there
is also for every D′ ∈ Kν a counterpart D ∈ Hν : any K-move Kν can be imitated by a
sequence of one or more K-moves in Hν that respect lines. The ”obstacle” R(Dν) can
be overcome by tunnelling.

For steps 2 and 3 it is sufficient to show that every diagram D ∈ K is contained in
exactly one Hν . If S(Dν) ⊂ D for any ν ∈ {ρ + 1, . . . , q}, then necessarily D ∈ Hν for
exactly that ν. (Also the reversal is true.) If this is not the case, then we have to show
that D ∈ Hν for exactly one ν ∈ {0, 1, . . . , ρ}. The idea how to proceed is as follows:

For all ν with 1 ≤ ν ≤ ρ try to construct proper lines in D in a way that is con-
sistent with the different characteristics χl

ν – we will describe an appropriate algo-
rithm below –. If this is possible, we write D � Hν , and D 2 Hν otherwise. Clearly,
D ∈ Hν =⇒ D � Hν but not necessarily conversely. The desired conclusion ”D ∈ Hν

for exactly one ν” is then implied by the two claims
a) D � Hν =⇒ D /∈ Hν′ ∀ν ′ < ν and
b) D 2 Hν , ∀ν ≥ 1 =⇒ D ∈ H0.
In fact a) and b) together say that the (existing) maximal ν ≤ ρ with D � Hν is the
unique ν for which D ∈ Hν .

Note that for fixed ν ∈ {1, . . . , ρ}
χl

ν(2) = rν := |R(Dν)|, ∀ l ,

i.e., the middle parts of all proper lines in Dν have the same cardinality rν . Recall
further that by tunnelling of boxes χl

ν(1) may increase at the cost of χl
ν(3) and that on

levels iν no D ∈ K has any boxes right to column kν .

Lemma 14. (Non-crossing Condition) Let D ∈ K be a diagram with more than one
proper line. Then no box from the middle part of a proper line can be left to (in the same
row) any box from the left part of the next proper line above. (It is however possible
that a box from the right part of a proper line is left to a box from the middle part of
the next proper line below.)

Proof. A box from the middle part of any proper line can be moved to the left only
after the corresponding boxes from the middle parts of higher proper lines have been
moved to the left. But Definition 12 says that moving boxes from the middle part of a
proper line results in ”pushing” the boxes from its left part father to the left. �

Given any D /∈ Hν for ρ+1 ≤ ν ≤ q we discuss now how to construct proper lines for
given characteristics. Since R(Dρ+1) * D by assumption, there exists (recall Lemma
9 d) ) a k′: k0 ≤ k′ < kρ+1 with {[iρ+1, k0], . . . , [iρ+1, k

′]} ⊂ D but [iq, k
′ + 1] /∈ D.

Hence it is possible that D � Hν for some ν with kν ≤ k′ and we begin by checking the
maximal ν first, than the next smaller ν, etc. .

Assuming that D ∈ Hν (for 1 ≤ ν ≤ ρ) the positions of the boxes R(Dν) ⊂ D
are known and the first proper line can be determined using the characteristic χ1

ν . If
there are less than χ1

ν(3) boxes right to R(Dν) in the first proper line then the missing
boxes must have tunnelled to the left part of the line (and possibly higher boxes must
have tunnelled, too). Observing the non-crossing condition of Lemma 14 and using
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the characteristics χ2
ν , χ

3
ν , . . . it can be checked one line after the other, whether it is

possible to construct all proper lines bottom up in a consistent manner, i.e., whether
D � Hν .

Example 15. Consider the permutation π = 3 6 2 1 8 7 10 5 9 4 ∈ S10 with (relevant
rows only)

D0 = t
t
t

, D1 = t
t

r

s

,

D2 = t r
s

r
s

r
s

, D3 = ss s s s .

D0 and D3 have of course no proper lines whereas D1 has two of them with charac-
teristics χ1

1 = (2, 1, 3), χ2
1 = (2, 1, 1) and D2 has one with characteristic χ1

2 = (2, 3, 1).
Accordingly, r0 = 0, r1 = 1, r2 = 3 and r3 = 5.

Investigation of the following four diagrams

D = ? ? ? , D′ = ? ? ?

D′′ = � ? ? ? , D′′′ = ? ? ?

shows that none of them is an element of H3, but all of them contain boxes in the
positions R(D1) and R(D2) indicated by the question marks. Moreover, it is not hard
to verify that D � H2 and D 2 H1, D′ � H1 (with tunnelling in the second proper
line) and D′ 2 H2, D′′ � H1 and D′′ � H2 whereas D′′′ 2 H1 and D′′′ 2 H2 (watch the
necessity of a ascending step!).

Indeed, D ∈ H2, D′ ∈ H1, D′′ ∈ H2 and D′′′ ∈ H0 in accordance with the claims a)
and b) to be shown next. �

Proof. (of a)) Let D � Hν with ν ≤ ρ maximal. Then all middle parts of the proper
lines may be in their original position (forming a ”rectangle” of boxes with possibly
some empty rows) or may not.

For the first case recall that ν ′ < ν implies kν′ < kν , iν′ > iν and rν′ < rν whence
row iν contains more boxes right to column k than possible for a D ∈ Hν′ .

For the second case Definition 12 shows that moving a box from the middle part of a
proper lines causes the boxes of its left part to move, too, such that the ascending step
from left to middle part is retained. But since iν′ > iν for ν ′ < ν in case of D ∈ Hν′

this would mean an ascending step among the t-boxes of D which is impossible. (For
an illustration examine again D′′ of Example 15 where the crucial ascending step is
marked by a line segment). �
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Proof. (of b)) Assume D 2 Hν , ∀ν ≥ 1. Then for all ν ≥ 1 the number of boxes
right to column k in row iν must be less than rν by the arguments in the proof of a).
Clearly, D0 obeys this condition and at the same time it is the maximal element of the
sub poset H0 of K. In other words: every D ∈ K obeying the mentioned condition
can be derived by a sequence of K-moves from D0 whence D ∈ H0. (For an illustration
examine again D′′′ of Example 15.) �

Acknowledgement. The valuable remarks and hints of the referees helped much to im-
prove the presentation.
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