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Abstract

We prove a new result in the Theory of Orbit Harmonics and derive from it

a new proof of the Cohen–Macauliness of the ring QIm(G) of m-Quasi-Invariants
of a Coxeter Group G. Using the non-degeneracy of the fundamental bilinear

form on QIm(G), this approach yields also a direct and simple proof that the

quotient of QIm(G) by the ideal generated by the homogeneous G-invariants
affords a graded version of the left regular representation of G. Originally all

of these results were obtained as a combination of some deep work of Etingof–

Ginzburg [3], Feigin–Veselov [6] and Felder–Veselov [5]. The arguments here are
quite elementary and self contained, except those using the non-degeneracy of the

fundamental bilinear form.

Introduction

Throughout this paper we let G be a finite reflection group of n×n matrices,
Σ(G) will denote its class of reflections and for each s ∈ Σ(G) we choose once and
for all a vector αs perpendicular to the reflecting hyperplane of s. In this manner
the linear form giving the equation of this reflecting hyperplane is given by the
scalar product (x, αs). This given, a polynomial P (x) = P (x1, x2, . . . , xn) is said to
be G-m-Quasi-Invariant if and only if for all s ∈ Σ(G) the polynomial (1−s)P (x) is
divisible by (x, αs)2m+1. It easily shown that G-m-Quasi-Invariants form a finitely
generated G-invariant graded subalgebra of the polynomial ring Q[Xn], where Xn

is short for x1, x2, . . . , xn. Denoting this algebra by QIm[G], we have the proper
inclusions

QI1[G] ⊃ QI2[G] ⊃ · · · ⊃ QIm[G] ⊃ · · · .
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Clearly, QI0[G] = Q[Xn], and QI∞[G] may be viewed as the algebra ΛG of
G-invariant polynomials. Our goal here is to derive new proofs of some of the basic
results on m-Quasi-Invariants by means of the Theory of Orbit Harmonics. More
generally, using this theory, we will prove the following basic result.

Theorem I.1
Let A be a degree-graded G-invariant subalgebra of Q[Xn], and suppose that

(i) A ⊇ ΛG,
(ii) for some non-trivial homogeneous G-invariant B(x) we have B(x)Q[Xn] ⊆

A,
(iii) A has a G-invariant, non-degenerate, symmetric bilinear form

〈
,

〉
A

, graded
by degree†,

(iv) the orthogonal complement HG(A), with respect to
〈
,

〉
A

, of the ideal JG(A)
generated in A by the homogeneous G-invariants has dimension bounded by
the order of G.

Then both HG(A) and A/JG(A) afford the regular representation of G and A is
free over ΛG.

To state a further application of this Theorem we need to introduce further
notation and make some preliminary observations. To begin with, we should note
that within G-m-Quasi-Invariants we find m-analogues of all the ingredients that
occur in the relationship between the polynomial ring Q[Xn] and the ring of invari-
ants ΛG. For instance, let us recall that the space HG of “G-Harmonics” is defined
as the orthogonal complement of the ideal JG generated by the homogeneous G-
invariants. Now, it is well known that, for a Coxeter group G of n × n matrices,
ΛG is a free polynomial ring on n homogeneous generators q1(x), q2(x), . . . qn(x). It
follows from this that we have

HG =
{
P ∈ Q[Xn] : qk(∂x)P (x) = 0 for all k = 1, 2, . . . , n

}
, (I.1)

where for a polynomial P (x) we set P (∂x) = P (∂x1 , ∂x2 , . . . , ∂xn). It is also shown
in [12] that HG is the linear span of all the partial derivatives of the discriminant

ΠG(x) =
∏

s∈Σ(G)

(x, αs) . (I.2)

† Homogeneous elements of A of different degrees are orthogonal with respect to 〈 , 〉A.
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In symbols,
HG =

{
Q(∂x)ΠG(x) Q ∈ Q[Xn]

}
. (I.3)

We have m-analogues of both (I.1) and (I.3). To describe them we need to recall
that in [2] Chalykh and Veselov show that to each homogeneous m-Quasi-Invariant
Q(x) of degree d there corresponds a unique homogeneous differential operator,
acting on QIm[G], of the form

γQ(x, ∂x) = Q(∂x) +
∑
|q|<d

cq(x)∂qx, (I.4)

where ∂qx = ∂q1x1
∂q2x2

· · · ∂qn
xn

and |q| = q1 + q2 + · · ·+ qn, with cq(x) a rational function
in x1, x2, . . . , xn with a denominator which factors into a product of the linear forms
(x, αs). In fact, there is even an explicit formula for γq(x, ∂x) which is due to Berest
[1]. This is

γQ(x, ∂x) =
1

2dd!

d∑
k=0

(
d

k

)
Lm(G)d−kQLm(G)k (I.5)

where Q denotes the operator “multiplication by Q(x)”,

Lm(G) = ∆2 − 2m
∑

s∈Σ(G)

1
(x, αs)

∂αs
(I.6)

with ∆2 the ordinary Laplacian and ∂αs
the directional derivative corresponding to

αs. In fact, it develops that the linear extension of the map Q→ γQ(x, ∂x) defined
by (I.5) yields an algebra isomorphism of QIm[G] onto the algebra of operators of
the form (I.4) that commute with Lm(G). In particular for all P,Q ∈ QIm[G] we
have

γPQ(x, ∂x) = γP (x, ∂x)γQ(x, ∂x). (I.7)

This given, a deep result of Opdam [11] implies that the bilinear form defined
by setting, for P,Q ∈ QIm[G]〈

P , Q
〉
m

= γP (s, ∂x)Q(x)
∣∣
x=0

(I.8)

is non-degenerate on QIm[G] ×QIm[G]. Now, the space HG(m) of m-Harmonics
is simply defined as the orthogonal complement, with respect to

〈
,

〉
m

, of the ideal
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JG(m) generated in QIm[G] by the homogeneous G invariants. This given, the
m-analogue of (I.1) is simply

HG(m) =
{
P ∈ Q[Xn] : γqk

(x, ∂x)P (x) = 0 for all k = 1, 2, . . . , n
}

(I.9)

It should be mentioned that it follows from this that HG(m) ⊆ QIm[G]. This is an
immediate consequence of the remarkable property of the operator Lm(G) to the
effect that for any two polynomials P,Q we have Lm(G)P = Q with Q ∈ QIm[G]
if and only if P ∈ QIm[G]. In particular, any polynomial in the kernel of Lm(G) is
necessarily in QIm[G].

Now, it develops that a beautiful m-analogue of (I.3) was conjectured by
Feigin and Veselov in [6] and proved by Etingov and Ginsburg in [3]. In the present
notation, this result may be stated as follows.

