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Introduction

Intuitively, the molecular expansion of a species F' is a classification of its
structures according to their size and symmetries. It can be seen as a refine-
ment of the tilde generating function

F(z) =3 faa" (1)

n>0
of the number f, of unlabelled F-structures of size n.

For example, the tilde generating function A(z) of the species A of (free)
rooted trees, up to size 6, is

Alx) =2+ 2% +22° + 42* 4+ 92° + 202° + - - . (2)

It is refined by the molecular expansion of A given in Section 1.1 (see (6))
where each unlabelled rooted tree is represented by a term (a molecular
species) describing its symmetries. For example, for degree 3, the term X3
represents the rooted chain @ —e—e while X Fy(X) represents the rooted

star .<: )

The goal of the Maple package Devmol is to compute such molecular
expansions, up to a specified degree, for species of the so-called cyclo-set type



(in French: espéces cyclo-ensemblistes). These are species which have either
an explicit or a recursive definition in terms of the species L, of lists, F, of
sets, and C, of oriented cycles. More precisely, since we are dealing with
species of bounded degrees, the specifications will be in terms of the species
L,, F,, and C,,, for n > 0, where the index n denotes the restriction to
degree n. Note that Ly = Ey =1, Cy = 0, L1(X) = E1(X) = C1(X) = X,
Cy = FEy and L,(X) = X".

Moreover, Devmol has the capacity to handle weighted multisort species
with scalar coefficients in the complex field C. The sort variables have to be
declared, except X, Y, Z which are sort variables by default, and the weights
have to be monomials (commutative words) in some indeterminates which
must be declared as weight variables, except ¢ which is a weight variable, by
default. All other unspecified variables or “names” are considered as complex
scalars.

The reader is refered to [9] and [2] for a basic presentation of species
theory and also to [4] where some molecular expansions are computed using
Maple. We review here some of the notions related to molecular species.
Two structures of a species F' are isomorphic if one can be obtained from the
other by a relabelling along a bijection. Unlabelled F-structures can be seen
as isomorphism classes of F-structures. A species M is called molecular if it
has only one isomorphism class. It is completely determined by the stabilizer
H = Stab(s) of one of its structures, say s € M|n|, where n is the degree of
M and [n]| ={1,2,...,n}. We write M(X) = X"/H. In particular, we have

L,=X"/{1}, E,=X"/S,, C,=X"/{p), (3)

where S, denotes the symmetric group on [n] and p generates a cyclic sub-
group of order n of .S,,.

For a general molecular species
M(X)=X"/H,

the cycle index series Zy;(x1,x2,...) coincides with the cycle index polyno-
mial Zy(x1,2s,...) of H < S,,. Molecular species are closed under the basic
operations of product and (partitional) composition of species, correspond-
ing to the operations of product and of wreath product of their stabilizers,
respectively. See [2], Section 4.6, for more details.
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Two F-structures are called similar if they have conjugate stabilizers.
It is equivalent to say that one structure can be relabelled in such a way
that they have exactly the same stabilizer. This corresponds to isomorphic
molecular species. Hence similar (but non-isomorphic) F-structures give rise
to multiplicities in the molecular expansion of F. For example, the three
rooted trees shown in the first row of Figure 1 are not isomorphic but they are
similar since they are of the type X3FE,(X), having only a two-element group
generated by a transposition as stabilizers. This explains the multiplicity 3
in the term 3X3Ey(X). Similarly, the three rooted trees in the second row
are similar since they are asymmetric, giving rise to the term 3X° in the
molecular expansion of the species A of rooted trees.

The molecular expansion of a species F' is defined as the equality (natural
isomorphism)
F= Z fuM, (4)
MeM
where f); is the multiplicity of the molecular species M in F' and M is an
appropriate set of molecular species.

In the following section, we present two examples of molecular expansions:
for rooted trees, and for Husimi graphs weighted by monomials describing
their block-size distributions. In Section 2, we describe briefly the addition
formulas for the basic molecular species X", E,, and C,,, which are essential
for the computation of molecular expansions. In Section 3, we show how
these formulas can be used to compute recursively the molecular expansion
of the species of R-enriched rooted trees, when R itself is of cyclo-set type,
and also of R-enriched trees, using the Dissymmetry Theorem for trees.

The Maple package Devmol was developped by Pierre Auger at LaCIM
for the purpose of computing molecular expansions. We give a detailed de-
scription of the package in Section 4, and conclude with two examples of
applications, in Section 5, to rooted trees weighted by a leaf counter and to
connected graphs, all of whose blocks are in a given family B of species of
cyclo-set, type.



1 Some examples of molecular expansions

The Devmol package is well adapted to compute the molecular expansion of
tree-like species. Two examples are given in this section: rooted trees and
Husimi graphs.

1.1 Rooted trees

First, consider the well-known species A of rooted trees, defined by the func-

tional equation
A= XE(A), (5)

where E denotes the species of “sets” (E for French “ensembles”). Its molec-
ular expansion can be seen as an explicit description of the species. Up to
degree (size) 6, we have

A= X+ X2 XE(X) + X3+ XE(X) + 2X* + X2E,(X)
FXEy(X) + 3X3Es(X) + XE»(X?) + 3X° + X2E5(X) ;
FX2EL(X) 4 6X4Ey(X) + 2X2Ey(X2) + 3X3E3(X) (6)
+X?Ey(X)? + XE5(X) +6X% +---.

