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A LaBRI (UMR 5800), Université Bordeaux 1, 351 cours de la Libération,
33405 Talence Cedex, France

toufik@labri.fr

B University of Victoria, PO Box 1700 STN CSC,
Victoria, BC V8W 2Y2 Canada

westj@mala.bc.ca

Abstract. Let Bn be the hyperoctahedral group, the set of all signed permutations
on n letters, and let Bn(T ) be the set of all signed permutations in Bn which avoid
a set T of signed patterns. In this paper, we find all the cardinalities of the sets
Bn(T ) where T ⊆ B2. Some of the cardinalities encountered involve inverse binomial
coefficients, binomial coefficients, Catalan numbers, and Fibonacci numbers.

1. Introduction

Pattern avoidance has proven to be a useful language in a variety of seemingly unrelated
problems, from stack sorting [K, T, W] to the theory of Kazhdan–Lusztig polynomi-
als [Br], singularities of Schubert varieties [LS, Bi], Chebyshev polynomials [MV1, and
references therein], and rook polynomials [MV2]. On the other hand, signed pattern
avoidance has proven to be a useful language in combinatorial statistics defined in type-
B noncrossing partitions, enumerative combinatorics, algebraic combinatorics, geomet-
ric combinatorics and singularities of Schubert varieties; see [Be, BK, Mo, FK, BS, S, R].

Restricted permutations. Let S{a1,...,an} be the set of all permutations of the num-
bers a1, . . . , an. For simplicity, let us denote by Sn the set S{1,2,...,n}. Let π ∈ Sn and
τ ∈ Sk be two permutations. An occurrence of τ in π is a subsequence 1 ≤ i1 <
i2 < · · · < ik ≤ n such that (πi1 , . . . , πik) is order-isomorphic to τ ; in such a context
τ is usually called a pattern. We say that π avoids τ , or is τ -avoiding, if there is no
occurrence of τ in π. The set of all τ -avoiding permutations in Sn is denoted Sn(τ).
For an arbitrary finite collection of patterns T , we say that π avoids T if π avoids any
τ ∈ T ; the corresponding subset of Sn is denoted Sn(T ).

Restricted signed permutations. We will regard the elements of the hyperoctahe-
dral group Bn as signed permutations written as α = α1α2 . . . αn in which each of the
symbols 1, 2, . . . , n appears, possibly barred. Clearly, the cardinality of Bn is 2nn!. We
define the barring operation as the one which changes the symbol αi to αi and αi to
αi. It is thus an involution, i.e., αi = αi. Furthermore, we define the absolute value
|αi| of αi to be αi if the symbol αi is not barred, and αi otherwise.
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Now let τ ∈ Bk and α ∈ Bn; we say α contains the signed pattern τ , if there is a
sequence of k indices, 1 ≤ i1 < i2 < · · · < ik ≤ n such that two conditions hold: (1)
α with all bars removed has an occurrence of the pattern τ with all bars removed, i.e.,
|αip | > |αiq | if and only if |τp| > |τq|, for all k ≥ p > q ≥ 1; and (2) in this occurrence,

αij is barred if and only if τj is barred, for all 1 ≤ j ≤ k. For example, α = 2134 ∈ B4

contains the signed patterns 12 and 21. If α does not contain the signed pattern τ ,
then we say that α avoids the signed pattern τ or, alternatively, that α is a τ -avoiding
signed permutation. The set of τ -avoiding signed permutations in Bn will be denoted
by Bn(τ). More generally we define Bn(T ) =

⋂
τ∈T Bn(τ). We denote the cardinality

of Bn(T ) by bn(T ).

