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ON THE SYMMETRY CLASSES OF THE FIRST COVARIANT
DERIVATIVES OF TENSOR FIELDS

BERND FIEDLER

ABSTRACT. We show that the symmetry classes of torsion-free covariant deriva-
tives VT of r-times covariant tensor fields T' can be characterized by Littlewood-
Richardson products o[1] where o is a representation of the symmetric group S,
which is connected with the symmetry class of T. If o ~ [A] is irreducible then
o[1] has a multiplicity free reduction [A][1] ~ 3, [u] and all primitive idem-
potents belonging to that sum can be calculated from a generating idempotent
e of the symmetry class of T' by means of the irreducible characters or of a dis-
crete Fourier transform of S,.;1. We apply these facts to derivatives V.S, VA of
symmetric or alternating tensor fields. The symmetry classes of the differences
VS —sym(VS) and VA—alt(VA) = VA—dA are characterized by Young frames
(r,1) F r +1 and (2,1"71) F r + 1, respectively. However, while the symmetry
class of VA — alt(VA) can be generated by Young symmetrizers of (2,1771), no
Young symmetrizer of (r,1) generates the symmetry class of V.S — sym(V.S).
Furthermore we show in the case r = 2 that V.S —sym(V.S) and VA — alt(VA)
can be applied in generator formulas of algebraic covariant derivative curvature
tensors. For certain symbolic calculations we used the Mathematica packages
Ricci and PERMS.

1. INTRODUCTION

The present paper continues our investigations of tensors by methods of Alge-
braic Combinatorics in [12, 13, 14]. The starting point are some questions concern-
ing algebraic covariant derivative curvature tensors which arise from [13]. Many
considerations which are necessary for an answer of these questions can be carried
out for arbitrary tensor fields and lead to results about a connection of torsion-
free covariant derivatives of differentiable tensor fields and Littlewood-Richardson
products.

Algebraic curvature tensors are covariant tensors of order 4 which have the same
algebraic properties as the Riemannian curvature tensor.

Definition 1.1. A covariant tensor R of order 4 is called an algebraic curvature
tensor iff its coordinates satisfy the conditions

Rijwt = —Rjimw = —Rijie = Ry
Riju + Riwy + Raje = 0.
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2 B. FIEDLER

A covariant tensor R’ of order 5 is called an algebraic covariant derivative curvature
tensor iff its coordinates fulfil

(1-3) ;jklm - = ;‘iklm - = ;jlkm - ;clijm
(1.4) iikim T Rijm + Rigjgm = 0
(1.5) iiktm T Rijime + Ry = 0.

Relation (1.1) represents the index commutation symmetry of the Riemannian
curvature tensor R whereas relations (1.2) and (1.5) correspond to the first and
second Bianchi identity for the Riemann tensor

Riju + Ripy + Rujr = 0
Rijkl;m + Rijlm;k + Rijmk;l = 0.

Investigations of algebraic curvature tensors were carried out by many authors.
(See the extensive bibliography in the book [17] by P. B. Gilkey.) One of the
problems which are considered in connection with algebraic curvature tensors is
the search for generators of algebraic curvature tensors. In [12, 13, 14] we applied
tools of Algebraic Combinatorics to treat this problem. In particular we used
symmetry operators for tensors, given by elements a of the group ring K[S,| of
a symmetric group S,, Young tableaux ¢, Young symmetrizers y; and symmetry
classes of tensors, defined by right ideals ¢ of K[S,]. Details about these concepts
can be found in Sections 2 and 4 and in [12, 13, 14].

P. B. Gilkey [17, pp.41-44] and B. Fiedler [12] gave different proofs that the
vector space of all algebraic curvature tensors is spanned by each of the following
types of tensors

(1.6) yy(S®S) , (A A)

which are defined by symmetric or alternating covariant tensors S or A of order 2.
The vector space of algebraic covariant derivative curvature tensors is generated
by each of the following tensor types

u(S®s) , y(S®9)
(1.7) uw(U®S) , y(SeU)
yu(U®A) , yi(AxU)

(see! B. Fiedler [13]). Here S, A are again symmetric or alternating tensors of
order 2, S’ is a symmetric tensor of order 3 and U is a covariant tensor of order
3 from an irreducible symmetry class that belongs to the partition (2,1) F 3 and
is defined by a minimal right ideal different from the right ideal f - K|[Ss] with the
generating idempotent

w9 = {paa-am-geb v Ssimr,

LA first proof that 3 (S ® S’) and y: (S’ ® S) are generators for 9’ was given by P. B. Gilkey
17, p.236].
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In (1.6) and (1.7) y; and yy denote the Young symmetrizers of the Young tableaux

13 , [1[3]5]
(1.9) t=td o =y .

The generators (1.7) lead to the question whether there exist typical tensorial
quantities of differential geometry which possess a symmetry of the same type as
the above tensors U. It can be shown (see Section 3) that the differences

(1.10) VS — sym(VS) , VA — alt(VA) = VA — dA

between the covariant derivatives V.S, VA of symmetric/alternating covariant ten-
sor fields S, A of order 2 and their symmetrized /anti-symmetrized covariant deriva-
tives sym(V.9), alt(VA) have such a symmetry?. Furthermore computer calcula-
tions by means of the Mathematica packages Ricci [21] and PERMS [9] showed that
the symmetry class of VA — alt(V A) is generated by certain Young symmetrizers,
for instance by the Young symmetrizer of the standard tableau

]3]
LA

However, the same computation yields the surprising result that no Young sym-
metrizer of a Young frame (21) F 3 generates the symmetry class of V.S —
sym(V.S). One goal of the present paper is to find out whether the covariant
derivatives of symmetric or alternating tensor fields of order r > 2 have such a
behaviour, too.

