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Abstract

Two involutions on permutations and derangements are constructed. They
lead to a direct evaluation of some signed Eulerian polynomials on permutations
and derangements. The latter formulas, combined with the exponential formula,
give a new derivation of the corresponding generating functions.

1 Introduction

Let n be a positive integer. A permutation σ of the set [n] := {1, . . . , n} has an
excedance at i if σ(i) > i, for 1 ≤ i ≤ n. As usual, we denote the numbers of excedances,
cycles and fixed points of σ by exc σ, cyc σ and fix σ, respectively. A fixed-point-free
permutation is called a derangement. Let Sn (resp. Dn) be the set of permutations
(resp. derangements) of [n]. For example, the permutation σ = σ(1) . . . σ(5)σ(6) =
3 2 6 5 4 1 ∈ S6 has the cycle decomposition (1, 3, 6)(2)(4, 5), so 2 is the only fixed point
and σ has an excedance at 1, 3 and 4; finally cyc σ = 3, exc σ = 3 and fix σ = 1.
Consider the following enumerative polynomial of Sn :

Pn(x, y, β) =
∑

σ∈Sn

xexc σyfix σβcyc σ.

Then Pn(x, 1, 1) is the classical Eulerian polynomial (cf. [8, Chap. 1]), and Pn(x, 0, 1)
the counterpart for the derangements. For a combinatorial treatment of Eulerian poly-
nomials the reader is referred to the seminal book of Foata and Schützenberger [5].

It is remarkable that when β = −1, these two polynomials have simple closed
formulas :

Pn(x, 1,−1) = −(x− 1)n−1, (1)

Pn(x, 0,−1) = −x− x2 − · · · − xn−1. (2)



Although Pn(x, 0,−1) is a special case of Pn(x, y, β), its evaluation does imply the
exponential generating function of Pn(x, y, β). Actually, weighting each permutation σ
by the monomial xexc σyfix σ(−1)cyc σ, the counting polynomial for permutations in Sn

with k chosen fixed points for 0 ≤ k ≤ n is (−y)kPn−k(x, 0,−1), hence we deduce from
(2) that

Pn(x, y,−1) =
n∑

k=0

(
n

k

)
(−y)kPn−k(x, 0,−1) =

(x− y)n − x(1− y)n

1− x
. (3)

Now, according to the exponential formula (cf. [5], [8, Chap. 5]) and the evident identity
ex = (e−x)−1, we have

1 +
∑
n≥1

Pn(x, y, β)
tn

n!
=

exp

−∑
n≥1

∑
σ∈Cn

xexc σyfix σ tn

n!

−β

, (4)

where Cn denotes the set of cyclic permutations in Sn. Setting β = −1 in (4) we see
that the expression under brackets in (4) is equal to 1 +

∑
n≥1 Pn(x, y,−1)tn/n!, hence

1 +
∑
n≥1

Pn(x, y, β)
tn

n!
=

∑
n≥0

(x− y)n − x(1− y)n

1− x

tn

n!

−β

. (5)

Conversely, it is a simple matter to derive (2) from (5) with β = 1 and y = 0, so (2)
is actually equivalent to (5), of which the β = 1 case was already given by Foata and
Schützenberger [5].

Note that the polynomial Pn(x, y, β) can also be interpreted through some lin-
ear statistics on permutations. Identify each permutation σ ∈ Sn with the word
σ(1)σ(2) . . . σ(n). An integer i, 1 ≤ i ≤ n − 1, is a descent (resp. succession) of σ
if σ(i) > σ(i + 1) (resp. σ(i + 1) = σ(i) + 1), and an integer j = σ(i) for some i ∈ [n]
is a left-to-right maximum of σ if σ(k) < j for all k < i. Let des σ, suc σ and lrm σ be
the numbers of descents, successions and left-to-right maxima of σ, respectively. Then,
thanks to the fundamental transformation of Foata and Schützenberger [5], we have
also

Pn(x, y, β) =
∑

σ∈Sn

xdes σysuc σβlrm σ.

For some latest developments of the above fundamental transformation on words we
refer the reader to a recent paper by Foata and Han [4].