Proposition 1.1. (see [S, Section 3]) We define three simple operations on signed
permutations: the reversal (i.e., reading the permutation right-to-left: α1α2 · · ·αn 7→
αnαn−1 · · ·α1), the barring (i.e., α1α2 · · ·αn 7→ α1α2 · · ·αn) and the complement (i.e.,
α1α2 · · ·αn 7→ β1β2 · · · βn where βi = n + 1 − αi if αi not barred, otherwise βi =
n + 1− |αi|). Let us denote by Gb the group which is generated by these three op-
erations. Then every element g ∈ Gb is a bijection, which shows that if T and T ′

are both sets of signed patterns in Bn such that T ′ = g(T ) = {g(α) | α ∈ T}, then
bn(T ) = bn(T ′).

In the symmetric group Sn, for every 2-letter pattern τ the number of τ -avoiding
permutations is 1, and for every pattern τ ∈ S3 the number of τ -avoiding permutations
is given by the Catalan numbers [K]. Simion [S, Section 3] proved that there are
similar results for the hyperoctahedral group Bn (generalized by Mansour [M]): for
every 2-letter signed pattern τ the number of τ -avoiding signed permutations is given

by
∑n

j=0

(
n
j

)2
j!. In the present note, we find all the cardinalities bn(T ) where T ⊆ B2.

(This exhaustive treatment of cases was suggested by the influential paper of Simion
and Schmidt [SS], which followed a similar program for the cardinalities sn(T ) where
T ⊆ S3).

The paper is organized as follows. In Section 2 we find the cardinalities bn(T ) where
T ⊆ B2 and |T | ≤ 2. In Section 3 we deal with the case that |T | = 3; in Section 4 we
deal with the case that |T | = 4; and, finally, in Section 5 we deal with the case that
5 ≤ |T | ≤ 8.

2. Two signed patterns

By taking advantage of Proposition 1.1, the question of determining the values bn(τ)
for the 8 choices of one 2-letter signed pattern, can be reduced to 2 cases, which are
τ = 12 and τ = 12. Simion [S, Proposition 3.2] proved for any n ≥ 0 that

(2.1) bn(12) = bn(12) =
n∑

k=0

(
n

k

)2

k!.

Similary, the second question of determining the values bn(τ, τ ′) for the 28 choices of
two 2-letter signed patterns reduces to 8 cases.
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Remark 2.1. [S, Proposition 3.4] asserted that bn({12, 21}) = 2n! and bn({12, 12}) =
(n + 1)!. However, in fact, b2({12, 21}) = 6 and b3({12, 12}) = 22. Below we present
the correction of Simion’s assertions.

Theorem 2.2. Given two 2-letter signed patterns τ , τ ′, the value bn(τ, τ ′) for n ≥ 1
can be determined from one of the following relations, depending on the orbit (under
reversal, barring, complementation) to which the pair τ , τ ′ belongs:

(2.2) bn({12, 21}) = bn({12, 12}) = bn({21, 12}) = bn({21, 12}) = (n + 1)!;

(2.3) bn({12, 12}) = bn({12, 21}) =

(
2n

n

)
;

(2.4) bn({12, 21}) = n! + n!
n∑

i=1

(
1

i

i−1∑
j=0

1

j!

)
;

(2.5) bn({12, 12}) = 2
n∑

l=1

∑
i1+i2+···+il=n, ij≥1

l∏
j=1

ij!.

Proof. The assertion that bn({12, 21}) = (n + 1)! follows immediately from [M, Theo-
rem 1]. The other results in (2.2) follow from [S, Proposition 3.4]. By [M, Example 4.8]
we get (2.3).

To verify (2.4), let us consider the number of signed permutations α ∈ Bn({12, 21}). If
αn is barred then α avoids {12, 21} if and only if (α1, . . . , αn−1) avoids {12, 21}. Hence,
there are nbn−1({12, 21}) such signed permutations. If αn = i is unbarred then the
smaller symbols 1, . . . , i − 1 must be barred in α and the larger symbols i + 1, . . . , n
must be unbarred, hence the smaller symbols can be permuted and placed in any of
the positions 1, 2, . . . , n− 1. This gives bn({12, 21}) = nbn−1({12, 21}) +

∑n−1
i=0

(
n−1

i

)
i!

for n ≥ 1. With the base case b0(T ) = 1, Equation (2.4) follows by induction on n.