Theorem I.2 (Theorem 6.20 of [3])

HG(m) =
{
γQ(x, ∂x)Π2m+1

G (x) : Q ∈ QIm[G]
}
. (I.10)

In fact, if B ⊂ QIm[G] is any basis for the quotient of QIm[G]/JG(m), then the
collection

F =
{
γb(x, ∂x) Π2m+1

G (x) : b ∈ B
}

(I.11)

is a basis for HG(m).

We shall show here that, by combining the theory of orbit harmonics with a
Hilbert series result of Felder–Veselov, we can also obtain a rather nice new proof
of this result.

This paper consists of 6 sections. In the first four sections we establish
Theorem I.1 by a sequence of five steps as follows. In the first step we introduce,
for a given G-regular vector a = (a1, a2, . . . , an), the ring A[a] of the G-orbit of a
and show that it affords the regular representation of G. In the second step we
introduce its graded version grA[a] and show that it carries a graded version of
the regular representation of G. In the third step, we introduce the space H[a](A)
of orbit A-harmonics and use the non-degeneracy of the form

〈
,

〉
A

to show that
H[a](A) and grA[a] are equivalent as graded G-modules. In the fourth step we use
the dimension bound in (iv) to show that HA and H[a](A) are one and the same.
In the fifth step we use again the non-degeneracy of the form to show that HA and
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the quotient ring A/IG(A) are equivalent as graded G-modules. In the sixth and
final step we combine property (ii) with a simple Hilbert series argument and derive
that A is free over ΛG.

In the fifth section we use some basic facts about Coxeter groups and their
corresponding m-Quasi-Invariants to show that the hypotheses of Theorem I.1 are
satisfied when A = QIm[G] and thereby derive that QIm[G] is a Cohen–Macaulay
module over the ring of G-invariants. We believe that the resulting proof is simpler,
more elementary and more revealing than the previous proofs.

In the sixth section we prove Theorem I.2. This last section has a substan-
tially different character than the previous ones. It makes crucial use of deep results
such as the symmetry of the Hilbert series of m-Harmonics and properties of the
Baker–Akhiezer function of QIm[G] whose proofs, to this date, are far from being
elementary.

Finally, we should mention that some of the methods of the Theory of Orbit
Harmonics we use here were developed and successfully used in [7] in the study
of the Garsia–Haiman modules. This may not be an accident since, in a sense,
m-Quasi-Invariants may be viewed as the Jack polynomial case of the so-called n!-
conjecture. In particular, since m-Quasi-Invariants arose in the study of operators
which commute with Lm(G), by analogy, there must be spaces arising from a study
of operators that commute with the Macdonald operator. We believe that we have
only seen here the tip of a mathematical iceberg gravid with combinatorial implica-
tions. To dispell any doubts we may have on this score, we urge the reader to view
the surprising facts that emerged in [9] in the study of the simplest possible cases.
Namely when the underlying reflection group reduces to the symmetric group S2 or
the dihedral group D2.

1. The orbit Ring
In this paper we adopt the convention that an n×n matrix A = ‖aij‖1≤i,j≤n

acts on a point x = (x1, x2, . . . , xn) by right multiplication. In this manner the
action of A on a polynomial P (x) = P (x1, x2, . . . , xn) is simply expressed in the
form

TAP (x) = P (xA).

We will work with a fixed finite Coxeter group G of n × n matrices and a gen-



Orbit Harmonics and m-Quasi-Invariants 6

eral algebra A which satisfies the hypotheses of Theorem I.1. The specialization
A = QIm[G] will only take place in Section 5. In the first four sections we will make
use of the invariant B(x) which satisfies hypothesis in (ii). This given, for our devel-
opments it is necessary that we choose once and for all a point a = (a1, a2, . . . , an)
which satisfies the following two conditions

a) B(a) 6= 0 , and b) ΠG(a) =
∏

s∈Σ(G)

(a, αs) 6= 0. (1.1)

Throughout the paper we denote by [a]G the G-orbit of a. In symbols,

[a ]G = {aA : A ∈ G} . (1.2)

Note that because of (1.1) b) the point a cannot lie in any of the reflecting hyper-
planes of G. Since G is a Coxeter group, it follows that the stabilizer of a, namely
the subgroup

Ga = {A ∈ G : aA = a}

reduces to the identity. This assures that [a ]G consists of |G| distinct points.
Next we need a polynomial φa(x) such that

φa(x) =


1 if x = a,

0 if x = b with b ∈ [a ]G and b 6= a.
(1.3)

The construction of this polynomial can be carried out in many ways. For the
moment it is immaterial how we pick φa(x). However, to get the best results in
Section 5, it will be necessary that φa(x) is constructed to have the smallest possible
degree. It turns out that we can never do better than the degree of ΠG. Indeed,
suppose (1.3) holds true and set

F (x) =
∑
B∈G

det(B)φa(xB) .

Now note that from (1.3) it follows that F (a) = 1 6= 0. Moreover we also have

F (xA−1) = det(A)F (x) (for all A ∈ G)

and this implies that F (x) is a G-invariant multiple of ΠG(x). Thus degree
(
F (x)

)
≥

degree
(
ΠG(x)

)
and this can only happen when degree

(
φa(x))

)
≥ degree

(
ΠG(x)

)
.
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To show that this minimum can be achieved, we use the well known fact that if
B = {h1, h2, . . . , h|G|} is a basis for the G-Harmonics then every polynomial P (x)
has an expansion of the form

P (x) =
|G|∑
i=1

hi(x)Ai(x) (with Ai(x) ∈ ΛG). (1.4)

This given, we start by constructing in any manner we please an initial polynomial
Pa(x) satisfying

Pa(x) =


1 if x = a,

0 if x = b with b ∈ [a ]G and b 6= a,

then use (1.4) and obtain the expansion

Pa(x) =
|G|∑
i=1

hi(x)Ai,a(x) (with Ai,a(x) ∈ ΛG) .

This done, we claim that we can take

φa(x) =
|G|∑
i=1

hi(x)Ai,a(a) . (1.5)

In fact, note that the G-invariance of the coefficients Ai,a(x) gives

Pa(b) − φa(b) =
|G|∑
i=1

hi(b)
(
Ai,a(b)−Ai,a(a)

)
= 0 for all b ∈ [a ]G.

Thus this choice of φa(x) will also satisfy (1.3). Note next that since (1.5) defines
φa(x) to be a G-harmonic polynomial, it follows from (I.3) that

degree
(
φa(x)

)
≤ degree

(
ΠG(x)

)
.

Since we already have the reverse inequality, equality must hold true for this choice
of φa.
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Now for each b ∈ [a ]G with b = aA we set

φb(x) = φa(xA−1) and ε(b) = det(A) .