In Section 2 we collect some basic facts about the connection between symmetry
classes of covariant tensors of order r and left or right ideals of the group ring
K[S,] of the symmetric group S,. In Section 3 we show that the symmetry class
of a torsion-free covariant derivative VT of a differentiable tensor field T" of order
r is defined by a left ideal [ C K[S,;;] which is the representation space of a
Littlewood-Richardson product o[1], where o is a representation of S, connected
with the symmetry class of T. If o ~ [A], A F r, is irreducible then the Littlewood-
Richardson rule yields a multiplicity-free decomposition

(1.11) I~ > Il

pEr+1
ACp

In particular the symmetry classes of the covariant derivatives VS, VA of sym-

metric/alternating tensor fields S, A of order r are characterized by Littlewood-
Richardson products

Pl ~ e 1), [T~ T 2,17

If we know a primitive generating idempotent e € K[S,] of the symmetry class of
T, then all unique primitive idempotents h,, € K[S,1] corresponding to (1.11) can
be calculated from e by means of the symmetrizers of the irreducible characters of
S,41 or, more efficiently, by a discrete Fourier transform.

2Note that alt(VA) is equal to the exterior derivative dA of the alternating tensor field A.
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In Section 4 we investigate the parts [r,1], [2,1"7!] of VS, VA for arbitrary
order » > 2. We show for VS that no Young symmetrizer with a Young frame
(r,1) = 7 + 1 is a generator of the [r,1]-part of V.S. The [2,1""!]-part of VA,
however, is generated by the Young symmetrizer of the lexicographically greatest
standard tableau of (2,1"7!) = r + 1 (see (4.2)) and every other standard tableau
of (2,177') I r + 1 annihilates the [2,17"!]-part. Furthermore that [2,1""|-part
is generated or annihilated by many other Young symmetrizers of non-standard
tableaux of (2,1"7!) - r+1. We present complete computer generated lists of such
Young symmetrizers for r = 2,3,4 in an Appendix.

The last Section of the paper deals with the question whether tensors (1.10)
can be used as generators U of algebraic covariant derivative curvature tensors in
formulas (1.7). Both S and A satisfy the condition that the symmetry classes of the
tensors (1.10) are not generated by the above right ideal f - K[S;] with generating
idempotent (1.8). Thus all tensors (1.10) can play the role of U in (1.7).

2. SYMMETRY CLASSES OF TENSORS

Let K be the field of real or complex numbers R, C. We denote by K|S, the
group ring of a symmetric group S,. Furthermore we consider the K-vector space
7.V of r-times covariant K-valued tensors T over a finite dimensional K-vector
space V. Every group ring element a = Zpes,. a(p)p € K[S,] acts as so-called
symmetry operator on tensors T' € 7.V according to the definition

21)  (@D)(vr,..v) = Y a@) Ty V) G EV

PESy

Equation (2.1) is equivalent to

(2.2) (@l)iy. i, = Z a(p) Loy iy -

PES,

Definition 2.1. Let v C K[S,] be a right ideal of K[S,| for which an a € v and a
T € 7,V exist such that aT # 0. Then the tensor set

(2.3) 7. = {aT|acr, TeTV}

is called the symmetry class of tensors defined by t. If v is a minimal right ideal,
then 7. is called irreducible.

Since K[S,] is semisimple for K = R, C, every right ideal v C KIS,| possesses a
generating idempotent e, i.e. t fulfils v = e - K[S,].

Lemma 2.2. 3 If e is a generating idempotent of t, then a tensor T € T,V belongs
to 7. iff

(2.4) el = T.

3See H. Boerner [1, p.127] or B. Fiedler [11], [8, p.110].
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Thus we have
(2.5) T. = {eT'|T €T V}.

Symmetry classes can be characterized by left ideals of K[S,], too. To see this,
we construct group ring elements from tensors.

Definition 2.3. Every tensor T' € 7,V and every r-tuple b = (vq,...,v,) € V" of
vectors from V' induce a group ring element

(2.6) Ty == Y T(vp), - ) p € K[ST].
PES,

A connection between (2.1) and (2.6) is given by the formula*
(2.7) VI'eT,V,VaeK[S],VbeV" : (al)y, = Tp-a

where the star 'x’ denotes the mapping

(2.8) xia = Za(p)p — at = Za(p)p_l.

pGST PGST

Now, if a tensor T" belongs to a certain symmetry class, then its Tj lie in a certain
left ideal.

Proposition 2.4. ° Let e € K[S,] be an idempotent. Then a T € T,V fulfils the
condition eT =T iff Ty, € [ := K[S,| - €* for allb € V", i.e. all Ty of T lie in the
left ideal | generated by e*. Moreover, if dimV > r then [ is spanned by all group
ring elements T, of tensors T € Ty, ice. | = L{T, | T € T, b € V"} where L
denotes the linear closure.

Thus we can use the left ideal [ = ¢* instead of the right ideal v to characterize
the symmetry class of t.

3. SYMMETRY CLASSES OF THE FIRST COVARIANT DERIVATIVES OF TENSOR
FIELDS

Now we determine results about the symmetry classes of the first covariant
derivatives of tensor fields. In particular, we are interested in symmetric or alter-
nating covariant tensor fields.

We consider only differentiable objects of class C*°. Let M be an m-dimensional
differentiable manifold equipped with a linear connection or covariant derivative V.
We denote by 7, M, r > 0, the set of differentiable covariant tensor fields of order
ron M. If T € T.M, r > 1, then its covariant derivative VT has a coordinate

4See B. Fiedler [11] or [8, p.110].
®See B. Fiedler [8, Sec.II1.3.1] and [5, 6, 10].
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representation®
,

(31) V7;7‘—0—11—;1---7/7' - 87@4—17—;/1---17“ F’L'r_,.lik El---zk—lsklk+l---lr

k=1

where 0 is a partial derivative of the coordinates of T" and I‘fj are the connection
coefficients of V. Instead of (3.1) we write also
T
(32) Tilnir Vel Tilmir yirtl Z inkﬂik ﬂ1'~-ik—15kik+1--~ir :
k=1
Every tensor in a fixed point p of M can be gained as covariant derivative of a
suitable tensor field.