To verify (2.5), let us consider α ∈ Bn(12, 12). By induction on n, it is easy to prove
there exists a partition α = (α1, . . . , αl) such that the following conditions hold:

(1) Every absolute symbol in αj is greater than every absolute symbol in αj+1 for
all j = 1, . . . , l − 1;

(2) Either all the symbols of αj are barred, or else all are unbarred;
(3) The symbols in αj are barred if and only if the symbols in αj+1 are unbarred.

Equation (2.5) follows now immediately. �

3. Three signed patterns

By taking advantage of Proposition 1.1, the question of determining the values bn(T )
where T ⊂ B2 and |T | = 3, for the 56 choices of three 2-letter signed patterns, can be
reduced to the following 10 cases:

T1 = {12, 12, 12}; T2 = {12, 12, 12}; T3 = {12, 12, 21}; T4 = {12, 12, 21};
T5 = {12, 12, 21}; T6 = {12, 12, 21}; T7 = {12, 12, 21}; T8 = {12, 12, 21};

T9 = {12, 21, 21}; T10 = {12, 12, 21}.
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Theorem 3.1. Given a set T of three 2-letter signed patterns, the value bn(T ) for
n ≥ 1 can be determined from one of the following relations, depending on the orbit
(under reversal, barring, complementation) to which T belongs:

(3.1) bn(T1) =
n∑

d=0

∑
i0+i1+···+id=n−d

d∏
j=0

id!;

(3.2) bn(T2) = Cn+1;

(3.3) bn(T3) = n! + n!
n∑

j=1

1

j
;

(3.4) bn(T4) = bn(T5) = n!
n∑

j=0

1

j!
;

(3.5) bn(T6) = F2n+1;

(3.6) bn(T7) = n2 + 1;

(3.7) bn(T8) = 2n+1 − (n + 1);

(3.8) bn(T9) = bn(T10) = n!
n∑

j=0

(
n

j

)−1

,

where Cm and Fm are the mth Catalan and Fibonacci numbers, respectively.

Proof of Equation (3.1). Let α ∈ Bn(T1), and let m0 be the first unbarred symbol,
reading α from left-to-right. Since α ∈ Bn(T1) we see that α = (α0, m0, β), where
β ∈ Bm0−1(T1) and α0 is a permutation of the symbols m0 + 1, . . . , n. By induction
it follows that for any α ∈ Bn(T1) there exist 0 ≤ d ≤ n and permutations αj of the
symbols mj + 1, mj + 2, . . . ,mj−1 − 1 for all 0 ≤ j ≤ d+1, where m−1 = n+1, md+1 =
0, 0 ≤ md < md−1 < · · · < m0 ≤ n such that α = (α0, m0, α

1, m1, . . . , α
d, md, α

d+1).
Equation (3.1) follows now immediately. �

Corollary 3.2. We have that bn(T1 ∪ {12}) = 2n for all n ≥ 0, and bn(T1 ∪ {21}) =
1 +

(
n+1

2

)
for all n ≥ 2.

Proof. This follows immediately, following the argument of the proof of (3.1). �

Proof of Equation (3.2). A split permutation is a permutation π = (π′, π′′) ∈ Sn, where
π′ and π′′ are nonempty such that every entry of π′ is greater than every entry of π′′.
For example, 231, 312, and 321 are the split permutations in S3.

We first check that the number of non-split 123-avoiding permutations in Sn (which we
denote by Nn) is the (n− 1)th Catalan number, Cn−1. We do this by using induction
on n.