The homogeneous component of degree 5 of this molecular expansion is
XE,(X)+3X3Ey(X) + X Ey(X?) + 3X° + X?E3(X)

These terms are illustrated in Figure 1.

1.2 'Weighted Husimi graphs

We illustrate now the more general context, in which weighted species occur.
The weight of a structure is assumed to be a unitary monomial (a com-
mutative word) in some given indeterminates, called weight variables. For
example, let the weight variables be ys,ys,.... Define a Husimi graph as
a connected graph all of whose blocks (2-connected components) are com-
plete graphs (see [14]). The weight w(g) of a Husimi graph ¢ is defined

by w(g) = y52ys5®---, where n; is the number of blocks of g of size i for
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3 X3FE(X)
O @) Q@ @) )
Q/: oo 5 x5 O /o )
XEQ(X2) X2E3(X) XE4(X)

Figure 1: Rooted trees of size 5

1 = 2,3,.... An example is given in Figure 2. The weighted species of
Husimi graphs is denoted by Hu,,. Its molecular expansion up to degree 6 is
computed by Devmol as:

Degree 1:
X
Degree 2:
Y2 Ex(X)
Degree 3:
Yo’ X Es(X) + y3 B3(X)
Degree 4:

Yo yz X2 Ey(X) + y23XE3(X) + 3 Ez(XQ) + ys E4(X)
Degree 5:

(ys y2® + 12*) X? Bo(X) + 122 y3 X Eo(X)? + (ys12” + 12*) X Ea(X?)
+y2* X Ey(X) + 432 X Ey(Fo(X)) + ys E5(X) + yo ya X2 E3(X)
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Figure 2: A Husimi graph of weight y3ysy2ys

Degree 6:

y2® X% E5(X?) + (y2° ya + y3 ya + Y3 42°) X Eo(X) B3(X) + y2” ya E2(X) Ea(X?)
+ (ys® Y2 + y2° + 3y3 12°) X* Ea(X) + y2° Eo(X?) + (y3% y2 + 12°) Ea( X Eo(X))
+ Y2 ys® X2 By (Eo(X)) + y3 y2® E3(X?) + yo ys X2 Ey(X) + ys E6(X)
+ ysy2® X2 E3(X)? + ys 42° X0 + (12° 4+ 12° ya) X E3(X) 4 12° X E5(X).

As an illustration, the nine terms of size 5 are shown in Figure 3. Note
that in terms of simple graphs, the species E, can be interpreted both as
that of discrete graphs or of complete graphs, on n vertices.

2 Addition formulas

The main feature of Devmol is its capacity to implement the addition for-
mulas relative to the species of sets and of cycles. Molecular expansions
are then computed by applying recursively these formulas. In what follows,
the subscript n in E, and C,, denotes the restriction to degree (cardinality)
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Y - X3 Ey(X) y3ys - X°Ey(X) y3ys - X Ep(X)?

...../\.

4
ys - XEo(X?) y2ys - X Bo(X?) ys - XE4(X)

v - X By(B(X) yoys - X?E3(X) ys - B5(X)

Figure 3: Husimi graphs of size 5

n. Observe that Maple already knows the addition formulas for the species
L, = X", using the “expand” function: for a given n > 0, we have, for
example,

X+ =% (") Xy, (7)

i—0 \*

Note that for any molecular species M of degree n, we have M(1) = 1
and, more generally, for any scalar £,

M(k) = Zu(k,k,...). (8)

Formula (8) holds for any non-negative integer k in virtue of Pélya theory
and the extension to a general scalar is valid by polynomiality. Also, for any




weight variable ¢, we have
M(tX) =t"M(X). 9)
This applies, in particular, to the molecular species M = L,,, F,, and C,,.

The additions formulas given in the following subsections are taken from
[1]. They are implemented in Devmol.

2.1 Addition formulas related to the species of sets

Recall that Ey(X) = 1, the “empty set” species, and that E;(X) = X. For
n, k> 0, we have

EXi4 4+ X)= Y By(X)- B, (X).  (10)

ni+---+np=n
n; >0

It follows that

Eu(kX) = 3 (k) > ()\1,.7.1.,)\

i—1 \") \Fn

JES I NE R
7

the expression A ; n meaning that the summation index A is a partition of
n into ¢ parts, and that

L(n) f{n—1)
E,(k+X)= o + (n—1)!X+"'+E”<X)’ (12)

where k™ = k(k+1)---(k+n—1).

2.2 Addition formulas related to the species of cycles

For the species C' of oriented cycles, we have

Cn<X1+"'+Xk):Z Z ApCh/d (Xipl"'X;c/jk)a (13)
dn ‘”1+;;',J§§’°=d
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where, for ¢ = (¢1,...,9¢), Ay denotes the number of Lyndon words on
X = {x; <... <z} having distribution ¥, i. e. 1, occurrences of the letter
xy, v = 1,...,k. Recall that a Lyndon word is a primitive (not a power of
another word) lexicographically minimal word in its cyclic conjugacy class.
Using Mobius inversion, it can be shown that

’lﬁ W 1,7! 11
wl Tt T wk dlged(y1 -, ¥g) dla g
Moreover, one haS
E )‘d n/d )7 (15)

where Ay(k) = 13, 1(0)k?? is the number of Lyndon words of length d in
a k-element alphabet, and

C(k + X) Z¢ (k"4 + 3 Z Aij (k) Cra(XY), (16)

d|’n dn H‘J
l

the coefficients A; ;(k) being given by the formula

nith) = = 3 o) (D a7)
)

P s oo

Note that by polynomiality, equations (11), (12), (15) and (16) are also valid
for any scalar £k = & € C.