Note that from (1.3) it immediately follows that

φb(x) =


1 if x = b,

0 if x = b′ with b′ ∈ [a ]G and b′ 6= b.
(1.6)

Next, we let J[a ]G(A) denote the ideal generated in A by the elements of A that
vanish on [a ]G. In symbols,

J[a ]G(A) =
{
P (x) ∈ A : P (b) = 0 for all b ∈ [a ]G

}
. (1.7)

This given, it follows that

Proposition 1.1
The quotient ring

A[a ]G = A/J[a ]G(A)

has dimension |G| and affords the left regular representation of G.
Proof

In view of (1.1), we can set

ψb(x) = φb(x)
B(x)
B(a)

. (1.8)

Note that, since B(x) is G-invariant, we derive from (1.6) that

ψb(x) =


1 if x = b,

0 if x = b′ with b′ ∈ [a ]G and b′ 6= b.
(1.9)

Moreover, from (ii) we also derive that

ψb(x) ∈ A for all b ∈ [a ]G .

Now note that, for any P ∈ A, (1.9) gives

P (x) −
∑
b∈[a ]G

P (b)ψb(x) ∈ J[a ]G(A) . (1.10)
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It will be convenient to express this relation by writing

P (x) ∼=[a]G

∑
b∈[a ]G

P (b)ψb(x) . (1.11)

Thus the collection {
ψb(x)

}
b∈[a ]G

(1.12)

is a basis for the quotient ring A[a ]G .
Since the ideal J[a ]G(A) is G-invariant it immediately follows that G acts on

A[a ]G . Thus to complete our proof we only need to compute the character of this
action. To this end, note that, for all σ and β in G, we derive from (1.11) that

Tσψaβ(x) = ψa(xσβ−1) ∼=[a ]G

∑
α∈G

ψa(aασβ−1)ψaα(x)

∼=[a ]G

∑
α∈G

χ
(
ασβ−1 = id

)
ψaα(x)

∼=[a ]G

∑
α∈G

χ
(
ασ = β

)
ψaα(x),

where χ(A) = 1 if A is true and χ(A) = 0 otherwise. Thus the action of G on the
basis

{
ψb(x)

}
b∈[a ]G

is given by the matrix A(σ) = ‖χ
(
ασ = β

)
‖α,β∈G. It follows

that the character of the G action on A[a ]G is given by

traceA(σ) =
∑
α∈G

χ
(
ασ = α

)
=

 |G| if σ = id,

0 if σ 6= id,

and this is the character of the left regular representation of G, precisely as asserted.

Remark 1.1
The ring A[a ]G is not graded but it has a filtration given by the subspaces

H≤k(A[a ]G) = L[a ]G

[
P : P ∈ H≤k

(
A

)]
(1.13)

where “L[a ]G” denotes “Linear Span” modulo J[a ]G(A) andH≤k
(
A

)
is the subspace

of A spanned by its elements of degree ≤ k. Now note that, since by construction
we have

degreeψb(x) = degree
(
B(x)

)
× degree(φa), (1.14)
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it immediately follows from the expansion in (1.11) that

A[a ]G = H≤dA
(
A[a ]G

)
(1.15)

where for convenience we have set

dA = degree
(
B(x)

)
× degree(φa). (1.16)

It will be convenient here and after to adopt the convention that if V is a
graded vector space then H=k(V ) denotes the subspace spanned by homogeneous
elements of degree k. Likewise H≤k(V ) denotes the subspace spanned by the ho-
mogeneous elements of degree ≤ k.

2. The graded version of A[a ]G

For each polynomial P we shall here and after denote by h(P ) the homo-
geneous component of highest degree in P . This given, we let grJ[a ]G(A) be the
ideal in A generated by the highest degree components of elements of J[a ]G(A). In
symbols,

grJ[a ]G(A) =
(
h(P ) : P ∈ J[a ]G(A)

)
A
. (2.1)

This brings us to define the “graded version” of A[a ]G as the quotient

grA[a ]G = A/grJ[a ]G(A) . (2.2)

Since grJ[a ]G(A) is generated by homogeneous polynomials, grA[a ]G is necessarily
a graded ring. Note further that if P is any homogeneous polynomial of degree > dA
then the fact that

P (x) −
∑
b∈[a ]G

P (b)ψb(x) ∈ J[a ]G(A)

immediately implies that P ∈ grJ[a ]G(A). Thus it follows that grA[a ]G has the
direct sum decomposition

grA[a ]G =
dA⊕
k=0

H=k(grA[a ]G). (2.3)
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It will be convenient to choose once and for all, for each 1 ≤ k ≤ dA, a collection
B=k ⊂ H=k(A) yielding a basis for the subspace H=k(grA[a ]G). This given, we
have the following useful fact.

Proposition 2.1
The collection

B≤k = B=0 ] B=1 ] · · · ] B=k

is also a basis for the subspace H≤k(A[a ]G). In particular, B≤dA is a basis of A[a ]G .
Proof

Clearly the result holds true for k = 0 since B=0 reduces to the single constant
1. So we may proceed by induction on k. Let us then assume that each P ∈
H≤k−1(A[a ]G) has an expansion in terms of B≤k−1. This given, note that any
P ∈ H≤k(A), viewed as a representative of an element of grA[a ]G , may be expanded
in terms of the basis B≤k. In other words, we will have constants cφ such that

P =
∑

φ∈B≤k

cφ φ + R , (2.4)

for a suitable R ∈ grJ[a ]G(A). Now the definition of grJ[a ]G(A) yields that there
must be elements fi ∈ J[a ]G(A) and Ai ∈ A giving

R =
∑
i

Ai h(fi) . (2.5)

Since R is necessarily of degree ≤ k we see that there is no loss in assuming that
we have

degreeAi ≤ k − degree h(fi) . (2.6)

Using (2.5) we may rewrite (2.4) in the form

P =
∑

φ∈B≤k

cφ φ +
∑
i

Ai fi −
∑
i

Ai (fi − h(fi)) , (2.7)

and this implies that

P −
∑

φ∈B≤k

cφ φ ∼=[a ]G −
∑
i

Ai (fi − h(fi)) . (2.8)
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But now (2.6) and the definition of h(fi) yield that

degree
∑
i

Ai (fi − h(fi)) ≤ k − 1 . (2.9)

Thus our inductive hypothesis yields that we have constants dφ giving∑
i

Ai (fi − h(fi)) ∼=[a ]G

∑
φ∈B≤k−1

dφ φ ,

and this combined with (2.8) completes the induction. This proves the first asser-
tion. The second assertion follows from the identity in (1.15).

Proposition 2.1 has the following remarkable corollary.

Theorem 2.1
The ring grA[a ]G yields a graded version of the regular representation. In

fact, for every 0 ≤ k ≤ dA, we have the character relation

char H=k(grA[a ]G) = char H≤k(A[a ]G) − char H≤k−1(A[a ]G). (2.10)

In particular the characters of the subspaces H≤k(A[a ]G) are related to the graded
character of grA[a ]G by the following identity

dA∑
k=0

qkchar H=k(grA[a ]G) = qdAchar A[a ]G + (1− q)
dA−1∑
k=0

qk char H≤k(A[a ]G).