It is easy to check the base case. Now, suppose that Nj = Cj−1 for j < n. Take the
Cn 123-avoiding permutation (see [K]) and classify them according to the first place
where they split. Since each permutation in Sn thus decomposes into a direct sum of
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a non-split 123-avoiding permutation and an arbitrary 123-avoiding permutation, we
have that

Cn =
n∑

j=1

NjCn−j = Nn +
n−2∑
j=0

CjCn−1−j.

By the well-known standard Catalan recurrence Cn =
∑n−1

j=0 CjCn−1−j, it follows that
Nn = Cn−1, which completes the induction step.

Now, suppose we have a signed permutation π which avoids T2. Then the permutation
|π| must avoid 123.

Thus it remains to consider all 123-avoiding permutations and assign signs to their
elements, respecting the condition that if one element precedes and is smaller than a
second element, then the first one must be barred while the second one is unbarred.

Take a 123-avoiding permutation π, and suppose that one of its elements can be
coloured freely, either barred or not. Then this element cannot be both to the left
of and smaller than any other element; neither can it be both to the right of and larger
than any other element. That is, if our freely-colourable element is denoted by s, we
have π = (π′, s, π′′) where each element of π′ is greater than s, and each element of π′′

is less than s. But this means that each element of the block π′ is greater than each
element of the block s, π′′, which means that the permutation splits at s.

Since the existence of a freely-colourable element leads to a split of the permutation,
it follows that any permutation which is non-split is also uniquely colourable. There
is one exception, which is that the single 1-permutation can be coloured in two ways,
i.e., either barred or unbarred.

Now we are ready to find bn(T2) by induction on n. For the induction step we assume
that bj(T2) = Cj+1 for j < n.

We count bn(T2) according to the position of the first split. Let an be the number of
non-split signed permutations which avoid T2; so, a1 = 2, while aj = Nj = Cj−1 for
j > 1.

Note that if such a signed permutation splits, then each “half” can be assigned signs
independently according to the pattern-avoidance conditions. This implies that

bn(T2) =
n−1∑
j=1

ajbn−j + an = 2Cn +
n−2∑
j=1

CjCn−j + Cn−1 =
n∑

j=0

CjCn−j = Cn+1.

�

Proof of Equation (3.3). Let α ∈ Bn(T3); if the symbol n is unbarred in α, then since
α avoids 12 and 21 we get that all other symbols of α are barred. Thus there are
n! such signed permutations. Now let αj = n. Since α avoids 12, the symbol αi is
barred for i ≤ j. Thus, in this case there are

∑n
j=1

(
n−1
j−1

)
(j − 1)! bn−j(T3) such signed

permutations. Hence, we have

bn(T3) = n! + (n− 1)!
n∑

j=1

bn−j(T3)

(n− j)!
.
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Now let b′n = bn(T3)/n!. Thus we have b′n = 1+ 1
n

∑n−1
j=0 b′j, which implies that b′n−b′n−1 =

1
n
. Because of b′1 = 2, we infer b′n = 1 +

∑n
j=1

1
j
, hence (3.3) follows. �

Corollary 3.3. We have that bn(T3 ∪ {12}) = 1 +
(

n+1
2

)
for all n ≥ 0.

Proof. This is immediate if one uses the argument of the proof of (3.3). �

Proof of Equation (3.4), first case. Let α ∈ Bn(T4). Since α avoids 12 and 12 we have
α1 = n or α1 = i for some i. In the first case, since α also avoids 21, we must have
α = (n, n− 1, . . . , 1). In the second case there are bn−1(T4) such signed permutations.
Therefore, bn(T4) = 1 + nbn−1(T4) for all n ≥ 3, with b2(T4) = 5. Hence, by induction
on n, we obtain the formula for bn(T4). �

Corollary 3.4. We have that bn(T4 ∪{12}) = bn(T4 ∪{21}) = 2n and bn(T4 ∪{21}) =
2 · n! for all n ≥ 1.