3 Species implicitly defined by functional
equations

3.1 R-enriched rooted trees

Let R be a species such that R(0) # 0. The species Ag of R-enriched rooted
trees is the unique species satisfying the combinatorial equation

9



Figure 4: Typical R-enriched rooted tree

Figure 4 shows a typical R-enriched rooted tree on theset U = {a,b, ..., k},
where all edges have been oriented towards the root, the vertex e. Hence, an
Apg-structure is a rooted tree where the fiber of each vertex (that is the set of
immediate predecessors) is endowed with an R-structure. Familiar examples
include

1. Ordered (or plane) rooted trees, where R = L,

2. Ordinary rooted trees, where R = F|

3. Mobiles, where R =1+ C.

Let us illustrate the iterative method for computing the molecular expan-

sion truncated to degree n, first in the case of the species A of F-enriched
(i.e. ordinary) rooted trees. For any species F', we write

to denote the restriction of F' to sets of size at most n.
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We start with
ASO = 0,

since there is no rooted tree on the empty set. Next, we have

Acr = (X - Eo(4)) <1 = X,

The general iteration formula is given by

Ay = (X Ecu-1(A<n-1)) <
= X Equ1(An)l<n-1. (20)

Hence, one has successively

Ay = X'ESI(A1)|§1
= X'((1+X)°X)|g1
= X-(1+X)
= X+X°

X Ecr(A<)| o

X - (1+X+Ex)X))e (X+X2))|§2

X (1+ X+ X2+ By(X + X)),y

X (14+ X+ X%+ Ey(X) +X3‘|‘E2<X2))|<2
X + X2+ X3+ XEy(X), _

and so on.

Consider now the general case of the species A = Ag of R-enriched rooted
trees, solution of the combinatorial equation A = X R(A). We start with
Ay =0 or A; = XRy. Furthermore, the general recurrence relation can be
written as

ASn =X- RSn—1<A§n—1)‘<n—1- (21)

The molecular expansion of A can then be computed recursively, using
(21). Hence, the Maple package Devmol can compute the molecular expan-
sion of the species Ag for any R of cyclo-set type. For example, the molecular
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expansion of the species A;, ¢ of “mobiles” is, up to degree 6,

Aol = X+ X2+ XEy(X) + X° 4+ XC5(X) +2X" + X?Ey(X)
+X Oy X) +4X° + XEy(X?) + 2X%Ey(X) + X?C3(X)
+XC5(X) +5X*Ey(X) + 2X°Cy(X) + X2Cy(X) (22)
+X2FE,5(X?) 4+ 10X°.

3.2 R-enriched trees.

R-enriched trees are defined as (unrooted) trees where the set of neighbors of
any vertex is endowed with an R-structure. See Figure 5 for an illustration.
For example, plane trees can be seen as 1 + C-enriched trees.

The species of R-enriched trees is denoted by Qg. It can be expressed in
terms of the species Ar of R'-enriched rooted trees, where R’ denotes the
derivative of the species R, using the Dissymmetry Theorem for R-enriched
trees (see [2], Theorem 4.1.2). Indeed, we have

G,R: XR(ARI)+E2<ARI) —A%{/ (23)

Figure 5: Typical R-enriched tree

12



T

>
AN

G /G

Figure 6: Typical G-additive rooted tree

3.3 (G-additive rooted trees.

Another important family of species defined by functional equations is that
of G-additive rooted trees, where G is a given species such that O(G) > 2,
that is G(0) = G'(0) = 0. It is defined as the species B = B(X) which
satisfies the additive functional equation

B=X+G(B). (24)

This species is often denoted by B = A. See Figure 6 for an illustration of
a typical gA-structure.

An example is also given by the species P = P(X) of parenthesizations,
which can be defined by the functional equation

P=X+ P (25)

It is clear that the molecular expansion of the species ¢ A of G-additive
rooted trees can also be computed recursively, whenever effective addition
formulas are known for G.
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4 Presentation of the Maple package Devmol

4.1 Basic purpose

The basic purpose of the Maple package Devmol is to compute the molecular
expansion of any given recognized species expression, extending the expan-
sion of classical algebraic expressions. For instance, the molecular expansion
of the expression (X + Y)? is simply X2 + 2XY + Y2

Let A denote the alphabet of sort variables and V the alphabet of weight
variables. The language £ 4 of recognized expressions is then defined by the
following grammar :

1. 1 € Ly,

2. XeAd = X €Ly

3. peCV],PeLy = px*xPeLy,

4. Ve Ly = P+VecLyand ® x VU e Ly,

5. neN e L,y = En(Q)EEAanan@)EEA.

The package Devmol, or , more precisely, its main procedure dev, can
then be seen as an operator of the form

La— CV][MA]

which computes the molecular expansion of a recognized expression. The
result is a formal power series with coefficients in the ring C[V] over the set
M 4, of (unweighted) molecular species of cyclo-set type in the sorts A. This
set, is defined recursively as follows:

1. 1e My

2. XeAd= X e My,

3. M\INeMy = M-Ne My,

14



4. neNn>2 MeMy= E, (M) € My,
5. neNn>3 MeMy= C,(M) e My.