Lemma 3.1. Let M, be the tangent space of M in a point p € M of M and
W e T,.1M,, r > 0, be a covariant tensor of order r + 1 over M,. Then we can

find a covariant tensor field T € T,M such that (VT)|, = W.

Proof. First we consider the case r > 1. In a suitable open neighbourhood U of p
we can choose a chart  such that z(p) = 0. If W;,_, ., are the coordinates of W
with respect to x and z* are the coordinate functions of x then Til,_,ir = Wilmirkxk
yields a differentiable tensor field on U. Further we can consider a function ¢ of
class C* on U for which open neighbourhoods U; and U, of p exist such that
pe U CU CUand¢ly, =1, ¢[pne, = 0. By means of ¢ we obtain a
differentiable tensor field T' € 7, M if we set T'|y := ¢T and T\mw :=0. But T
fulfils (VT)|, = W since we can write

Tiiviion®) = T is ) = Y T80 (0) T ysiinnoin @) = Wiy -
k=1
The last equality follows from T, ; (p) =0 and T;, i, i, (P) = Wi, iviss-
In the case r = 0 the tensor W has order 1 and 7' = W2* is a tensor field of order
0, i.e. a differentiable function. Obviously we can form the tensor field (function)

T € 7yM in the same way as in the case » > 1 and we obtain T); = T); = W, on
the neighbourhood U; of p. U

Lemma 3.1 leads to the consequence that every symmetry class can be generated
by covariant derivatives of suitable tensor fields.

Corollary 3.2. Lett C K[S,41], r > 0, be a right ideal with generating idempotent
e € K[S,+1] for which an a € v and a W € T,1 M, exist such that aW # 0. Then
the symmetry class T, of tensors of order r + 1 over M, fulfils

(3.3) T. = {e(VT)], | T € TM}.

6We use the Einstein summation convention, i.e. a symbol such as T} S . means

B1eenSuen il
s . m s
1 eeeSeen canlye s=1 "1%1...8... ...%p
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Proof. According to (2.5) we have 7, = {eW | W € 7T,.;M,}. But for every
W € 7,41 M, there exists a T' € 7, M such that W = (VT)|,. Thus Corollary 3.2

follows. O
The symmetrization * .y’ and anti-symmetrization ’ [ )" of a tensor field T" of
order r is defined by
1
(34) T(Zl’br) = F Z Ep(l)"'ip(r)
PES,
1 .
(3.5) Ty = ] Z SI80(D) Ty iy
pesr

From now on we consider only covariant derivatives V which are torsion-free, i.e.
F’ﬁ.ﬂ = 0. It is well-known for such V that the operations ()" or ' ;" and the oper-
ator V are permutable. However, this statement is correct for arbitrary symmetry

operators a € K[S,], too.

Lemma 3.3. Let V be torsion-free and a = Y s a(p)p € K[S,], r > 2. If we
consider a T € T,M and set H;, ; = (aT);,. 4. and W; T; with
respect to arbitrary local coordinates, then it holds

(36) Z a<p) M/ip(l)...ip(r> Tpgl = Hil...ir Sl

PES,

Teobpbrgl *— Li1odp 5 ipg

Proof. Let ¢ € M be an arbitrary point of M. We can choose such coordinates
arround ¢ that all T'}; vanish in ¢, i.e. T};(¢) = 0. Then we have Wi, ., (q) =
T; (¢) and H;, 4, i, (q) = Hyy 4, 4y, (q). But since obviously

Za(p)ﬂp(l)...ip(r),iT+1(Q) = Hiy i ip1(q),

PES

1odr, Tpgl

we obtain Lemma 3.3. O

The version of Lemma 3.3 for the symmetry operators ’(.)” and " ;" reads

Lemma 3.4. Let V be torsion-free and r > 2. If we set Sy, 4, = T(,..4,), Aiy.ip =
Tiy.qy) and Wiy iy =T then it holds

(37) W(Z'L..ir)i,url = Sil.“ir;iTJrl

(3.8) Wi = A

Leelp §Op41

7:1-“@'7‘] Trt1 U1l 5 gl

Proposition 3.5. Consider the case r > 2. Let S, := {p € S;41 | p(r+1) = r+1}
be the subgroup of those permutations of S,11 which have r+1 as fized point. Then

1 1 )
(3.9) es = ] E D , €q = 0 E sign(p) p
peS, peS:
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are idempotents of the group ring K|S, 1| which fulfil
(3.10) e, = e , e = €.

a

If V is a torsion-free covariant derivative and S, A are symmetric or alternating
differentiable tensor fields of order r, respectively, then it holds’

(3.11) VS = VS , VA = VA.

Proof. Taking into account Lemma 3.4 and sign(p-q) = sign(p)sign(q), sign(p~') =
sign(p), we can prove Proposition 3.5 by simple calculations. O

Now we will show that the symmetry classes of covariant derivatives of tensor
fields are characterized by Littlewood-Richardson products. Let us denote by w the
reqular representation of the symmetric group S,41:

(3.12) @ : Spp1 — GUK[S,41]) , @pla) =p-a, p€ St1, a € K[S 4]

The left ideals | C K[S,;1] of K[S,,1] can be considered representation spaces of
subrepresentations p = w|; of w:

(3.13) p:S+1—Gll) , pla) =p-a,peS,acl.