Proof. By the above argument (proof of the formula for bn(T4)) we obtain the following:

(1) bn(T4 ∪ {21}) = nbn−1(T4 ∪ {21}) for all n ≥ 2, with b1(T4 ∪ {21}) = 2. Hence,
bn(T4 ∪ {21}) = 2 · n! for n ≥ 1.

(2) Suppose α avoids T4 and {12}. Again there are two cases. In the first case
α = (n, . . . , 2, 1). In the second case, we have that α = (i, β, n, . . . , i + 1, γ),
where all symbols of β are barred and decreasing, and all symbols of γ are
unbarred and decreasing. So bn(T4 ∪ {12}) = 1 +

∑n
i=1 2i−1, which implies that

bn(T4 ∪ {12}) = 2n.
(3) In a manner similar to the second case, we get that bn(T4 ∪ {21}) = 2n.

�

Proof of Equation (3.4), second case. Let α ∈ Bn(T5). As in the proof of the first case
of (3.4), we obtain that either α1 = n or α1 = i for some i. In the first case there
are bn−1(T5) such signed permutations. In the second case, since α avoids 21, all the
symbols 1, 2, . . . , i − 1 are barred, so that there are

∑n
i=1

(
n−1
i−1

)
(i − 1)!bn−i(T5) such

signed permutations. Hence

bn(T5) = bn−1(T5) + (n− 1)!
n−1∑
i=0

bi(T5)

i!

for n ≥ 1. Let b′n = bn(T5)/n!, so that n(b′n−b′n−1) = b′n−1−b′n−2 for all n ≥ 2. Because
of b′1 = 2 and b′0 = 1, we obtain that b′n =

∑n
j=0

1
j!
, as claimed in the second part of

(3.4). �

Corollary 3.5. We have that bn(T5 ∪ {21}) = 2n for all n ≥ 0.

Proof. By using the argument in the proof of the formula for bn(T5), we get that

bn(T5 ∪ {21}) = bn−1(T5 ∪ {21}) + bn−1(T5 ∪ {21}).
If this is combined with the initial condition b1(T5 ∪ {21}) = 2, the corollary follows
immediately. �
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Proof of Equation (3.5). Let α ∈ Bn(T6). It is easy to see that α1 = n or α1 = i for
some i. In the first case there are bn−1(T6) such signed permutations. In the second
case, since α avoids 21, all the symbols 1, . . . , i − 1 must be unbarred, and since α
avoids 12, α contains (i − 1, i − 2, . . . , 1). Furthermore, since α avoids 12 and 12, we
get that α = (i, β, i− 1, . . . , 1). Hence there are bn−i(T6) such signed permutations for
1 ≤ i ≤ n. Therefore, for all n ≥ 3, we have

bn(T6) = bn−1(T6) + bn−1(T6) + bn−2(T6) + · · ·+ b0(T6).

This implies that bn(T6) = 3bn−1(T6) − bn−2(T6). If this is combined with the initial
condition b2(T6) = 5, Equation (3.5) follows immediately. �

Proof of Equation (3.6). This follows from [M, Theorem 4.4]. �

Proof of Equation (3.7). Let α ∈ Bn(T8). If α1 unbarred, then it is easy to see that
(α2, . . . , αn) decomposes into two decreasing subsequences such that all the symbols
|α1| + 1, . . . , n are barred and the other symbols are unbarred. Hence, there are 2n−1

such signed permutations. If |α1| < n and α1 is barred, then (similarly) there are∑n−1
i=1 2i−1 such signed permutations. Finally, if α1 = n then by definition there are

bn−1(T8) such signed permutations. Everything combined, we have bn(T8) = bn−1(T8)+
2 · 2n−1 − 1. The initial conditions are b2(T8) = 5, b1(T8) = 2, and b0(T8) = 1, hence
(3.7) follows. �

Corollary 3.6. Let τ ∈ {21, 21}. Then bn(T8 ∪ {τ}) = 2n for all n ≥ 1.