The Maple package Devmol comprises basically two main (internal) proce-
dures, expand/E_ and expand/C_ which extend the Maple procedure expand.
When the expand procedure is applied to a recognized expression, it recur-
sively calls the relevant procedure each time a sub-expression of the form
E,(-) or C,(-) is met. Each of these procedures “executes” the correspond-
ing addition formula.

As mentioned in the introduction, the default set of sort variables is A =
{X,Y,Z}. To include new sort variables, one uses the procedure ajoutvs,
which is short for French “ajouter variables de sortes” (English alias: addsv).
More precisely, the command

> ajoutvs(YY);

adds the name YY to the set A of sort variables. Maple also answers by
printing the current set of sort variables. Note that the sort variables are
global. In the same manner, one uses the procedure ajoutvv (English alias:
addwv) to add new elements to the set V' of weight variables. Once added
to this set, a weight variable becomes global too. The initial set of weight
variables is V = {t}.

4.2 The procedure dev

The most fundamental procedure of Devmol is dev. The purpose of
dev(Phi,d) is to compute the molecular expansion of the recognized ex-
pression Phi, up to the given truncation degree d.

Examples.

> ajoutvv(u);
{t,u}
> Phi := E[5](E[2] (X) + uxX);
O = E5(Ex(X)+uX)
> dev(Phi,10);
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WP Bs(X) + Es(Ey(X)) + ut By(X) Ea(X) + u X Ey(Es(X))
+ U3 Eg(X) EQ(EQ(X)) + U2 EQ(X) E3<E2<X))

dev((X~2 + t*E[3]1(Y))"5, infinity);

X0 4 5¢E5(Y) X8+ 1012 E3(Y)2 X6 + 102 E3(Y)? X4
58 By (V)4 X2 + 5 By(Y)°

dev((l - Z - 2°2)~(-1), 10);

14+ Z2+27°24+323+52*+87°5+1325+21 2" +34 28 + 5527
+89 710

dev(E[8](1 + t * X), 5);
L+t X + 12 Ey(X) + 13 E3(X) + t* By (X) +t° E5(X)
dev(E[5] (3 + t*X), 5);
21 + 15t X + 1012 Eo(X) + 613 E3(X) + 3t* E4(X) + t° E5(X)

dev(E[5](a + t*X), 5);

ala+1)(a+2)(a+3)(a+4) a(a+1)(a+2)(a+3)tX
+
1 120 1 24
+éa(a+1)(a+2)t2E2(X)+§a(a+1)t3E3(X)
+att By(X) + 15 E5(X)
dev(E[5] (u + t*X), 5);

b +utt X +udt? By(X) + 02t B3(X) +ut! Ey(X) + 5 E5(X)

4.3 Procedures for computing generating series

The next family of procedures is used for computing various generating se-
ries. There are three such procedures, namely sge (F,d) (English alias: egs),
which computes the exponential generating series of the species F', truncated
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at degree d, sgef (English: fegs), where the counting coefficients can be di-
rectly read off, and sgt (English: tgs), which computes the (isomorphism)
type generating series, i.e. the tilde generating series, for unlabelled enumer-
ation.

Examples 1. We compute these series up to degree 10 for the species of
oriented cycles.

> FF := sum(C[k](X), k = 1..10);
+ Cs(X) + Cy(X) + Co(X)
> GG := dev(FF,10);
GG := X 4 Ey(X) 4 C5(X) + Cy(X) + C5(X) + Cs(X) 4+ C7(X) + Cs(X)
+ Cy(X) + C1o(X)
> sge(GG,10);

1 1 1 1 1 1 1 1 1
Lot o3t o4t 5 S 6, 7,8, 1.9 10
x+2x +3:U +4:U +5:U +6x +7x +8x +9:1: +—10x

> sgef(GG,10);

r  x2 228 6x2* 242° 1202%° 72027 504028
TR T T o T T
N 40320 z° N 362880 710

9! 10!

> sgt(GG,10);
s+t + 3+t + 5+ 28+ 2T+ 8+ 2%+ 210

2. Here is an example involving a two-sort species:

> Phi := (1 + X + E[2](X) + E[3]1 (X)) * (1 + C[31(N);
O :=(1+X+ Ey(X)+ E5(X)) (1+C5(Y))

> dev(Phi,9);

14 C3(Y) + X + X C3(Y) + Eo(X) + Ey(X) C5(Y) + E5(X)
+ E5(X) C5(Y)
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> sge(Phi,9);

1 1 1 1 1 1
1+ -y +ao+cayP+sa+ -2 + -2 + — 7
3¢ 3tV Tt Tt VTt Tigt Y

> sgef(Phi,9);

1+2y3+m+2xy3+x2+2$2y3+x3+2x3y3
TR TR TR TR TR T TE TR TR G
> sgt(Phi,9);

1+y3+$+xy3+x2+a:2y3+:r3+x3y3

4.4 Procedures for computing the molecular expansion
of tree-like species

There are procedures in Devmol for computing the molecular expansion of the
classes of tree-like species described in Section 3. These are arborr (English:
rrtrees), for the species of R-enriched rooted trees, arbrer (rtrees), for
R-enriched trees, and arborgadd (gaddrtrees), for G-additive rooted trees.