We see from a generalization of Proposition 3.5 that investigations of covariant
derivatives of tensor fields can be based on following

Setting 3.6. Let T' € 7, M be a differentiable tensor field of order r on M that
lies everywhere in a symmetry class defined by a left ideal K[S,]- e with generating
idempotent e € K[S,], i.e. e*T' =T on every tangent space M, of M. We identify
S, with S, by means of [i1, ... i — [i1,. .. 0,7 + 1] (where [iy,...,4,] is the
list representation of a permutation) and denote by é € K[S,] the corresponding
embedding of e € KI[S,] into K[S,;1]. If V is a torsion-free covariant derivative
on M then the left ideal [ := K[S,1;] - € defines symmetry classes in the 7,1 M,
that contain VT in every point of M, i.e. e*VT = VT on every tangent space M,,.
Furthermore, we can consider the left ideal [ := K[S,] - € of K[S,]. The left ideals [

and [ are the representation spaces of the representations®
(3.14) [ <= p = |
(3.15) [ = o:= ]S

A simple consequence of Corollary 3.2, Lemma 3.3 and Setting 3.6 is that the
symmetry class of the above VT is generated by the covariant derivatives of the
symmetizations e*W of arbitrary tensor fields W € 7, M.

"Here we assume that the tensor indices are numbered in the manner of (3.2).
8If o is a representation of a group G and H C (G is a subgroup of G, then a | H denotes the
restriction of o to H.
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Proposition 3.7. Assume that Setting 3.6 and r > 1 are valid and p € M. Then
we have

T = {&(VW), |W e M} = {(VeW)|, | W € M} .

Now we determine Littlewood-Richardson products describing covariant deriva-
tives.

Theorem 3.8. Assume that Setting 3.6 and r > 1 are valid. Then the represen-
tation p is a Littlewood-Richardson product
(3.16) p ~ oll].

If o is an irreducible representation o ~ [A], A r, then the Littlewood-Richardson
rule® yields a multiplicity-free decomposition

(3.17) po~ I~ Y [,

pEr+1
ACu

i.e. [A][1] decomposes into a sum of all Young frames [p] which can be formed from
[A] by adding one box to [)].

Proof. When we introduce the notation S; := {id} for the trivial subgroup of S, 1,
then the set product S, = S, - S; is a direct product S, = S, x S;. (It is even a
Young subgroup.) We consider the representations

(3.18) 128 — GUK[S]) , wa(u) =u , ueK[S]

(319) ¢:S, —GIK[S,]-&) , o,(v)=p-v, peS.,veK[S] é.

Obviously we can regard ¢ as an outer tensor product of representations
o = o#¢L.

Thus the left ideal [ = K[S,41]-€ is the representation space of the induced represen-
tation (o0 #¢) T S,41 which has the structure of a Littlewood-Richardson product,
ie.

p o= (CH#) TS ~ oll],

If o is irreducible, i.e. o ~ [A], A F r, then the Littlewood-Richardson rule yields
(3.17) (see also Figure 1). d

Remark 3.9. If we restrict us to irreducible representations o, then the proof of
Theorem 3.8 is a repetition of a part of the proof of the branching theorem for
irreducible representations of symmetric groups (see A. Kerber [19, Vol.240/p.85]).

9See D. E. Littlewood [22, pp.94-96], A. Kerber [19, Vol.240/p.84], G. D. James and A. Kerber
[18, p.93], A. Kerber [20, Sec.5.5], I. G. Macdonald [23, Chap.I,Sec.9], R. Merris [24, p.100], W.
Fulton and J. Harris [16, pp.455-456], S. A. Fulling, R. C. King, B. G. Wybourne and C. J.
Cummins [15]. See also B. Fiedler [8, Sec.IL.5].
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Remark 3.10. If ¢ is a reducible representation and we know a decomposition
o = P, 0; into subrepresentations o; (irreducible or reducible), then we can use
the formula

(3.20) oll] ~ Y aill]
to determine the structure of the decomposition of ¢[1] into irreducible subrepre-
sentations.

Remark 3.11. Additional information about a tensor field considered can lead to
a further reduction of the sum (3.17). For instance it is well-known that the sym-
metry classes of the Riemannian curvature tensor R and its covariant derivative!®
VR are defined by the Young symmetrizers'! y, and yy of the Young tableaux!?

13 . [1]3]5]
(3.21) t =577 =51y :
However, if we apply (3.17) to the tableau ¢ we obtain [22][1] ~ [3,2]+[22, 1] £ [3, 2].

The difference results from the fact that VR fulfils the second Bianchi identity
Rijkl;m + Rijlm;k + Rijmk;l =0
which is not satisfied by other tensor fields from 7, M in general.
A second example which shows such effects is the case of higher covariant deriva-
tives of tensor fields. If we apply Theorem 3.8 to covariant derivatives'® of second

order 15, i, i, 1i,4o Of a tensor field T' € 7. M then Theorem 3.8 yields a result in
which the so-called Ricci identity

'
1
— E Sk T, . . .
(322) El...ir H [ir+1ir+2] - 5 Rir+1ir+2ik El---zk—15k1k+1---lr
k=1

was left out of account. Thus the set of Young frames determined by multiple
application of (3.17) will be "too large”. (3.17) produces a set of Young frames
which is correct also for covariant derivatives Tj, ;. ., .4, of tensor fields T' €
7T.+1M of order r + 1 to which an identity (3.22) is irrelevant.

Now we present a version of Theorem 3.8 for the special case of symmetric or
alternating tensor fields.

Theorem 3.12. Assume that r > 2. Let [y := K[S,11] - €5, [, :== K[S,11] - e, be
the left ideals generated by the idempotents e, e,. Then the subrepresentations
ps == @i, pa := W, are Littlewood-Richardson products ps ~ [r][1], pa ~ [17][1]
for which the Littlewood-Richardson rule yields decompositions

(3.23) )] ~ [r+1]+ 1], 17 ~ [1I7T) (2,177

OHere we assume that V is the Levi-Civita connection of a pseudi-Riemannian fundamental
tensor g € 7o M and R is the curvature tensor of V.

HGee Section 4 for some details about Young symmetrizers.