Proof. This is immediate if one uses the argument in the proof of (3.7). �

Proof of Equation (3.8), first case. Let α ∈ Bn(T9). Let αi be the first unbarred entry
in α (i minimal), and let αj be the last unbarred entry in α (j maximal). Since α
avoids 12, all the symbols which are not barred are decreasing, and since α avoids 21
and 21, we can write α = (β, γ, δ), where β is a permutation of the numbers 1, . . . , i,
γ = (n−j, n−1−j, . . . , i+1), and β is a permutation of the numbers n− j + 1, . . . , n.
Hence bn(T9) =

∑n
j=0(n− j)!j!, as claimed in the first part of (3.8). �

Proof of Equation (3.8), second case. Let α ∈ Bn(T10). Let j be maximal such that
αj is barred. Since α avoids T10, we can write α = (β, γ), where all symbols of β
are barred, all symbols of γ are unbarred, and |βj| > |γi| for all i and j. Hence
bn(T10) =

∑n
j=0(n− j)!j!, as claimed in the second part of (3.8). �

4. Four signed patterns

The 70 choices of four 2-letter signed patterns reduce to the following 16 cases:

U1 = {12, 12, 12, 12}; U2 = {12, 12, 12, 21}; U3 = {12, 12, 12, 21};
U4 = {12, 12, 12, 21}; U5 = {12, 12, 12, 21}; U6 = {12, 12, 12, 21};
U7 = {12, 12, 12, 21}; U8 = {12, 12, 21, 21}; U9 = {12, 12, 21, 21};
U10 = {12, 12, 21, 21}; U11 = {12, 12, 21, 21}; U12 = {12, 12, 21, 21};
U13 = {12, 12, 21, 21}; U14 = {12, 12, 21, 21}; U15 = {12, 12, 21, 21};
U16 = {12, 12, 21, 21}.
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Theorem 4.1. Given n and a set T of 2-letter signed patterns such that |T | = 4, the
value bn(T ) for n ≥ 3 can be determined from one of the following relations, depending
on the orbit (under reversal, barring, complementation) to which T belongs:

(4.1) bn(U14) = 0;
(4.2) bn(U10) = bn(U15) = 2n;
(4.3) bn(U4) = bn(U5) = bn(U7) = 1 +

(
n+1

2

)
;

(4.4) bn(U1) = bn(U6) = bn(U12) = bn(U13) = 2n;
(4.5) bn(U8) = bn(U9) = bn(U16) = 2n!;
(4.6) bn(U3) = bn(U11) =

∑n
j=0 j!;

(4.7) bn(U2) = n!
(
1 +

∑n
j=1

1
j

(
n
j

)−1
)

.

Proof. Equation (4.1) is obvious, while Equation (4.2) follows by Corollary 3.6, and
Equation (4.4) holds by Corollaries 3.4 and 3.5.

To verify (4.3), by Corollaries 3.2 and 3.3 it is sufficient to prove bn(U7) = 1+
(

n+1
2

)
. Let

α ∈ Bn(U7). If α1 is unbarred, then since α avoids {12, 12} we have α1 = n, and in this
case there are bn−1(U7) such signed permutations. If α1 is barred, then since α avoids
12, all the symbols |α1|+1, . . . , n are unbarred and decreasing (since α avoids 12), and
since α avoids 21 all the symbols |α1|−1, . . . , 1 are barred and decreasing (since α avoids
12). Therefore, since α avoids 12 and 21, we have α = (i, n, . . . , i+1, i− 1, . . . , 1). Thus
there are n such signed permutations. This implies the recurrence bn(U7) = bn−1(U7)+n
for n ≥ 1. If this is combined with the initial conditions b0(U7) = 1 and b1(U7) = 2,
Equation (4.3) follows.