(2.11)
Proof

Let B≤k = {φi}mk
i=1 so that B=k = {φi}mk−1<i≤mk

, and let

A(σ) = ‖ai,j(σ)‖|G|i,j=1

be the matrix expressing the action of G on the basis B≤dA as elements of A[a ]G .
Since H≤k(A[a ]G) is G-invariant it follows that for any j ≤ mk we have the expan-
sion

Tσφj =
mk∑
i=1

φi ai,j(σ) + Rσ,j (with Rσ,j ∈ J[a ]G(A) of degree ≤ k). (2.12)
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This means that the action of G on the subspace H≤k(A[a ]G) induces a represen-
tation given by the matrix

A≤k(σ) =
∥∥ai,j(σ)

∥∥
1≤i,j≤mk

. (2.13)

Note further that when mk−1 < j ≤ mk, then φj is homogeneous of degree k and
equating homogeneous terms of degree k in (2.12) we get

Tσφj =
∑

mk−1<i≤mk

φi ai,j(σ) +


h(Rσ,j) if degree R = k,

0 if degree Rσ,j < k,

(with Rσ,j ∈ J[a ]G(A)).

In either case we derive that

Tσφj ∼=
∑

mk−1<i≤mk

φi ai,j(σ) (modulo grJ[a ]G(A)).

This shows that the action of G on the subspace H=k

(
grA[a ]G

)
induces a repre-

sentation given by the matrix

A=k(σ) =
∥∥ai,j(σ)

∥∥
mk−1<i,j≤mk

.

Thus

char H=k

(
grA[a ]G

)
= trace A=k = trace A≤k − trace A≤k−1 .

This proves (2.10). This given, multiplying (2.10) by qk and summing for 0 ≤ k ≤
dA, the identity in (1.15) yields (2.11).

3. The orbit A-Harmonics
Recall that by the hypothesis in (iii) of Theorem I.1, the algebra A has a

non-degenerate bilinear form
〈
,

〉
A

. Using this form we define the A-harmonics of
the orbit [a ]G to constitute the orthogonal complement of the ideal grJ[a ]G(A). In
symbols

H[a]G(A) =
{
P ∈ A :

〈
Q , P

〉
A

= 0 for all Q ∈ grJ[a ]G(A)
}
. (3.1)
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Note that, since the bilinear form
〈
,

〉
A

is also graded, it immediately follows from
(3.1) that all the homogeneous components of any P ∈ H[a](A) must be also in
H[a]G(A). Thus H[a ]G(A) is a graded vector space. However we can establish a
considerably stronger result.

Theorem 3.1
H[a ]G(A) is a graded G-module equivalent to grA[a ]G . In particular it also

carries the regular representation and thus it has dimension the order of G.
Proof

Note that the G-invariance of the bilinear form
〈
,

〉
A

may be also expressed
in the form

〈
TσP , Q

〉
A

=
〈
P , T−1

σ Q
〉
A

(for all σ ∈ G), (3.2)

and, since the ideal grJ[a ]G(A) is G-invariant, it follows from (3.2) and the def-
inition in (3.1) that also H[a ]G(A) is G-invariant. Thus to prove the assertion
we need only compute its character. To this end, for a given 1 ≤ k ≤ dA let
{ψ1, ψ2, . . . , ψs} ⊆ A be a basis for H=k

(
grJ[a ]G(A)), and let {φ1, φ2, . . . , φr} ⊆ A

be constructed so that, together with {ψ1, ψ2, . . . , ψs} they yield a basis forH=k

(
A

)
.

In particular, {φ1, φ2, . . . , φr} ⊆ A are independent modulo grJ[a ]G(A), and there-
fore the elements of grA[a ]G which they represent are a basis for H=k

(
grA[a ]G

)
.

Now note that the non-degeneracy of the form
〈
,

〉
A

on the subspaceH=k

(
A

)
assures the non-singularity of the block matrix

M =

 ‖
〈
φi, φj

〉
A
‖1≤i,j≤r ‖

〈
φi, ψj

〉
A
‖1≤i≤r
1≤j≤s

‖
〈
ψj , φi

〉
A
‖1≤i≤r
1≤j≤s

‖
〈
ψi, ψj

〉
A
‖1≤i,j≤s

 . (3.3)

It then follows that the matrix product

〈
φ1, φ2, . . . , φr, ψ1, ψ2, . . . , ψs

〉
M−1

yields a basis for H=k

(
A

)
that is “dual” to

〈
φ1, φ2, . . . , φr, ψ1, ψ2, . . . , ψs

〉
with

respect to the bilinear form < , >A. That means that if this new basis is

〈
η1, η2, . . . , ηr, γ1, γ2, . . . , γs

〉
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then we shall have

a)
〈
φi, ηj

〉
A

=
{

1 if i = j
0 if i 6= j

, b)
〈
ψi, γj

〉
A

=
{

1 if i = j
0 if i 6= j

(3.4)

and
a)

〈
φi, γj

〉
A

= 0 for all i, j , b)
〈
ψi, ηj

〉
A

= 0 for all i, j (3.5)

Note that, since ψ1, ψ2, . . . , ψs span H=k

(
grJ[a ]G(A)

)
, the relations in (3.5) b)

imply that η1, η2, . . . , ηr lie in H=k

(
H[a ]G(A)

)
. We claim that

〈
η1, η2, . . . , ηr

〉
are

in fact a basis of H=k

(
H[a ]G(A)

)
. To show this, note that the duality relations in

(3.4) and (3.5) yield that for any polynomial P ∈ H=k

(
A

)
we have the expansions

P =
r∑
i=1

〈
P, ηi

〉
A
φi +

s∑
j=1

〈
P, γj

〉
A
ψi , (3.6)

P =
r∑
i=1

〈
P, φi

〉
A
ηi +

s∑
j=1

〈
P,ψj

〉
A
γi . (3.7)

In particular, if P ∈ H=k

(
H[a ]G(A)

)
, the latter expansion reduces to

P =
r∑
i=1

〈
P, φi

〉
A
ηi . (3.8)

This shows that
〈
η1, η2, . . . , ηr

〉
span H=k

(
H[a ]G(A)

)
. Since they are independent

by construction, it follows that they are a basis as asserted. This given, let A(σ) =
‖ai,j(σ)‖ri,j=1 be the matrix that expresses the action of G on

〈
η1, η2, . . . , ηr

〉
. That

is, for all σ ∈ G we have

Tσ ηi =
r∑

u=1

ηu au,i(σ) for 1 ≤ i ≤ r. (3.9)

Using the expansion in (3.6) for P = Tσφv, we get

Tσφv =
r∑
i=1

〈
Tσφv, ηi

〉
A
φi +

s∑
j=1

〈
Tσφv, γj

〉
A
ψj

(by (3.2)) =
r∑
i=1

〈
φv, T

−1
σ ηi

〉
A
φi +

s∑
j=1

〈
Tσφv, γj

〉
A
ψj

∼=
r∑
i=1

〈
φv, T

−1
σ ηi

〉
A
φi (modulo grJ[a ]G(A)).