12G6e S. A. Fulling, R. C. King, B. G. Wybourne and C. J. Cummins [15]. See also B. Fiedler
[7].
I3Again we assume that V is a Levi-Civita connection.
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%

F1GURE 1. The Littlewood-Richardson products [r][1] and [17][1].

The idempotents e, e, have unique decompositions corresponding to (3.23) into
primitive orthogonal idempotents

(3.24) es = fo+ hy , €q = fot ha

which generate the minimal left ideals that are the representation spaces of the
irreducible representations in (3.23):

K] fs = [r+1]

K[S,11] - hs <= [r,1]

K[S 1] - fa <= 1"

K[Sr+1] “hy = [27 17‘71] :
We know all idempotents in (3.24) since

1 1 .
(3.25)  fs = = Z P, fa= = Z sign(p) p.

pESr+1 pes'r'Jrl

Proof. If we apply Theorem 3.8 to the representations
(3.26) 0y : S, — GUK[S,] - es) , (04),(v)=p-v , peS,, veEK[S]-e,
(3.27) 04 : S, — GIK[S,] - €a) , (0a)p(v)=p-v , pES,, veEK[S] e,

then we obtain (3.23) since o5 and o, are irreducible and fulfil o ~ [r], o, ~ [1].
(See Figure 1 for the use of the Littlewood-Richardson rule.)

The relations (3.23) tell us that every of the representations (os#¢) T Syi1,
(0a#t) T Sp41 decomposes into two irreducible representations which have mul-
tiplicities 1. Thus the generating idempotents ey, e, of the representation spaces
possess unique corresponding decompositions (3.24) into primitive othogonal idem-
potents. Since we know that the idempotents for representations [r 4+ 1] and [17!]
are given by (3.25) we can calculate the remaining idempotents h, and h,, too. [

Remark 3.13. In the case of an alternating tensor field A € 7, M the symmetry
operator f, transforms VA into the exterior derivative dA of A, i.e. f¥(VA) =
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fa(VA) = dA. Thus the symmetry operator h, yields the difference of VA and
dA, ie. hi(VA) =VA—-dA.

Now let us consider the more general case of an arbitrary tensor field T' € 7, M
whose symmetry class is defined by a known primitive idempotent e € K[S,]. Also
in this case, there is a simple possibility to calculate all primitive idempotents which
belong to a decomposition (3.17) for the covariant derivatives of T'. A starting point
is the well-known

Lemma 3.14. * Let A\ - r be a partition of 1 > 1 and x» be the irreducible
character of S, which belongs to that equivalence class of irreducible representations
of S, which contains the irreducible representations™ W|k(s, )y defined by Young
symmetrizers vy, with Young frame X. Then the group ring element

(3.28) ex = Xﬁd) > )

PES,

1s the unique centrally primitive idempotent that generates the minimal two-sided
ideal ay := K[S,]-ex from the isotypic decomposition K[S,] = D ., a,, of the group
ring K[S,| into minimal two-sided ideals a,. ay is that minimal two-sided ideal
which contains all left ideals K[S,| - y; generated by Young symmetrizers y, with
Young frame \. The idempotents ey fulfil

(3.29) dex=id 5 excexy =0 if A£N.

AFr
Theorem 3.15. Assume, that the symmetry class of a tensor field T € T, M,
r > 1, is defined by a primitive idempotent e € K[S,| whose representation o
according to Setting 3.6 satisfies o ~ [N, A= r. Then

(3.30) = > hy , h=é-e
pEr+1
ACu

yields the decomposition of € into primitive idempotents h,,, which corresponds to
relation (3.17).

Proof. Because (3.17) is multiplicity-free, a decomposition of é according to (3.17)
into primitive idempotents contains exactly one primitive idempotent h, for every
(1] in (3.17). Every such h, lies in the corresponding two-sided ideal a,,, i.e.
hy € a,. On the other hand, we can write ¢ = é-id = >_, . €€, Since
€-e, € a,, we obtain (3.30). O

If we carry out calculations in large S,, then a use of formula (3.30) leads to
very high costs in calculation time and computer memory. However, fast discrete
Fourier transforms can help to solve this problem.

14866 H. Boerner [1, Sec.II1.3, II1.4] and R. Merris [24, Sec.4], in particular Exercise 41 in [24,
p.117]. See also B. Fiedler [8, Prop.I1.1.47, Prop.I.1.8].

5Here @ denotes the regular representation of S,.
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Definition 3.16. A discrete Fourier transform for S, is an isomorphism

(3.31) D: K[S] — QKH*h

AFr
according to Wedderburn’s theorem which maps the group ring K[S,] onto an
outer direct product @),,, K™*% of full matrix rings K»*%. We denote by D,
the natural projections Dy : K[S,] — K>,

Since the subrings (0,...,0, K> 0,... 0) correspond to the two-sided ideals
ay under a discrete Fourier transform we obtain

Corollary 3.17. If a discrete Fourier transform D is known for K[S,.1], then the
idempotents h,, in (3.30) can be calculated by

(3.32) h, = D(0,...,Du(é),...,0)) .

A use of (3.32) in computer calculations is much more efficient than an appli-
cation of (3.30). A very efficient algorithm of a fast Fourier transform for S, was
developped by M. Clausen and U. Baum (see [2, 3]). It is based on Young’s semi-
normal representation of S,. Our Mathematica package PERMS [9] uses Young’s
natural representation of S, as discrete Fourier transform.