Our purpose is to provide bijective proofs to the identities (1) and (2). In particular,
this bijective approach leads to the following refinement of (2), which seems to be new.

Theorem 1 Let Dn,j = {σ ∈ Dn | σ(n) = j} for j ∈ [n− 1]. Then∑
σ∈Dn,j

(−1)cyc σxexc σ = −xn−j. (6)
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This paper was motivated by several recent papers: after deriving (1) from its
generating function, which is equivalent to formula (5) with y = 1, Brenti [1, p.163]
asked for a bijective proof, Chapman [2] gave a bijective proof of (2) when x = 1,
Gessel [6] gave a combinatorial proof of (5) when β = x = 1 and y = 0, and Kim and
Zeng [7] have given a direct combinatorial proof of (5) when β = 1 and y = 1 or 0, see
also [3, 9] for some related problems.

In Section 2 we first give a bijective proof of the following recurrences:

Pn(x, 1,−1) = (x− 1)Pn−1(x, 1,−1), n ≥ 3, (7)

Pn(x, 0,−1) = Pn−1(x, 0,−1)− xn−1, n ≥ 3. (8)

Since P2(x, 1,−1) = 1 − x and P2(x, 0,−1) = −x, (7) implies (1) and (8) implies (2).
The reason for including such recursive proofs of (1) and (2) is that they use simpler
involutions than the bijective ones. In Section 3 we then give a second proof of (1) and
(2) (in fact (6)) based on a direct interpretation of their right-sides.

All our four involutions are constructed by composing (from right to left) a permu-
tation σ with a transposition (i, j). It is easy to see that the number of the cycles of
the resulting permutation will be increased by one if i and j are in the same cycle of
σ, and decreased by one otherwise.

The weight of a permutation σ ∈ Sn is w(σ) = (−1)cyc σxexc σ, and that of a subset
E ⊆ Sn is the sum of the weights of its elements, i.e., w(E) =

∑
σ∈E w(σ). Therefore,

the basic idea of proving an identity is then to construct a subset E of Sn whose weight
is the right-side of the identity; and a killing involution on Sn \ E, i.e. an involution
which preserves the number of excedances but changes the sign of the weight of each
element.

2 Involutions for recursive proofs

2.1 Permutations

Define the involution φ1 on Sn by

σ 7→ σ′ = (σ(n− 1), σ(n)) ◦ σ.

Clearly σ′(j) = σ(j) if j 6= n − 1, n, σ′(n − 1) = σ(n), and σ′(n) = σ(n − 1). Let’s
partition Sn into three subsets:

S1
n = {σ ∈ Sn | σ(n− 1) 6= n, σ(n) 6= n},
S2

n = {σ ∈ Sn | σ(n) = n},
S3

n = {σ ∈ Sn | σ(n− 1) = n}.

It is easy to check that the restriction of φ1 to S1
n is a killing involution, and the mapping

σ 7→ σ′′ = σ(1)σ(2) · · ·σ(n−1) is a bijection from S2
n to Sn−1 such that w(σ) = −w(σ′′),

so the weight of S2
n is −Pn−1(x, 1,−1). Finally the restriction of φ1 to S3

n is a bijection
from S3

n to S2
n such that w(σ) = −x w(σ′). So the weight of S3

n is xPn−1(x, 1,−1).
Summarizing the above three cases yields (7).
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2.2 Derangements

Let Un = {σ ∈ Dn | σ(2) = 1 and σ(1) 6= 2}. Clearly the mapping σ 7→ σ′′ =
σ̄(1)σ̄(3) · · · σ̄(n), where σ̄(i) = σ(i) − 1, is a weight preserving bijection from Un to
Dn−1, so w(Un) = Pn−1(x, 0,−1). Note also that the weight of the cyclic permutation
σ0 = (1, 2, . . . , n) is −xn−1. Hence, to prove (8) it remains to construct a killing
involution on Dn = Dn \ (Un ∪ {σ0}). We claim that ϕ1 : σ 7→ (σ(iσ), σ(iσ + 1)) ◦ σ
is such an involution on Dn, where iσ is the smallest integer i ∈ [n − 1] such that
σ(i) 6= i + 1.