In each case, the parameters R and G are one-sort species of cyclo-set
type.

4.4.1 R-enriched rooted trees

The command arborr(R,d) returns the molecular expansion up to degree d
of the species Ag of R-enriched rooted trees.

Example. Ordinary rooted trees.

> R =1+ sum(E[k](X), k = 1..5);
R:=1+4 Ei(X) 4+ E2(X) + E3(X) + E4(X) + E5(X)

> A := arborr(R,6);
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A=X+ X2+ X Ey(X)+ X2+ X B3(X) +2X* + X2 By(X)
+ X E(X)+3X?Ey(X)+ X Eo(X?) +3X°+ X2 E3(X) +6X6
+ X2 Ey(X)? + X? Ey(X) +6 X* Eo(X) + 3 X3 E3(X)
+2 X2 Ey(X?) + X E5(X)

> sge(A,6);

125 3 54 8
x+ﬂx5+§x3+€x6+§x4+x2

> sgef(A,6);

ot or Tt 51 6l

x 2z 9x% 64z* 62525 777625
+ 4 +

> sgt(A,6);
r4+22+223 + 42" +92° 4+ 2028

4.4.2 R-enriched trees

The command arbrer(R,d) returns the molecular expansion up to degree d
of the species Ag of R-enriched trees.

Example. The following example gives the molecular expansion (up to
degree 8) of the species g, where R = C. This is the species of plane trees.

>R :=1+ X+ sum(CklI(X), k =2..7);
R:=14 X+ Cy(X)+ C5(X) 4+ Cy(X) + C5(X) + Cs(X) + C7(X)
> A := arbrer(R, 8);
A= X7+ 2E5(X3) + Bo(X?) + X C3(X?) + X C7(X) + X C(X) + X Ey(X)

+ X Cy(X) + X Cs5(X) + X +3X Er(X?) + X By (X?) + X C3(X)
+ 5 Ey(X*) 4+ 3 X0 + Eo(X) + X° +28 X

> sge(A,8);
7 21 5 1 1 429
Zx5+€a:6+11x7+6w4+§$2+§$3+H$8+$
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> sgef(A,8);

x x2 3z3 20z* 210x° 30242% 5544027 1235520 28
Nt T T T T T
> sgt(A,8);

r4+ 2+ 422 +325+625+1427 + 3448

4.4.3 (G-additive rooted trees

The command arborgadd (G,d) returns the molecular expansion up to degree
d of the species Qg of G-additive rooted trees.

Example.
> G := E[21(X) + E[3]1(X);
G := Ey)(X) + E5(X)
arborgadd(G,6) ;

> A :

A= X + Ey(X) + E3(X) + Eo(X) X + Eo(X)? + Ey (B (X)) + X E3(X)
+ Eo(X) X? 4+ 2 Ey(X) E3(X) + 3 X Ey(X)* 4+ 2 X Ey(Ey(X))
+ X2 E3(X) 4+ Ey(X) X? 4+ 6 Ex(X) X E3(X)
+ 2 Ey(X) By(Ey(X)) 4+ 6 By (X)2 X2 + E3(Ey(X)) + 2 Ey(X)?
+ Ey(E3(X)) + Eo(Fa(X) X) + 2 X2 By (Ey(X)) + X3 E5(X)
+ Eo(X) X*

> sgt(A,6);
r4+at+22°8 + 42" +92° 4+ 2328

4.5 A procedure for computing the n'” root of a species

There is a procedure, rac (English: nroot), in Devmol, for computing the
n' root of a species. An n'* root of a species F is a species @ such that
@™ = F. As in the case of formal power series, @ is uniquely determined once
its constant term @, has been given, satisfying &f = Fp, under the condition
that Fj is invertible in the ring C[V]; and the algorithm for computing &
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is the same as for formal power series. It makes use of Newton’s binomial
theorem. Let F'= Fy + F.. Then we have

¢ = Flr

F 1/n
- (et
0

= 3 Y (%”) (%)k (26)

k>0

The command rac(n,F,®,d) returns the molecular expansion of (26) trun-
cated at degree d. Observe that we could compute in the same manner any
rational power F'“ of F, for a € Q.

Examples. 1. The following command sequence returns the square root of
the species A(2X)/(2X), of constant term 1, up to degree 6, where A denotes
the species of rooted trees. It can be seen that the species B = 1/ A(2X)/(2X)
satisfies the equation

B=1+E(XB?). (27)

In fact, B is the species of triangle-labelled oriented-edge-rooted 2-trees (see
[5])-

> R =1+ sum(E[k](X), k = 1..6);
R:=1+4+FE(X)+ Ey(X)+ E5(X) + Ex(X) + E(X) + Eg(X)

> A := arborr(R,7):
> A2 := dev(subs(X = 2%X,A)/(2%X),6):
> rac(2,A2,1,6);

1+2X Ey(X) +2X E3(X) + 10 X2 Eo(X) + 2 X Ey(X) + 43 X3 Ey(X)
+6X Eo(X?) 4+ 10 X? E5(X) + 18 X2 E5(X)* + 43 X3 E3(X)
+ 22 X2 Fy(X?) + 201 X* E5(X) + 10 X2 E4(X) + X E5(X)
+ 2 Eo(X?) + 2 E3(X?) + 5 Eo(X3) + 2 By(X Eo(X)) + X
+6 E3(X) X Ey(X) + 2 Eo(X) Eo(X?) + 388 X + Ey(X)
+ E5(X) + Eg(X) + Eo(X) + E3(X) +2 X2+ 7 X3+ 24 X*
+3X Ey(X)? +95X°

2. The species P = P(X) of parenthesizations, introduced in Section 3.3,
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is defined by the functional equation (25) or equivalently, by
PP—P+X =0, (28)
Solving this quadratic equation yields

1—+v1—-4X

P(X) = ;

(29)

This expression is expanded up to degree 10 in the following lines. Anyone
will recognize the familiar Catalan numbers.