(3.10)
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But, using (3.9), we derive (from (3.4) a)):

〈
φv, T

−1
σ ηi

〉
A

=
r∑

u=1

〈
φv, ηu

〉
A
au,i(σ−1) = av,i(σ−1) ,

and thus (3.10) reduces to

Tσφv ∼=
r∑
i=1

av,i(σ−1)φi (modulo grJ[a ]G(A)).

In other words, the action of G on the basis
〈
φ1, φ2, . . . , φr

〉
of H=k

(
grA[a ]G

)
is

given by the matrix
A>

(
σ−1

)
.

Since
trace A(σ) = trace A>

(
σ−1

)
we can thereby conclude that

char H=k

(
H[a ]G(A)

)
= char H=k

(
grA[a ]G

))
.

This proves that H[a ]G(A) and grA[a ]G are equivalent as graded G-modules and
completes the proof of the theorem.

Remark 3.1
We should note that if V is a finite dimensional vector space with a non-

degenerate, symmetric, bilinear form
〈
,

〉
V

, and U ⊂ V is a proper subspace, and
if we set

U⊥ =
{
P ∈ V :

〈
P , Q

〉
V

= 0 for all Q ∈ U
}
,

then
U⊥

⊥
= U . (3.11)

Note that, since the form
〈
,

〉
A

is graded we can apply this result with
V = H=k(A) and U = H=k

(
grJ[a ]G(A)

)
and deduce the relations

H=k

(
H[a ]G(A)

)
=

(
H=k

(
grJ[a ]G(A)

))⊥
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and
H=k

(
grJ[a ]G(A)

)
=

(
H=k

(
H[a ]G(A)

))⊥
.

Similarly we get

H[a ]G(A) =
(
grJ[a ]G(A)

)⊥ and grJ[a ]G(A) =
(
H[a ]G(A)

)⊥
. (3.12)

4. The A-Harmonics of G

In the classical case the space HG of “Harmonics” of G is defined as the
orthogonal complement of the ideal generated by the homogeneous G-invariants.
For A-harmonics the definition is entirely analogous. We simply let JG(A) be the
ideal generated in A by the homogeneous G-invariants and set, (using the notation
in Remark 3.1):

HG(A) =
(
JG(A)

)⊥ (4.1)

Note that, since the bilinear form
〈
,

〉
A

is graded, HG(A) will necessarily be a
graded vector space, as was the case for H[a ]G(A) itself. However, the hypothesis
in (iv) immediately yields the following remarkable result.
Theorem 4.1

The two subspaces H[a ]G(A) and HG(A) are identical. In particular, HG(A)
carries a graded version of the left regular representation of G. Moreover we also
have

JG(A) = grJ[a ]G(A) (4.2)

Proof
Note that if Q is a G-invariant polynomial then the polynomial Q(x)−Q(a)

vanishes at all points of the orbit [a ]G. That is Q(x) − Q(a) ∈ J[a ]G(A). Thus if
Q is also homogeneous of positive degree it necessarily follows that

Q(x) ∈ grJ[a ]G(A) .

This proves the containment

JG(A) ⊆ grJ[a ]G(A) .

Therefore we must also have the reverse containment(
JG(A)

)⊥ ⊇ (
grJ[a ]G(A)

)⊥
,
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and this can be written as

HG(A) ⊇ H[a ]G(A) . (4.3)

But now Theorem 3.1 and the hypothesis in (iv) give

|G| = dim HG(A) ≥ dimH[a ]G(A) = |G| ,

and (4.3) forces the desired equality

HG(A) = H[a ]G(A) .

Then it follows that we must also have

HG(A)⊥ = H[a ]G(A)⊥ ,

and the equality in (4.2) follows immediately from Remark 3.1.

We should note that from (4.2) we can derive the following result.

Theorem 4.2
If P ∈ A is homogeneous then

degree(P ) > dA =⇒ P ∈ JG(A) (4.4)

Proof
We have seen that, in terms of the basis elements defined in (1.8), every

element P ∈ A satisfies the identity in (1.10), that is

P (x) −
∑
b∈[a ]G

P (b)ψb(x) ∈ J[a ]G(A) . (4.5)

Since all the terms in the sum have degree ≤ dA, if P is homogeneous of degree
> dA then (4.5) forces

P (x) ∈ grJ[a ]G(A) ,

and the equality in (4.2) proves (4.4).

But the most important consequence of (4.2) is given by the following truly
remarkable result.
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Theorem 4.3
The quotient ring

A/JG(A)

carries the regular representation of G and therefore has dimension the order of G.
Proof

The equality JG(A) = grJ[a ]G(A) forces the equality

A/JG(A) = A/grJ[a ]G(A) ,

and therefore the assertion follows from Theorem 2.1.

Before we can complete the proof of Theorem I.1 we need to recall some
basic facts about Cohen–Macaulay algebras. To begin with, let us recall that the
Hilbert series of a finitely generated, graded algebra A is given by the formal sum

FA(t) =
∑
k≥0

tk dimHk(A) , (4.6)

where Hk(A) denotes the subspace spanned by the elements of A that are ho-
mogeneous of degree k. It is well known that FA(t) is a rational function of the
form

FA(t) =
P (t)

(1− td1)(1− td2) · · · (1− tdn)
,

with d1, d2, . . . , dn positve integers and P (t) a polynomial that does not vanish
at t = 1. The minimum n for which this is possible characterizes the growth of
dimHk(A) as k→∞. This integer is customarily called the “Krull dimension”
of A and is denoted “dimK A”. It is easily shown that we can always find in
A homogeneous elements θ1, θ2, . . . , θn such that the quotient of A by the ideal
generated by θ1, θ2, . . . , θn is a finite dimensional vector space. In symbols

dim A/(θ1, θ2, . . . , θn)A <∞ (4.7)

It is also a fact that dimK A is also equal to the minimum n for which this is
possible. When (4.7) holds true and n = dimK A then {θ1, θ2, . . . , θn} is called a
“homogeneous system of parameters”, HSOP in brief.
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It follows from (4.7) that if η1, η2, . . . , ηN ∈ A give a basis for the quotient
in (4.7) then every element of A has an expansion of the form

P =
N∑
i=1

ηiPi(θ1, θ2, . . . , θn) , (4.8)

with coefficients Pi(θ1, θ2, . . . , θn) polynomials in their arguments. The algebra A
is said to be Cohen–Macaulay, when the coefficients Pi(θ1, θ2, . . . , θn) are uniquely
determined by P . This amounts to the requirement that the collection{

ηi θ
p1
1 θ

p2
2 · · · θpn

n

}
i,p

(4.9)

is a basis for A as a vector space and therefore A is a free module over
Q[θ1, θ2, . . . , θn]. Note that when this happens and θ1, θ2, . . . , θn; η1, η2, . . . , ηN are
homogeneous of degrees d1, d2, . . . , dn; r1, r2, . . . , rN then we must necessarily have

FA(t) =
∑N
i=1 t

ri

(1− td1)(1− td2) · · · (1− tdn)
, (4.10)

from which it follows that dimK A = n.
This brings us to a useful criterion for assuring the Cohen–Macauliness of a

finitely generated graded algebra.