We first show that ϕ1 is an involution on Dn. Let σ ∈ Dn.

• ϕ1(σ) ∈ Dn : if iσ = 1, then σ(1) 6= 2 and by definition of σ, σ(2) 6= 1; if iσ 6= 1,
then σ(iσ) 6= iσ + 1 and σ(iσ + 1) 6= iσ since iσ is the image of iσ − 1 by definition
of iσ.

• ϕ1(σ) /∈ Un ∪ {σ0} : If iσ = 1, ϕ1(σ)(2) = σ(1) 6= 1 since σ ∈ Dn; otherwise
ϕ1(σ)(1) = σ(1) = 2. So ϕ1(σ) /∈ Un, moreover ϕ1(σ) 6= σ0 because

ϕ1(σ)(iσ) = σ(iσ + 1) 6= iσ + 1, (9)

• ϕ1 is an involution : for all j < iσ, ϕ1(σ)(j) = σ(j) = j +1, so ϕ1(σ) = iσ in view
of (9).

Next, we check that exc ϕ1(σ) = exc σ: if σ(iσ) > iσ (resp. < iσ), then ϕ1(σ)(iσ +
1) = σ(iσ) > iσ + 1 (resp. < iσ + 1); if σ(iσ + 1) < iσ + 1 (resp. > iσ + 1), then
ϕ1(σ)(iσ) = σ(iσ + 1) < iσ (resp. > iσ) since iσ is the image of iσ − 1. Note that the
number of cycles changes by one, and so our involution reverses sign, and hence is a
killing involution on Dn.

3 Involutions for bijective proofs

3.1 Permutations

Let Ωn denote the set of permutations σ in Sn, whose cycle decomposition consists of
a k-cycle, k ≥ 1, such that

σ(1) < σ2(1) < · · · < σk−1(1), (10)

and n − k singletons. Set Cσ(1) = {1, σ(1), . . . , σk−1(1)}, the orbit of σ containing 1.
It is not hard to see that the weight of Ωn is −(x − 1)n−1. Therefore, to prove (2),
it remains to construct a killing involution on Ωn = Sn \ Ωn. Each permutation σ in
Ωn can be characterized by the condition that either the k-cycle containing 1 does not
satisfy the condition (10) or there exists an m-cycle (m > 1) disjoint with Cσ(1); in
other words, there exists i ∈ [n] such that

i ∈ Cσ(1) and σ−1(i) > i > 1, or i /∈ Cσ(1) and σ(i) 6= i. (11)
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σ with iσ ∈ Cσ(1) iσ jσ (σ(jσ), σ(iσ)) φ2(σ)

3 4 2 1=(1,3,2,4) 2 1 (3,4) 4 3 2 1=(1,4)(2,3)
3 1 4 2=(1,3,4,2) 2 1 (3,1) 1 3 4 2=(1)(2,3,4)
4 3 1 2=(1,4,2,3) 2 1 (4,3) 3 4 1 2=(1,3)(2,4)
4 1 2 3=(1,4,3,2) 2 1 (4,1) 1 4 2 3=(1)(2,4,3)
2 4 1 3=(1,2,4,3) 3 2 (4,1) 2 1 4 3=(1,2)(3,4)
3 1 2 4=(1,3,2)(4) 2 1 (3,1) 1 3 2 4=(1)(2,3)(4)
4 1 3 2=(1,4,2)(3) 2 1 (4,1) 1 4 3 2=(1)(2,4)(3)
4 2 1 3=(1,4,3)(2) 3 1 (4,1) 1 2 4 3=(1)(2)(3,4)

Table 1: Involution φ2 for n = 4

Let iσ denote the smallest integer satisfying (11) and jσ the largest integer < iσ in
Cσ(1). Then we claim that the mapping φ2 : σ 7→ σ ◦ (iσ, jσ) is a killing involution on
Ωn.