4. Do YOUNG SYMMETRIZERS DESCRIBE THE SYMMETRY CLASSES OF V.S OR
VA?

Now we turn to the question wheter the symmetry classes of V.S and VA can
be characterized by Young symmetrizers. According to Proposition 3.5 and Theo-
rem 3.12 the symmetry classes of V.S and VA are defined by the idempotents

es:fs+hs ) ea:fa+ha-

The idempotents f; and f, are proportional to the Young symmetrizers of the
Young frames (r + 1) =7+ 1 or (1"7) k r + 1, respectively. Now we investigate
the

Problem 4.1. Can we find Young tableaux ¢, t, with frame (r,1) - r + 1 or
(2,11 F r + 1, respectively, such that the idempotents e;, = pis, Y., €1, = fht, Ye.,
are generating idempotents of the minimal left ideals [ := K[S,41] - hs, [ =
K[S,11] - ha? Here y;, and y;, are the Young symmetrizers'® of the Young tableaux

ls, to and py,, g, # 0 are constants.

If the answer is "yes”, then the symmetry classes of V.S or VA are determined
by new idempotents

(41) és = fs+ets , éa = fa+eta>
which are completely built from Young symmetrizers.

6We define a Young symmetrizer 3 of a Young tableau ¢t by the formula y, :=
Zpth quvt sign(q) p - q, where H;, V; are the groups of horizontal or vertical permutations
of t, respectively.
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We investigated this problem by computer calculations by means of the Mathe-
matica package PERMS [9] in the groups 83, Sy, Ss, i.e.in the cases r = 2,3,4. We
obtained the following results:

e No Young symmetrizer idempotent e, of a Young frame (r, 1) - r+1 repro-
duces or annihilates hy € K[S,41], i.e. no relation hy - e, = hg or hy - e; =0
is satisfied.

e For h, € K|S, 1] there are many Young symmetrizer idempotents e; with
Young frame (2,177') F r + 1 which reproduce or annihilate h,, i.e. which
fulfil h, - e, = hgq or h, - ¢, = 0. In particular, the idempotent e; of the
lexicographically greatest standard tableau

1]r+1]

(4.2) t o=

reproduces h, whereas the idempotents e; of all other standard tableaux of
(2,1771) annihilate h,.

For the 83 and r = 2, we also verified these results by calculations by means of the
packages PERMS [9] and Ricci [21] in which we checked the action of idempotents
e; onto tensors with a symmetry given by h, or h,. Mathematica notebooks of all
above calculations can be downloaded from my internet page [4]

http://home.t-online.de/home/Bernd.Fiedler.RoschStr.Leipzig/pnbks.htm

We present tables of all Young tableaux, whose idempotents e; reproduce or anni-
hilate h,, in the Appendix.

Now we present theorems which tell us that essential parts of the above computer
results are valid for all » > 2.

It is well-known that two idempotents e, f € K[S,] generate the same left ideal
iff e- f=ceand f-e= f. In the case of primitive idempotents e, f we have

Lemma 4.2. Ife, f € K[S,| are primitive idempotents, then the equationse-f = e
and f-e= f are equivalent.

Proof. Assume that e - f = e is valid. Then e is an element of the left ideal
[ = K[S,] - f and generates a non-vanishing subideal ' = K[S,] - e of [. Since e and
f are primitive, the left ideals [ and I' are minimal. Thus we obtain [ = ['. But
then, it follows f - e = f because f belongs to the left ideal " generated by e. [

Theorem 4.3. Consider the idempotent h, for an arbitraryr > 2. Then the Young
symmetrizer idempotent e, of the lexicographically greatest standard tableau (4.2)
with Young frame (2,1771) = r+1 reproduces hg, i.e. hy-e; = he. Furthermore the
idempotents e; of all other standard tableaur t with Young frame (2,1"71) Fr +1
annithilate h,, i.e. hy-e; = 0.
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Proof. The groups H; and V, of horizontal/vertical permutations of the Young
tableau t according to (4.2) fulfil H; = ((1, r+1)) and V, = S,. Thus we can write

(43) e = MtZZSIgn(C_qu:,utr‘{ld—i_(l’r—i_l)}ea
PEH: qEV:

It holds'” e, - f, = 0 since e; and f, are proportional to Young symmetrizers of the
different Young frames (2,177') and (1"™'). From this and (4.3) we obtain

e he = e -(ea—fo) = -4 = €.

Because e; and h, are primitive idempotents, Lemma 4.2 yields h, - e; = hy.

It is well-known'®: If y;, and y;, are Young symmetrizers of two standard
tableaux t;, to which possess the same Young frame, and ¢; is lexicographically
smaller'® than t,, then they satisfy w;, - y;, = 0. Because (4.3) is built from the

lexicographically greatest standard tableau ¢ of (2,1771), we obtain
hg-ev = hg-e-ep = 0
for the idempotent ey of every other standard tableau of (2,1771) O

Theorem 4.4. Consider the idempotent hg for an arbitrary r > 2. Then it holds
hs - e; # hs for all Young tableauz t with Young frame (r,1) Fr 4 1.

Proof. A Young tableau t with a Young frame (r,1) - r + 1 has a form

Elx]x].. . [+] ‘
)

(4.4) t =

If we assume that the first column of such a tableau contains the numbers k£ and [
as in (4.4), then the groups of horizontal or vertical permutations of ¢ read

(4.5) He = {peSalpl) =1} = (S)
(4.6) Vi = ((k, 1)

First we consider the case, that the first column of (4.4) does not contain r + 1.

In this case we have
w = (X p)fid- k0

PE(Sr41)1

But because V; C S,, we obtain {id = (k,0)} -es = 0 and y; - e, = 0. Thus
e; = iy, does not lie in the left ideal [ := K[S,,1] - €5 and can not play the role of
a generating idempotent of I, := K|S, 1] - hs. Consequently hy - e; # hs.

17See e.g. H. Boerner [1, p.98] or W. Miiller [25, p.73]. See also B. Fiedler [8, Sec..3.1].

18See A. Kerber [19, Vol.240/p.73] or H. Boerner [1, p.101]. See also B. Fiedler [8, Sec.1.3.1].