> S := rac(2,1-4%X,1,10);

S:=1-2X—-2X%2-4X%-10X* - 28 X5 — 84 X6 — 264 X7
— 858 X® — 2860 X — 9724 X0

> P(X) := (1 - 9)/2;

PX)=X+X*+2X’+5X"+14X°+42X°+ 132 X" + 429 X8
+ 1430 X? + 4862 X0

4.6 A procedure for computing the inverse under sub-
stitution

The inverse under substitution of a species ® = @(X) is defined whenever
@(0) = 0and ¢'(0) = 1, i. e. when @ is of the form & = X +®-,. The inverse
of such a species is then the species ¥ such that @ c ¥ = X. The procedure
invsubst (English: invsubs) computes the inverse under substitution of a
species, up to the given degree.

Examples. 1. We compute the inverse under substitution up to degree 5 of
the species X + E5(X) + ...+ E5(X). Note that this inverse is equal to the
inverse of £, = E' — 1 up to the same degree.

> Phi := sum(E[k] (X), k = 1..5);

O := Fy(X) + Ey(X) + E3(X) + Ex(X) + E5(X)
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> invsubst(Phi, 5);

X — By(X) — E3(X) + X Eo(X) — E4(X) + Es(Es(X)) + X Ey(X)
— X2 Fy(X) — Es(X) + X Eo(X) + E»(X) E5(X) — X2 E3(X)
— Ey(X)2 X + X3 Ey(X)

2. The equation (28) shows that the species P(X) is the substitutional
inverse of X — X2. This is verified here up to degree 10.

> Phi := X - X72;
b= X — X?
> invsubst(Phi,10);

X+X24+2X34+5X44+14X%+42 X5+ 132 X7 + 429 X8 + 1430 X°
+ 4862 X10

3. In this example, we verify, up to degree 6, that the species A of rooted
trees satisfies the combinatorial equation A = (X E(—X))(~Y,

> EE := 1 + sum(E[k](X), k = 1..5);
EE := 1+ E\(X) + Ey(X) + E3(X) + Ey(X) + E5(X)
> AA := arborr(EE,6);

X+ X2+ X E(X)+ X3+ X E3(X)+2X*+ X2 Ey(X) + X Ey(X)
+3X3Ey(X)+ X Ep(X?) +3X°+ X2 E3(X) +6 X® + X E5(X)
+2X2Ey(X2) +3X3 E3(X) + X2E (X) + 6 X* Ey(X)

+ X2 Ey(X)?

> FF := dev(X*subs(X=-X,EE), 6);

FF =X —-X?2-XEy(X)+X3—XE3(X)+2X%2Ey)(X) — X*— X E4(X)
+2X2F3(X)+ X Ep(X)?2 —=3X3Ey(X) + X° — X E5(X)
+2X?Ey(X)+2X E3(X) Ey(X) —3 X3 E3(X) —3X?% Ey(X)?
+4 X Ey(X) — X°©

> BB := invsubst(FF,6);
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BB:=X +X?+ X F(X)+ X?+ X E3(X) +2X* + X? Ep(X) + X Ey(X)
+3X3Ey(X)+ X Ep(X?) +3X° + X2 E3(X) +6 X% + X E5(X)
+2X2Ey(X?) +3X3F3(X) + X2 Ey(X) +6 X* Fy(X)

+ X2 Ey(X)?

> AA - BB;

4.7 Degree and table procedures

This category consists essentially of ‘interface’ procedures related to the de-
gree of a molecular species and to the homogeneous components of a species.
These are the procedures degre, mdegre, coeffm (English: mcoeff),

phom (homcomp), tablephom (homcomptable), affichertable (printtable),
sphom (homcompsum), as well as tablearborr (rrtreestable),
tablearbrer (rtreestable) and tablearborgadd (gaddrtreestable).

The command degre (M) returns the total degree of the molecular species
M. In case of a multisort molecular species, the command mdegre (M) can
also be used, the result being a Maple table. The command coeffm(F,M)
yields the coefficient (multiplicity) of the molecular species M in the species
F'. Here are some examples.

> degre(E[3] (XxC[4] (X)));

15
> mdegre (E[3] (X*C[4] (Y"2%Z))) ;

resultat
> print(%);

table([X =3,Y =24, Z = 12])
> Phi:=1+X"2+23*E[3] (X*C[4] (X))+6*E[3] (C[5] (X))+E[7] (X);
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> coeffm(Phi,E[3] (X*C[4] (X)));
23

The command phom(F,d) returns the homogeneous part of degree d of
the species F', while tablephom(F) stores in a Maple table the degrees which
occur in F' and the corresponding homogeneous components. This is par-
ticularly useful when the species F' is big. Conversely, the procedure sphom
converts a table into the sum of its entries and hence returns the sum of
the homogeneous parts in a table of the form tablephom(F). The procedure
affichertable is a practical alternative to the Maple command print for
displaying a table.