Proposition 4.1
Let θ1, θ2, . . . , θn be an HSOP, and let di = degree(θi), Then A is free over

Q[θ1, θ2, . . . , θn] and therefore Cohen–Macaulay if and only if

lim
t→1−

(1− td1)(1− td2) · · · (1− tdn)FA(t) = dim A/(θ1, θ2, . . . , θn)A (4.11)

Proof†
Note first that the necessity of the condition follows immediately from (4.10).

To prove the sufficiency, let η1, η2, . . . , ηN be a homogeneous basis for the quotient
A/(θ1, θ2, . . . , θn)A and set ri = degree(ηi). Next let Mi denote the subspace
spanned by the collection{

ηjθ
p1
1 θ

p2
2 · · · θpn

n : 1 ≤ j ≤ i ; pj ≥ 0
}
. (4.12)

† This is a known result but we include a proof for the sake of completeness.
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It is easily seen that if Hm(Mi) and Hm(Mi/Mi−1) denote the subspaces of Mi

and Mi/Mi−1 spanned by their homogeneous elements of degree m then we must
have

dim Hm(Mi) = dim Hm(Mi/Mi−1) + dim Hm(Mi−1) .

Multiplying by tm and summing, we derive the Hilbert series identities

FMi
(t) = FMi/Mi−1(t) + FMi−1(t) (for 1 ≤ i ≤ N with M0 = {0}) .

This implies that

FA(t) = FM1(t) + FM2/M1(t) + · · · + FMN/MN−1(t) . (4.13)

Now, for a given 1 ≤ i ≤ N , let φ be the map from the polynomial ring
Q[xd11 , x

d2
2 , . . . , x

dn
n ] onto Mi/Mi−1 defined by setting for every polynomial

P (xd11 , x
d2
2 , . . . , x

dn
n )

φP = ηi P (θ1, θ2, . . . , θn) .

Note that, a priori the kernel J of φ will be an ideal of Q[xd11 , x
d2
2 , . . . , x

dn
n ], and

since φ preserves degrees, we will have

FMi/Mi−1(t) = triF
Q[x

d1
1 ,x

d2
2 ,...,xdn

n ]/J (t) . (4.14)

Thus, if J happens to be trivial, it follows that

FMi/Mi−1(t) =
tri

(1− td1)(1− td2) · · · (1− tdn)
. (4.15)

On the other hand, if J contains a non trivial homogeneous element P of degree d,
from (4.14) we derive the coefficient-wise inequality of Hilbert series

FMi/Mi−1(t) << triF
Q[x

d1
1 ,x

d2
2 ,...,xdn

n ]/(P )
(t) , (4.16)

where the symbol “<<” is to indicate that the inequality is coefficient-wise. Since
the ring Q[xd11 , x

d2
2 , . . . , x

dn
n ] has no zero divisors, we will have

F
Q[x

d1
1 ,x

d2
2 ,...,xdn

n ]/(P )
(t) =

1− td

(1− td1)(1− td2) · · · (1− tdn)
,
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and from (4.16) we derive that

FMi/Mi−1(t) << tri
1− td

(1− td1)(1− td2) · · · (1− tdn)
. (4.17)

In conclusion, we see that we will have

lim
t→1−

(1− td1)(1− td2) · · · (1− tdn)FMi/Mi−1(t) = εi , (4.18)

with

εi =

 1 if (4.15) holds true,

0 if (4.17) holds true.

Thus, passing to the limit as t→1− in (4.13) and using (4.18) together with the
hypothesis in (4.11), we finally obtain

ε1 + ε2 + · · ·+ εN = dim A/(θ1, θ2, . . . , θn)A = N . (4.19)

This forces all the εi to be equal to one. However, this can only hold true when the
collection {

ηjθ
p1
1 θ

p2
2 · · · θpk

n

}
j,p

forms an independent set. Indeed any relation of the form

N∑
j=1

ηjPj(θ1, θ2, . . . θn) = 0 .

would force one of the εi to vanish and contradict (4.19). This shows that

FA(t) =
FA/(θ1,θ2,...,θn)A(t)

(1− td1)(1− td2) · · · (1− tdn)
(4.20)

and proves the Cohen–Macauliness of A.

We are now ready to complete the proof of Theorem I.1.

Theorem 4.4
The algebra A is a free ΛG-module and therefore Cohen–Macaulay.

Proof
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Let q1(x), q2(x), . . . qn(x) be a fundamental set of homogeneous generators
of ΛG and suppose that d1, d2, . . . , dn are their respective degrees. It is well known
(see [10]) that we must have the equality

d1d2 · · · dn = |G|. (4.21)

From the hypothesis (ii) it follows that we have the containments

B(x)Q[Xn] ⊂ A ⊂ Q[Xn] , (4.22)

and since A is degree graded, and B is homogeneous, it follows from (4.6) that the
Hilbert series FA(q) of A will satisfy the inequalities

tdegree(B)

(1− t)n
<< FA(t) <<

1
(1− t)n

. (4.23)

In particular, this shows that the Krull dimension of A is n.
This given, multiplying both sides of (4.23) by (1− td1)(1− td2) · · · (1− tdn)

and passing to the limit as t→1−, the equality in (4.21) implies that

limt→1−(1− td1)(1− td2) · · · (1− tdn)FA(t) = |G| . (4.24)

Moreover, since q1(x), q2(x), . . . qn(x) are also generators of the ideal JG(A) we see
that Theorem 4.3 implies that

dim A/
(
q1, q2, . . . qn

)
A

= |G| ,

and Proposition 4.1 then yields that A is Cohen–Macaulay over ΛG.

Remark 4.1
We should note that (4.20) yields the Hilbert series identity

FA(t) =
FA/(q1,q2,...qn)A(t)

(1− td1)(1− td2) · · · (1− tdn)
.