19A tableau t, is regarded as greater than a tableau t; (of the same Young frame), if the
simultaneous run through the rows of both tableaux from left to right and from top to bottom
reaches earlier in to a number which is greater than the number on the corresponding place in ¢;.



16 B. FIEDLER

Netxt we investigate the case [ = r + 1. In this case we have H, = S,, V, =
((k, r+1)),

(A7) e = w (Y p) lid= (b, v+ 1)} = porles-{id—(k, r+ 1)},
pESy
which leads to
hs-er = <€s_fs)‘€t = €5 € = €.

We decompose hg and e; into parts that correspond to the right cosets of S,14
relative to S,. Obviously R := {(i,r +1) | i = 1,...,7 4+ 1} is a complete set
of representatives of those right cosets. If we arrange the summands of f, and h
according to the decomposition of S, into cosets we obtain

fo = ﬁz(zp).s

SER peS,

and

r 1
he = b= (Z ») - (r+1) Z<Z p) s,
PES, ji?z PES,

Thus hs has a non-vanishing part in every right coset of S, relative to S,. From
(4.7) we see that e, has non-vanishing parts only in the right cosets S, - (k, r + 1)
and S,. This leads to hs # e and hg - e, = e, # h.

Finally, we consider the case k = r + 1. If ¢ is the tableau (4.4) with k =r + 1,
then t' := (I,7+1)ot is a Young tableau® (4.4) with [ = r+1. A relation ¢’ = pot,
p € S;41, between Young tableaux leads to

Hy=poMop™ , Vu=poVop™ ., yw=p-y-p .
For the above tableaux t' := (I,r 4+ 1) ot we obtain yy = —(I,r + 1) - y, since

Y- (Lr+1)7" = —y.
Now, if we assume hy - e; = hy, then it follows from Lemma 4.2

et hg=e = yp-hs=yp = ey-hg=ey = hg-ep=h,.

However, the last equation is a contradiction to our proof in the case [ = r+1. [

20A Young tableau ¢ of S, can be regarded a one-to-one mapping of the boxes of the Young
frame of ¢ onto the set {1,...,r}. ¢t maps every box onto that number which was placed into
the box. Then the composition p ot of a Young tableau ¢t and a permutation p € S, is a Young
tableau again.
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5. USE OF VS AND VA IN GENERATOR FORMULAS OF ALGEBRAIC COVARIANT
DERIVATIVE CURVATURE TENSORS

Now we return to the question whether tensors (1.10) can be used as generators
U for algebraic covariant derivative curvature tensors in formulas (1.7). In [13] we
proved

Theorem 5.1. Let us denote by S, A € TV symmetric or alternating tensors of
order 2 and by U € T3V covariant tensors of order 3 whose symmetry class T, is
defined by a fired minimal right ideal v from the equivalence class characterized by
(2,1) - 3. We consider the following types T of tensors

(5.1) y(SeU) , y(U®S) ,
yi(AeU) , yUeA) ,
where yy € K[S5] is the Young symmetrizer of the standard tableau

1[3]5]
2[4 '

=

Then for each of the above types T the following assertions are equivalent:

(1) The vector space of algebraic covariant derivative curvature tensors R’ €
T5V is the set of all finite sums of tensors of the type T considered.

(2) The right ideal v is different from the right ideal vy := f - K[S3] with gener-
ating idempotent

52 5= G- -gb v sl

PES3

From Theorem 5.1 we obtain easily

Theorem 5.2. Let V be a torsion-free covariant derivative on the mannifold M
and p € M. Then Statement (1) of Theorem 5.1 holds for the algebraic covariant
derivative curvature tensors R € Tz M, if we take the tensors U from one of the
tensor sets

(5-3) U = h:(VS)|p = V5|p - Sym(VS)|p
or
(5.4) U = hZ(VA)]p = VA|p — alt(VA)]p = VA]p — dA\p

formed from the whole of symmetric or alternating tensor fields S, A € To,M.

Proof. Let us denote by 7, the symmetry class 7. that is defined by a right ideal
t = e - K[S,] with generating idempotent e € K[S,]. Then Proposition 3.7 yields
T, = {(V9)|,|S € .M symmetric}
T.. = {(VA)|,| A€ .M alternating}
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from which we obtain?!

Th, = {hs(VS)|, | S €M sym.} = {VS|, — sym(VS)|, | S € LM sym.}
To. = {ha(VA), | A TM alt) = {VA|, — alt(VA)|, | A€ M alt.} .

Now we have only to check that the idempotents

hs = €s — fs ) ha = €q — fa
do not generate the right ideal ty. We do this by verifying
(55) f ’ hs 7& hfs ) f ’ ha 7é ha .

The fastes way would be a computer calculation by means of PERMS [9]. A cal-
culation by hand has the starting point (3.11), (3.25), (5.2) and z := $(id — (1 3)).
From the rules

e "symmetrization + alternation = 0”
e “alternation + alternation = alternation”

we obtain immediately

yfszo ) ?J'eszo ) Zfs:O
y'fa:y ) Y€ =Y , Z'fa:fa

Furthermore we have the products
z ey = i{[1,2,3] +1[2,1,3] —[2,3,1] — [3,2,1]}
e, = i{[1,2,3]—[2,1,3]+[2,3,1]_[3,2,1]}.
This leads to
Fohe = zoen = {23+ 218 - 231 - [3,2,1])

and
foh fom Yyt tyy
Ngqg = R€— 2 Ja— 7Y €y ~Y-Ja
Y 67
1 1
= Z'ea_fa_6y+6y

= z-€,— fa.
But we see from these results that (5.5) is valid because

e h, is a linear combination of 6 permutations and z-e, has only 4 summands,

®z-e, e, O

2INote that the idempotents e, fs, hs, €as fa, he fulfil el =es, f¥=fo, B = hy, € = eq,
fa = far hg = ha.
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APPENDIX

Using the Mathematica package PERMS [9] for r = 2,3, 4 we found Young sym-
metrizer idempotents e; = p;y; with Young frames (2,177!) F r+1 which reproduce
(ha-e; = hg) or annihilate (h,-e; = 0) the idempotent h, € K|S, 1] of the symmet-
ric group S,41 considered. Here we present complete lists of the Young tableaux ¢
for which the e; possess such a property.