• Assume that iσ ∈ Cσ(1), then there exist integers p, q ≥ 0 such that q < p,
iσ = σp(1), jσ = σq(1) and the only elements < iσ in Cσ(1) are 1, σ(1), . . . , σq(1) =
jσ. It follows that iφ2(σ) = iσ and φ2 is an involution. It remains to check
the corresponding values of σ and φ2(σ) at iσ and jσ. Clearly σ(jσ) > iσ and
σ(iσ) < iσ (resp. > iσ) if σ(iσ) = 1 (resp. otherwise). On the other hand,
φ2(σ)(iσ) = σ(jσ) > iσ and

φ2(σ)(jσ) =

{
σ(iσ) = 1 ≤ jσ if σ(iσ) = 1;
σ(iσ) > iσ > jσ otherwise.

So exc φ2(σ) = exc σ.

• The case where iσ /∈ Cσ(1) can be proved similarly. Note that if iσ /∈ Cσ(1),
then iσ is the smallest element in Cσ(iσ), and the only elements < iσ in Cσ(1) are
1, σ(1), . . . , jσ, arranged in increasing order. The rest of the verification is left to
the reader.

Remark. 1. Since n /∈ {iσ, jσ} for σ ∈ Ωn, we see that φ2 is actually a killing
involution on Ωn,j := {σ ∈ Ωn | σ(n) = j} for j ∈ [n].
2. It is also easy to see that φ2 is a bijection between permutations σ ∈ Ωn such that
iσ ∈ Cσ(1) and those σ ∈ Ωn such that iσ /∈ Cσ(1).

We end with an example of φ2 for n = 4 in Table 1. As observed above, we need
only to apply φ2 to permutations σ ∈ Ωn with iσ ∈ Cσ(1).

3.2 Derangements

Fix j ∈ [n − 1] and set Dn,j = {σ ∈ Dn | σ(n) = j}. By definition, the weight of each
σ ∈ Dn,j is (−1)cyc σxexc σ, hence the weight of the cyclic permutation

σj = (n, j, j + 1, . . . , n− 1, j − 1, j − 2, . . . , 2, 1) ∈ Dn,j
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is −xn−j, to prove (6) it remains to construct a killing involution on Dn,j = Dn,j \{σj}.
For a, b ∈ [n], we say that a is smaller than b, denoted a ≺ b, if a is to the left of b

in the word:
wj = n 1 2 . . . (j − 2) (j − 1) (n− 1) . . . (j + 1) j.

For σ ∈ Dn,j = Dn,j \ {σj} denote by iσ the smallest integer i in the above word such
that σ(i) 6= σj(i). We notice that iσ 6= n because σ and σj have the same value j at
n, and also iσ 6= j because, otherwise, σ and σj differ only at j and coincide at all the
other k 6= j.

We claim that ϕ2 : σ −→ (iσ, σj(iσ)) ◦ σ is a killing involution on Dn,j. It suffices to
check the following points :

• ϕ2(σ) ∈ Dn: First, by definition of iσ, σ(iσ) 6= σj(iσ). Secondly, if iσ = 1 then
σ(σj(iσ)) = j 6= iσ; otherwise σ(σj(iσ)) = σ2

j (iσ) ≺ iσ since σj maps each k 6= n
to his left in wj. Thus σ(σj(iσ)) 6= iσ.

• ϕ2(σ) ∈ Dn,j : Since iσ 6= j and iσ 6= n then j /∈ {iσ, σj(iσ)}. It follows that
ϕ2(σ)(n) = j.

• ϕ2(σ) 6= σj and iϕ2(σ) = iσ : For k ≺ iσ and k 6= n, since σ(k) = σj(k) 6= σj(iσ) and
σ(k) = σj(k) ≺ k ≺ iσ, then σ(k) /∈ {iσ, σj(iσ)}, which implies that ϕ2(σ)(k) =
σj(k). Since ϕ2(σ)(iσ) = σ(iσ) 6= σj(iσ), then ϕ2(σ) 6= σj and iϕ2(σ) = iσ.