To find bn(U9), note that α ∈ Bn(U9) has two cases. The first case occurs when the
symbol n is unbarred in α; since α avoids {12, 21} all symbols of α are barred, so
there are n! signed permutations. The second case occurs when the symbol n is barred
in α; since α avoids {21, 12}, all other symbols are barred, so there are n! signed
permutations. Therefore bn(U9) = 2n! for n ≥ 1. Similarly bn(U16) = 2n! for n ≥ 1.
By Corollary 3.4 bn(U8) = 2n! for n ≥ 1, yielding (4.5).

To find bn(U3), we distinguish again between two cases. Let α ∈ Bn(U3). The first
case arises if αn is unbarred. Then, since α avoids {12, 12}, we must have αn = 1.
Thus, there are bn−1(U3) such signed permutations. The second case arises if αn is
barred. Since α avoids {12, 21}, all symbols of α are barred, which implies that there
are n! such signed permutations. Accordingly, bn(U3) = bn−1(U3) + n! for n ≥ 1. Since
b0(U3) = 1, it follows that bn(U3) =

∑n
j=0 j!.

To find bn(U11), note that for any α ∈ Bn(U11) we can write α = (β, γ), where γ =
(n, . . . , n−j+1) and β is a permutation of 1, 2, . . . , n− j. Thus bn(U11) = 0!+1!+· · ·+n!
for all n ≥ 0, as claimed in (4.6).

To verify (4.7), we distinguish again between two cases. Let α ∈ Bn(U2). Either α
contains one unbarred symbol, or all the symbols of α are barred. In the second case
there are n! such signed permutations. In the first case, let α = (β, i, γ), where β and
γ are permutations of subsets of 1, 2, . . . , n. By definition, we get that |βp| > i > |γj|,
hence there are

n∑
i=1

(n− i)!(i− 1)! = n!
n∑

i=1

1

i

(
n

i

)−1
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such signed permutations. Thus, Equation (4.7) is established. �

Corollary 4.2. We have that bn(U7 ∪ {21}) = bn(U7 ∪ {21}) = n + 1 for all n ≥ 0.

Proof. Let τ ∈ {21, 21}. By the proof of Theorem 4.1 (Case bn(U7)), we obtain bn(U7∪
{τ}) = bn−1(U7 ∪ {τ}) + 1. Furthermore, bn(U7 ∪ {τ}) = n + 1 for n = 0, 1, 2, hence
the corollary follows. �

5. More than four signed patterns

The 56 choices of five 2-letter signed patterns reduce to the following 10 cases:

W1 = {12, 12, 12, 12, 21}; W2 = {12, 12, 12, 12, 21}; W3 = {12, 12, 12, 21, 21};
W4 = {12, 12, 12, 21, 21}; W5 = {12, 12, 12, 21, 21}; W6 = {12, 12, 12, 21, 21};
W7 = {12, 12, 12, 21, 21}; W8 = {12, 12, 12, 21, 21}; W9 = {12, 12, 12, 21, 21};
W10 = {12, 12, 12, 21, 21}.

Theorem 5.1. Given n and a set T of 2-letter signed patterns such that |T | = 5, the
value bn(T ) can be determined from one of the following relations, depending on the
orbit (under reversal, barring, complementation) to which T belongs:

(5.1) bn(W9) = 0 for n > 2;
(5.2) bn(W4) = 3;
(5.3) bn(W1) = bn(W2) = bn(W6) = bn(W7) = bn(W8) = bn(W10) = n + 1;
(5.4) bn(W5) = 1 + n!;
(5.5) bn(W3) = (n + 1)(n− 1)!.

Proof. Equation (5.1) follows from the simple observation that no signed permutation
containing more than one unbarred symbol can avoid both 12 and 21, and similarly no
signed permutation containing more than one barred symbol can avoid both 12 and
21.

Equation (5.2) can be established by checking that

Bn(W4) = {(1, 2, . . . , n), (2, . . . , n, 1), (1, 2, . . . , n− 1, n)}.