> phom(Phi,15);
23 B3(X C4(X)) + 6 E5(C5(X))

> T := tablephom(Phi);
T := tph
> print(T);

table([0 =1, 2 = X2, 7 = Ey(X), 15 = 23 B3(X C4(X)) + 6 E3(C5(X))])

> affichertable(T);

23 E3(X C4(X)) + 6 E3(C5(X))

> sphom(T) ;
1+ X2 + 23 B3(X Cy(X)) + 6 E3(C5(X)) + E7(X)

Finally, the procedures tablearborr, tablearbrer and tablearborgadd
are simply the composition of tablephom with the procedures arborr, arbrer
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and arborgadd for enriched trees and rooted trees.

4.8 Miscellaneous

There are two other useful Devmol procedures, derpart (English: partder)
and grouper (mcollect), which are illustrated in the following section. The
procedure derpart computes the partial derivative of a species with respect
to a given sort variable. The two basic facts here are the formulas

9 ] R
e g Cn(X) = X" (30)

Finally, the procedure grouper collects similar terms in a molecular expan-
sion, that is terms having the same molecule but various weights.

E,(X)=E, 1(X) and

5 Two applications

In this last section, we give two examples of applications of Devmol. The first
one is the computation of the molecular expansion of the species A,, of rooted
trees weighted by a leaf counter ¢. The second application is a procedure for
the molecular expansion of the species Cp of connected (simple) graphs, all
of whose blocks are in a given class B of 2-connected graphs, for a generic B.
This procedure is then illustrated in the case of the species Hu,, of weighted
Husimi graphs presented as an example in Section 1.2.

5.1 Rooted trees weighted with a leaf counter.

Let us define the weight w(a) of a rooted tree « as t(®), where I(a) denotes
the number of leaves of a. By convention, the root of a rooted tree is a leaf
only in the case of the single vertex rooted tree. The species of rooted trees
weighted in this manner will be denoted by A,. A slight modification of
equation (5) leads to the functional equation

Ay = X(t—1)+ X B(Ay)
= X + X B, (Ay). (31)
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It is thus possible to compute iteratively the molecular expansion of the
species A,, as explained in Section 3.1, up to a given degree d. The procedure
lwrtrees(d) which performs this computation is presented below.

lwrtrees := proc(n)
local k, Awl, Ek;
with(devmol) ;
Awl =t * X ;
Ek :=0;
forkton —1do
Ek .= Fk + Ex(X) ;
Awl ==t * X + expand (X * devmol : —dev(subs(X = Awl, Ek), k))
end do;

devmol : — grouper(Awl)
end proc

Here is the result of this computation up to degree 8.

> affichertable(tablephom(lwrtrees(8)));

1
tX
2
t X?
3
2 X By(X)+tX?
4
2 X2 FEo(X) + 3 X E3(X) + (t + %) X*
5
(t+283) X5+ (263 +12) X3 Eo(X) + 3 X2 E3(X) + 1? X E5(X?)
+t* X Ey(X)
6
t*Ey(X )2 X2+ t* X2 Ey(X) + 5 X E5(X) + (3 + t2) X2 E5(X?)
+ (2t +83) X3 E3(X) + (12 + 5¢%) X* E5(X)
+(t+4t*+3) XS
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7
215 Bo(X) X2 E3(X) + ' X Ey(X) Eo(X?) + (12 + 913 + 41") X5 E»(X)
+ 2t Eo(X)2 X3 +1° X2 E5(X) + (283 + %) X® Ey(X?)

+ (5t +83) X E3(X) + (t* + 2°) X3 Ey(X) + X t2 E5(X3)
+t* X E3(X Ey(X)) + 2 X E3(X?) +t° X Eg(X)
+(t+6t*+5) X7
8
15X B3(X) By(X?) + 21 Ey(X) X2 By (X) + 3t* X2 Ey(X) Ey(X?)
+ 51 Ey(X) X3 E3(X) + (2t* + ¢t + 9¢* + 13¢%) X®
+ (t* +1°) X2 By (X Eo(X)) 4+ (£ + %) X? Eo(X3) + " X E7(X)
+ 19 X2 Eg(X) +t° E5(X)? X2 + (£° + 21°%) X3 E5(X)

+ (B 4+ 583 +14) X Ep(X?) 4+ (1483 + 12 + 17t*) X E5(X)

+ (B3 + 9t +41°%) X° E3(X) + (411 + 41°) Eo(X)2 X4
+ (58° +tY) X Ey(X) + (83 +t*) X? E3(X?)

5.2 Connected graphs with blocks in a given class B

Let B be a class of 2-connected graphs. A Cg-graph is defined as a connected
graph all of whose blocks (2-connected components) are in 3. The species of
Cp-graphs is denoted by Cp. Here are some examples for various choices of

B:

1. If B = B,, the class of all 2-connected graphs, then Cz = C, the species
of (all) connected graphs.

2. If B = K, the class of "edges”, then Cz = @, the species of (unrooted,
free) trees.

3. If B ={P,,m > 2}, where P,, denotes the class of size-m polygons
(by convention, P, = K3), then Cz = Ca, the species of cacti. A cactus
can also be defined as a connected graph in which no edge lies in more
than one cycle. Figure 7, a), represents a typical cactus.