• exc ϕ2(σ) = exc σ : It suffices to check the values of ϕ2(σ) and σ at k ∈ [n − 1]
such that σ(k) = iσ or σ(k) = σj(iσ). If iσ ≤ j − 1 then σ maps 1, 2, . . . , iσ − 1
respectively to n, 1, . . . , iσ − 2, so σ−1(iσ) > iσ and σ−1(iσ − 1) > iσ; if iσ = n− 1
then σ maps 1, 2, . . . , j − 1 respectively to n, 1, . . . , j − 2, moreover σ−1(j) = n,
so j − 1 < σ−1(n − 1) < n − 1 and j − 1 < σ−1(j − 1) < n − 1; if iσ ∈
{n−2, . . . , j+1} then σ maps 1, 2, . . . , j− 2, j−1, n−1, . . . , iσ +1 respectively to
n, 1, . . . , j−1, n−1, . . . , iσ +2, so σ−1(iσ) < iσ and σ−1(iσ +1) < iσ. Summarizing
φ2(σ) and σ have the same number of excedances at σ−1(iσ) and σ−1(σj(iσ)).

As an example, we illustrate ϕ2 for n = 5. There are four subsets D5,j (1 ≤ j ≤ 4) :

• subset D5,4 : σ4 = 5 1 2 3 4, w4 = 5 1 2 3 4,

σ iσ σ4(iσ) (iσ, σ4(iσ)) ◦ σ

2 1 5 3 4=(1,2)(3,5,4) 1 5 2 5 1 3 4=(1,2,5,4,3)
2 3 1 5 4=(1,2,3)(4,5) 1 5 2 3 5 1 4=(1,2,3,5,4)
3 1 2 5 4=(1,3,2)(4,5) 1 5 3 5 2 1 4=(1,3,2,5,4)
3 5 1 2 4=(1,3)(2,5,4) 1 5 3 1 5 2 4=(1,3,5,4,2)
5 3 2 1 4=(1,5,4)(2,3) 2 1 5 3 1 2 4=(1,5,4,2,3)

• subset D5,3 : σ3 = 5 1 4 2 3, w3 = 5 1 2 4 3,
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σ iσ σ3(iσ) (iσ, σ3(iσ)) ◦ σ

2 1 4 5 3=(1,2)(3,4,5) 1 5 2 5 4 1 3=(1,2,5,3,4)
2 4 5 1 3=(1,2,4)(3,5) 1 5 2 4 1 5 3=(1,2,4,5,3)
4 1 5 2 3=(1,4,2)(3,5) 1 5 4 5 1 2 3=(1,4,2,5,3)
4 5 2 1 3=(1,4)(2,5,3) 1 5 4 1 2 5 3=(1,4,5,3,2)
5 4 1 2 3=(1,5,3)(2,4) 2 1 5 4 2 1 3=(1,5,3,2,4)

• subset D5,2 : σ2 = 5 3 4 1 2, w2 = 5 1 4 3 2,

σ iσ σ2(iσ) (iσ, σ2(iσ)) ◦ σ

3 4 1 5 2=(1,3)(2,4,5) 1 5 3 4 5 1 2=(1,3,5,2,4)
3 5 4 1 2=(1,3,4)(2,5) 1 5 3 1 4 5 2=(1,3,4,5,2)
4 3 5 1 2=(1,4)(2,3,5) 1 5 4 3 1 5 2=(1,4,5,2,3)
4 5 1 3 2=(1,4,3)(2,5) 1 5 4 1 5 3 2=(1,4,3,5,2)
5 1 4 3 2=(1,5,2)(3,4) 4 1 5 4 1 3 2=(1,5,2,4,3)

• subset D5,1 : σ1 = 2 3 4 5 1, w1 = 5 4 3 2 1,

σ iσ σ1(iσ) (iσ, σ1(iσ)) ◦ σ

2 5 4 3 1=(1,2,5)(3,4) 4 5 2 4 5 3 1=(1,2,4,3,5)
3 4 5 2 1=(1,3,5)(2,4) 4 5 3 5 4 2 1=(1,3,4,2,5)
5 3 4 2 1=(1,5)(2,3,4) 4 5 4 3 5 2 1=(1,4,2,3,5)
5 4 2 3 1=(1,5)(2,4,3) 4 5 4 5 2 3 1=(1,4,3,2,5)
4 3 2 5 1=(1,4,5)(2,3) 3 4 3 4 2 5 1=(1,3,2,4,5)

Remark. Chapman [2] has given a bijective proof of (6) with x = 1, but his involution
does not work for our purpose.
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