In particular it follows that if B is any basis for the quotient

A/(q1, q2, . . . qn)A
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then the collection {
b qp11 qp22 · · · qpn

n

}
b∈B , pi≥0

is a basis for A.

5. QIm(G) is a Cohen–Macaulay algebra.
In this section we show that QIm(G) satisfies the hypotheses (i)-(iv) of

Theorem I.1.
Now, (i) is no problem since we have seen that the definition gives QIm(G) ⊃

QI∞(G) = ΛG for all m ≥ 0. For property (ii), we can take

B(x) = ΠG(x)2m. (5.1)

To see this, we need only observe that for any polynomial P (x) ∈ Q[Xn] and any
s ∈ Σ(G), the G-invariance of ΠG(x)2m gives

(1− s)ΠG(x)2mP (x) = ΠG(x)2m(1− s)P (x).

Clearly, ΠG(x)2m yields the factor (x, αs)2m and another factor (x, αs) comes from
(1− s)P (x). This proves that

ΠG(x)2mQ[Xn] ⊂ QIm(G) , (5.2)

as desired.
For (iii) we need to make sure that the bilinear form〈

P , Q
〉
G

= γP (x, ∂x)Q(x)
∣∣∣
x=0

(5.3)

mentioned in the introduction has the required properties. To begin with, in the
Sn case a reasonably elementary proof of non-degeneracy can be found in [8], but
in the general case we will have to rely on Opdam’s proof [11]. The G-invariance
as expressed in (3.2) immediately follows from the identity

TσγQ(x, ∂x)T−1
σ = γTσQ(x, ∂x) ( for all σ ∈ G )

satisfied by all the operators γQ. The latter in turn follows from the Berest formula
(I.5) and the identity

TσLm(G)T−1
σ = Lm(G) ( for all σ ∈ G ),



Orbit Harmonics and m-Quasi-Invariants 25

which can be easily verified from the definition in (I.6). The symmetry of
〈
,

〉
m

is a
consequence of the symmetry of the Baker–Akhiezer function (see Section 6 for more
information on that function) of the algebra QIm(G). A reasonably accessible proof
of this result can be found in [8]. The fact that

〈
,

〉
m

is graded is an immediate
consequence of the fact that for Q homogeneous of degree d the differential operator
γQ(x, ∂x) is also homogeneous of order d. Again this can be easily seen from the
Berest formula.

We are thus left with the verification of property (iv). Before we do this, we
need to fix some notation and establish a few auxiliary facts that are of interest by
themselves. To begin with, we recall that the point a = (a1, a2, . . . , an) has to be
chosen to have a trivial G-stabilizer. In this case we can satisfy all the conditions
we need (including (1.1)) by requiring that

ΠG(a) 6= 0 (5.4)

Here, as in Section 1, φb(x) denotes the polynomial defined by (1.6). But it will be
helpful to assume that the polynomial φa(x) satifying (1.3) is chosen so as to have
the minimal degree |Σ(G)|. Thus, since degree

(
Π(xG)

)
= |Σ(G)|, the definition in

(1.8) and (5.1) yield that the polynomial ψb(x) satisfying (1.9) has degree

dm(G) = (2m+ 1)|Σ(G)| . (5.5)

Before we proceed with our arguments, it will be convenient to adopt a
notation that is more adherent to the present choice A = QIm(G). To this end,
for the rest of this paper we shall assume that
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(1) The ideal of G-m-Quasi-Invariants that vanish in [a ]G is denoted
J[a ]G(m).

(2) The quotient of QIm(G) by J[a ]G(m) is denoted R[a ]G [m].
(3) The graded version of J[a ]G(m)] is denoted grJ[a ]G(m).
(4) The graded version of R[a ]G [m] is denoted grR[a ]G [m]
(5) The orthogonal complement of grJ[a ]G(m) with respect to the bilinear

form in (5.3) is denoted H[a ]G(m) and its elements are called “orbit
m-Harmonics”.

(6) The ideal generated in QIm(G) by the G-invariants is denoted JG(m).
(7) The orthogonal complement of JG(m) with respect to the bilinear

form in (5.3) is denoted HG(m), and its elements are called “G-m-
Harmonics”.

(5.6)

This given, since the only place we have used property (iv) is in the proof of Theo-
rem 4.1, all the results obtained in Sections 1, 2 and 3 hold true with A = QIm(G).
Therefore we can state
Theorem 5.1

(a) R[a ]G [m] is of dimension |G| and affords the regular representation of G.
(b) R[a ]G [m] and H[a ]G(m) are equivalent G-modules affording a graded version

of the regular representation of G.
However, here we have the following two additional results.

Theorem 5.2

H[a ]G(m) =
{
Q ∈ QIm(G) : γPQ = 0 for all P ∈ grJ[a ]G(m)

}
. (5.7)

Proof
In view of the definition in (5.3), we clearly see that the condition γPQ = 0

is stronger than
〈
P , Q

〉
m

= 0. Thus we need only establish the containment

H[a]G(m) ⊆
{
P ∈ QIm(G) : γPQ = 0 for all P ∈ grJ[a ]G(m)

}
. (5.8)

To this end, note that since grJ[a ]G(m) is an ideal of QIm(G), the defining condi-
tion

H[a ]G(m) =
{
Q ∈ QIm(G) :

〈
P , Q

〉
m

= 0 for all P ∈ grJ[a ]G(m)
}
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can be also written in the form

H[a ]G(m) =
{
Q ∈ QIm(G) :

〈
RP , Q

〉
m

= 0

for all P ∈ grJ[a ]G(m) and R ∈ QIm(G)
}
.

On the other hand from (I.7) and the definition in (5.3) of the bilinear form
〈
,

〉
m

we derive that 〈
RQ , P

〉
m

=
〈
R , γQP

〉
m

Thus

P ∈ H[a]G(m) implies
〈
R , γQP

〉
m

= 0

for all Q ∈ grJ[a ]G(m) and R ∈ QIm(G) .

But then the non-degeneracy of
〈
,

〉
m

yields that

P ∈ H[a]G(m) =⇒ γQP = 0 for all Q ∈ grJ[a ]G(m) .

This proves (5.8) and completes the proof of the theorem.

The next result proves the identity in (I.9).

Theorem 5.3

HG(m) =
{
P ∈ Q[Xn] : γqk

(x, ∂x)P (x) = 0 for all k = 1, 2, . . . , n
}
. (5.9)

Proof
By definition,

HG(m) =
{
P ∈ Q[Xn] :

〈
Q , P

〉
m

= 0 for all Q ∈ JG(m)
}
,

and, since the fundamental invariants q1, q2, . . . , qn generate the ideal JG(m), this
is equivalent to

HG(m) =
{
P ∈ Q[Xn] :

〈
Rqk , P

〉
m

= 0

for all R ∈ QIm(G) and k = 1, 2, . . . , n}
(5.10)
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Now, from (5.3) and (I.7) we derive that〈
Rqk , P

〉
m

=
〈
R , γqk

P
〉
m
. (5.11)

But the non-degeneracy of
〈
,

〉
m

yields that〈
R , γqk

P
〉
m

= 0 for all R ∈ QIm(G) implies γqk
P = 0. (5.12)

Combining (5.10), (5.11) and (5.12) proves (5.9).