Now we address Equation (5.3). We found bn(W8) and bn(W10) already in Corollary 4.2.
A permutation in Bn(W1) can only contain one unbarred symbol, while all the symbols
must decrease in absolute value from left to right in order to avoid 12, 12, 12 and 12.
There are n + 1 ways to put at most one bar on the all-decreasing permutation. The
remaining three cases are similarly easy to check.

Next we address Equation (5.4). The set W5 contains all four patterns combining
one barred symbol with one unbarred symbol. This means that any permutation
avoiding W5 must be entirely barred or entirely unbarred. The restriction 12 reduces
the possibilities on the “unbarred side” to just one, the all-descending permutation;
while on the “barred side” there is no restriction. Thus we have n! possibilities.

To verify Equation (5.5), let α ∈ Bn(W3) such that |αj| = 1. If αj = 1, then, since
α avoids {12, 21}, all symbols of α except 1 are barred, and since α avoids 12, we get
j = n. Thus there are (n − 1)! such signed permutations. If αj = 1, then, since α
avoids {12,21}, all symbols of α are barred. Thus there are n! such signed permutations.
Hence, bn(W3) = (n + 1)(n− 1)!. �
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The question of determining the values bn(T ) where T ⊂ B2 and |T | = 6, with 28
possible choices for T , reduces to the following 8 cases:

V1 = {12, 12, 12, 12, 21, 21}; V2 = {12, 12, 12, 12, 21, 21}; V3 = {12, 12, 12, 12, 21, 21)};
V4 = {12, 12, 12, 21, 21, 21}; V5 = {12, 12, 12, 21, 21, 21}; V6 = {12, 12, 12, 21, 21, 21};
V7 = {12, 12, 12, 21, 21, 21}; V8 = {12, 12, 12, 21, 21, 21}.

Theorem 5.2. Given n and set T of 2-letter signed patterns such that |T | = 6, the
value bn(T ) for n ≥ 2 can be determined from one of the following relations, depending
on the orbit (under reversal, barring, complementation) to which T belongs:

(5.6) bn(V2) = bn(V7) = bn(V8) = 0;
(5.7) bn(V1) = bn(V3) = bn(V5) = bn(V6) = 2;
(5.8) bn(V4) = n! for all n ≥ 2.

Proof. Equation (5.6) is an immediate consequence of Equation (5.1) in Theorem 5.1.

In order to prove Equation (5.7), we verify that

Bn(V1) = {(n, . . . , 2, 1), (n, . . . , 2, 1)},
Bn(V3) = {(n, . . . , 2, 1), (n, . . . , 2, 1)},
Bn(V5) = {(1, 2, . . . , n), (2, . . . , n, 1)},
Bn(V6) = {((n, . . . , 2, 1), (1, 2, . . . , n)},

which is easy to do.

Finally, Equation (5.8) follows from the argument given in the proof of Theorem 5.1,
Equation (5.4). �

Finally, the 8 choices of seven patterns reduce to 2, which we present together with the
final case, in which we forbid all eight patterns:

U1 = B2, U2 = {12, 12, 12, 12, 21, 21, 21}, U3 = {12, 12, 12, 12, 21, 21, 21}.

Theorem 5.3. Given n and set T of 2-letter signed patterns such that |T | = 7, 8, the
value bn(T ) for n ≥ 3 can be determined from one of the following relations, depending
on the orbit (under reversal, barring, complementation) to which T belongs:

(5.9) bn(U1) = bn(U2) = 0;
(5.10) bn(U3) = 1.

Proof. Equation (5.9) follows from the same arguments as above. Equation (5.10)
follows easily from the fact that Bn(U3) = {n, . . . , 2, 1}. �

Acknowledgments. The authors are grateful to the referees for careful reading of
the manuscript. The final version of this paper was written during the first author’s
(T.M.) stay at Chalmers University of Technology in Göteborg, Sweden. T.M. wants
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