4. If B = K3 = Pj, the class of "triangles”, then Cz = ¢, the class of
triangular cacti.

5. If B={K,,n > 2}, the family of complete graphs, then Cs = Hu, the
species of Husimi graphs. A Husimi graph is shown in Figure 2.
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6. If B = {C,,,n > 2}, the family of oriented cycles, then Cz = Oc,
the species of oriented cacti. These structures were introduced by C.
Springer [20] in 1996. Although directed graphs are involved here, the
functional equations (32) and (33) given below are still valid. Figure
7, b) shows a typical oriented cactus.

a b)

Figure 7: a) a typical cactus, b) a typical oriented cactus

Let Cp denote the species of rooted (at a vertex) Cpg-graphs. Then the
following two equations (see [2], [14]) can be used to compute the molecular
expansion of the species Cg.

Cy = XE(B(Cp), (32)
Cs = C4+B(CY) —ChB(CY). (33)

Here, B’ denotes the derivative of the species B. Observe that equation
(32) is of the form Y = X R(Y), with R = E(B'), so that the procedure
for R-enriched rooted trees can be used. Moreover, equations (32) and (33)
are also valid for weighted Cpz-graphs, whenever the weight function w is
multiplicative on the 2-connected components. See [14] for more details.

The procedure CBgraphes takes the class B of blocks and the degree d as
arguments. It computes the molecular expansion of the species of Cz-graphs
up to degree d.
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CBgraphes := proc(B, n)
local EE, Bprime, R, GP, resultat;

with(devmol) ;

EE :=1+4+sum(Ex(X), k=1.n—1);

Bprime := devmol : —derpart(B, X);

R := devmol : —dev(subs(X = Bprime, EE), n —1);

GP := devmol : —arborr(R, n);

resultat := devmol : —dev(subs(X = GP, X + B — X * Bprime), n)
end proc

In what follows, devmol computes the molecular expansion, up to degree

7, of the weighted species Oc,, of oriented cacti, where the weight w(c) of an

oriented cactus c is defined by w(c) = y5?y5° - - -, where ny is the number of

cycles of ¢ of size k. This is the case of Cz-graphs with B = B,,, the species
of weighted oriented cycles of length at least 2, where the weight of a cycle
of length k is y.

> n :=7;
n:="7
> ajoutvv(seq(ylk]l, k = 1..n));
{t. v, v2, s, Yas Y5, Yo, yr}

> B := sum(y[k]*C[k](X), k = 2..n);

B :=yy C3(X) + y3 C3(X) + 92 Cu(X) + y5 C5(X) 4 y6 Cs(X)
+ y7 C7(X)

> CBW := CBgraphes(B,n):
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> affichertable(tablephom(CBW)) ;

1
X

2
Y2 Eo(X)
3
Yo" X Ep(X) +y3 C3(X)
4
Yo ys X* + 403 X E3(X) + y2® Ea(X?) + y4 Cy(X)
15}
(Y3 yo® + 12*) X? Eo(X) + (12 + y3?) X Eo(X?) + 12 X Ey(X)
+ (Y2 y2 + 2y3 yo?) X° + y5 C5(X)
6
Yo" Ea(X Ey(X)) + (y2° + y3® y2 + ya y®) Ea(X?)
+ (Y 92® + 12°) XP B3(X) + (yayo® + 3ys 9® + 12°) X* En(X)
+ (12° + y3® 12) X2 En(X?) + y3 12° C3(X?) + y2° X E5(X)
+ 2usPy2 +2ya 2> + 4ysye® + ys v2 + Y3 ya) X8 + y6 Co(X)
7
(Tysysyo + s> + 128 + Usys + e y2 + 3ys o> + 6yav2® + Gy v + 93 1*) X7
+ (2ys® 2> + ys y2” + 8ys vt + 4yay® + 21°) X° Er(X) + ys 42" X Ep(X)?
+ (Y3 12" + ys® 12°) X2 Eo(X?) + (ya 12® + 3ys y* + 12°) X* E3(X)+
(ysy2* +12°) X° E4(X) + (3ys”® v2” + yu” + 12°) X Ea(X?)
+ (12° + y3® 12*) X Ep(X) Eo(X?) + 12° X Eo(X Ey(X))
+ (y3® 4+ 12°) X E3(X?) + 12° E5(X) Eo(X) X? + 1,° X Eg(X) 4 y7 C(X)

6 Availability of Devmol

The current version is Devmol 2.2. It is constructed as a Maple module. The
basic version is in French but an English version, where the English aliases
of the exported procedures are implemented, is also available.

It is freely available at the Web site of LaCIM: www.lacim.uqam.ca.
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6.1 Glossary

Here is a short dictionary, from French to English, of the exported procedures
of Devmol.

affichertable = printtable
ajoutvs = addsv
ajoutvv = addwv
arborgadd = gaddrtrees
arborr = rrtrees

arbrer = rtrees

coeffm = mcoeft
derpart = partder
grouper = mcollect
invsubst = invsubs
phom = homcomp

rac = nroot

sge = egs
sgef = fegs
sgt = tgs

sphom = homcompsum
tablearborgadd = gaddrtreestable
tablearborr = rrtreestable
tablearbrer = rtreestable

tablephom = homcomptable
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