2 tableaux for r = 2 such that h, - ¢, = h,.

{1, 3}, {2, 3}
{2} {1}

2 tableaux for r = 2 such that hy - e; = 0.

{1, 2}, {2, 1}
{3} {3}

6 tableaux for r = 3 such that h, - e¢; = h,.

{1, 4}, {1, 4}, {2, 4}, {2, 4}, {3, 4}, {3, 4}
{2} {3} {1} {3} {1} {23
{3} {2} {3} {1} {23 {1}

12 tableaux for r = 3 such that h, - e, = 0.

{1, 2}, {1, 23, {1, 3}, {1, 3}, {2, 1}, {2, 1}, {2, 3}, {2, 3},
{3} {4} {2} {4} {3} {4} {1} {4}
{4} {3} {4} {2} {4} {3} {4} {1}

{3, 1}, {8, 1}, {8, 2}, {3, 2}
{2} {4} {1} {4}
{4} {2} {4} {1}

24 tableauz for r = 4 such that h, - e, = h,.

{1, 5}, {1, 5}, {1, 5}, {1, 5}, {1, 5}, {1, 5}, {2, 5}, {2, 5},
{2} {2} {3} {3} {4} {4} {1} {1}
{3} {4} {2} {4} {2} {3} {3} {4}
{4} {3} {4} {2} {3} {2} {4} {3}

{2, 5}, {2, 5}, {2, 5}, {2, 5}, {8, 5}, {3, 5}, {3, 5}, {3, 5},
{3} {3} {4} {4} {12} {1} {2} {2}
{1} {4} {1} {3} {23} {4} {1} {4}
{4} {1} {3} {1} {4} {2} {4} {1}

{3, 5}, {3, 5}, {4, 5}, {4, 5}, {4, 5}, {4, 5}, {4, 5}, {4, 5}
{4} {4} {1} {1} {2} {2} {3} {3}
{1} {2} {2} {3} {13} {32} {1} {2}
{2} {1} {3} {2} {32} {13} {2} {1}
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72 tableaux for r = 4 such that hy - e, = 0.
{1, 2}, {1, 2}, {1, 2}, {1, 2},

{3}
{4}
{5}

{1,
{4}
{2}
{5}

{1,
{5}
{2}
{3}

{2,
{1}
{4}
{5}

{2,
{3}
{1}
{5}

{3,
{5}
{2}
{4}

{3,
{1}
{2}
{5}

{4,
{3}
{2}
{5}

{4,
{5}
{1}
{3}

3},

4%,

3},

4%,

1},

4%,

1},

2},

{3}
{5}
{4}

{1,
{4}
{5}
{2}

{1,
{5}
{3}
{2}

{2,
{1}
{5}
{4}

{2,
{3}
{5}
{1}

{3,
{5}
{4}
{2}

{3,
{1}
{5}
{2}

{4,
{3}
{5}
{2}

{4,
{5}
{3}
{1}

3},

4%,

3},

4%,

1},

4%,

1},

2},

{4}
{3}
{5}

{1,
{5}
{2}
{4}

{2,
{3}
{4}
{5}

{2,
{4}
{1}
{5}

{2,
{5}
{1}
{3}

{3,
{1}
{4}
{5}

{3,
{2}
{1}
{5}

{4,
{5}
{2}
{3}

{4,
{1}
{2}
{5}

3},

1},

3},

4%,

2},

4%,

1},

3},

{4}
{5}
{3}

{1,
{5}
{4}
{2}

{2,
{3}
{5}
{4}

{2,
{4}
{5}
{1}

{2,
{5}
{3}
{1}

{3,
{1}
{5}
{4}

{3,
{2}
{5}
{1}

{4,
{5}
{3}
{2}

{4,
{1}
{5}
{2}

3},

1},

3},

4},

2},

4%,

1},

3},

{1,
{5}
{3}
{4}

{1,
{2}
{3}
{5}

{2,
{4}
{3}
{5}

{2,
{5}
{1}
{4}

{3,
{2}
{4}
{5}

{3,
{4}
{1}
{5}

{3,
{5}
{1}
{2}

{4,
{1}
{3}
{5}

{4,
{2}
{1}
{5}

2},

4},

1},

3},

1},

2},

4%,

2},

3},

{1,
{5}
{4}
{3}

{1,
{2}
{5}
{3}

{2,
{4}
{56}
{3}

{2,
{5}
{4}
{1}

{3,
{2}
{5}
{4}

{3,
{4}
{5}
{1}

{3,
{5}
{2}
{1}

{4,
{1}
{5}
{3}

{4,
{2}
{5}
{1}

2},

4},

1},

3}’

1},

2},

4}’

2},

3},

{1,
{2}
{4}
{56}

{1,
{3}
{2}
{56}

{2,
{56}
{3}
{4}

{2,
{1}
{3}
{56}

{3,
{4}
{2}
{5}

{3,
{5}
{1}
{4}

{4,
{2}
{3}
{56}

{4,
{3}
{1}
{5}

{4,
{56}
{1}
{2}

3},

4},

1},

4}’

1},

2},

1}’

2},

3},

{1,
{2}
{56}
{4}

{1,
{3}
{5}
{2}

{2,
{56}
{4}
{3}

{2,
{1}
{56}
{3}

{3,
{4}
{5}
{2}

{3,
{5}
{4}
{1}

{4,
{2}
{56}
{3}

{4,
{3}
{5}
{1}

{4,
{56}
{2}
{1}

3},

4},

1},

4}’

1},

2},

1}’

2},

3}
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