We are now finally in a position to establish property (iv) for A = QIm(G).

Theorem 5.4 We have
dim HG(m) ≤ |G|. (5.13)

Proof
Notice to the reader. The following argument was provided to us by E-mail

by Feigin and Veselov. We feel compelled to reproduce it here since it is not available
in the present literature. Although this result is stated in many places (see [3], [4],
[6]), proofs (when not omitted) give no indication that it could be established in
such a simple and elementary manner.

The idea is to show that each m-Harmonic Q ∈ HG(m) is completely
determined by |G| of its derivatives at the point a. To do this, we fix once
and for all a fundamental set q1, q2, . . . , qn of G-invariants and a monomial ba-
sis {xε1 , xε2 , . . . , xεN } for the quotient Q[Xn]/(q1, q2, . . . , qn)Q[Xn]. Since it is well
known that dimQ[Xn]/(q1, q2, . . . , qn)Q[Xn] = |G|, we must necessarily have

N = |G|.

This given, we need only show that every Q(x) ∈ HG(m) is completely determined
by the |G| derivatives

∂ε1x Q(x)
∣∣
x=a

, ∂ε2x Q(x)
∣∣
x=a

, . . . , ∂εNx Q(x)
∣∣
x=a

.

That is we must show that

∂ε1x Q(x)
∣∣
x=a

= 0 , ∂ε2x Q(x)
∣∣
x=a

= 0 , . . . , ∂εNx Q(x)
∣∣
x=a

= 0 (5.14)
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forces
Q ≡ 0. (5.15)

To do this, the point of departure is the well known fact that every polynomial
P ∈ Q[Xn] may be given an expansion of the form

P =
|G|∑
r=1

xεrAP,r(q1, q2, . . . , qn) , (5.16)

with the coefficients AP,r polynomials in their arguments. Specializing P to the
monomial xp (5.16) gives

xp =
|G|∑
r=1

xεr ap,r(x) (5.17)

with
ap,r(x) = Axp,r(q1, q2, . . . , qn) (5.18)

Two important facts should be kept in mind here:
(1) We can assume that

degree(ap,r(x)) = |p| − |εr| . (5.19)

(2) From (5.18), (5.9) and (I.7) it follows that

γap,r
(x, ∂x)Q(x) = Axp,r(0, 0, . . . , 0) Q(x) for all Q ∈ HG(m) .

(5.20)
Note first that, since it is well known that we must have

N∑
r=1

qεr =
n∏
i=1

(1 + q + · · ·+ qdi−1)

with di = degree(qi), it follows that one of the exponents εr vanishes. Thus one of
the conditions in (5.14) reduces to

Q(a) = 0 . (5.21)

Our next task is to show that the remaining conditions in (5.14) force

∂pxQ(x)
∣∣
x=a

= 0 (5.22)
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for all
p = (p1, p2, . . . , pn) .

In view of (5.21), we can proceed by induction on |p| = p1 + p2 + · · · + pn. We
assume (5.22) to be true for |p| < d and show that it holds true for |p| = d. To this
end we use (5.17) and write for |p| = d,

∂pxQ(x) =
∑
|εr|=d

ap,r ∂
εr
x Q(x) +

∑
|εr|<d

∂εrx ap,r(∂x)Q(x)

Note that (5.19) says that ap,r in the first sum reduces to a scalar and in the second
sum it must be a homogeneous polynomial of degree d− |εr| > 0. In particular the
conditions in (5.14) immediately give us that

∂pxQ(x)
∣∣
x=a

=
∑
|εr|<d

∂εrx ap,r(∂x)Q(x)
∣∣
x=a

. (5.23)

Now, from (I.4) and the fact that degree(ap,r) = d − |εr|, we obtain an expansion
of the form

γap,r (x, ∂x) = ap,r(∂x) +
∑

|q|<d−|εr|

cq,p,r(x)∂qx .

Using this in (5.23), we derive that

∂pxQ(x)
∣∣
x=a

=
∑
|εr|<d

∂εrx γap,r (x, ∂x)Q(x)
∣∣
x=a

−
∑
|εr|<d

∑
|q|<d−|εr|

∂εrx cq,p,r(x)∂
q
xQ(x)

∣∣
x=a

.

But (5.20) and the inductive hypothesis reduces this to

∂pxQ(x)
∣∣
x=a

= −
∑
|εr|<d

∑
|q|<d−|εr|

∂εrx cq,p,r(x)∂
q
xQ(x)

∣∣
x=a

. (5.24)

Note that this makes perfectly good sense since our assumption in 5.4 assures that
the denominators that will be produced by the term

∂εrx cq,p,r(x)∂
q
xQ(x)
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will not vanish at x = a. However, (5.24) completes the induction since the deriva-
tives of Q that will be produced by these terms will necessarily be of order < d and
by the inductive hypothesis they will all vanish at x = a..

This completes the proof of the dimension bound in (5.13).

Theorem 5.3 has a number of immediate corollaries that are worth stating explicitly.

Theorem 5.5
The following remarkable equalities hold true for every integer m ≥ 0:

H[a ]G(m) = HG(m) and JG(m) = grJ[a ]G(m) . (5.25)

Thus the m-Harmonics HG(m) and the quotient ring

QIm(G)/(q1, q2, . . . , qn)QIm(G) (5.26)

have both dimension |G| and afford the same graded regular representation of |G|
as the the space of orbit harmonics H[a ]G(m).

Theorem 5.6
For every integer m ≥ 0 the algebra of G-m-Quasi-Invariants is a free module

over the ring of invariants ΛG.

Theorem 5.7
Every homogeneous G-m-Quasi-Invariant Q ∈ QIm(G) of degree greater

than (2m+ 1)|Σ(G)| lies in the ideal JG(m).

Since we have verified that the algebra A = QIm(G) satisfies conditions
(i), (ii), (iii), (iv) of Theorem I.1, all of these results are simply specializations to
A = QIm(G) of the corresponding results established in Section 4.

6. More on the G-m-Harmonics
The goal of this section is to establish Theorem I.2. The basic tool in this

task is a space Γ[a ]G(m) of formal power series in x1, x2, . . . , xn which may be viewed
as the orthogonal complement of the ideal J[a ]G(m). More precisely we set

Γ[a ]G(m) =
{

Φ(x) : γQ(x, ∂x)Φ(x) = 0 for all Q ∈ J[a ]G(m)
}

(6.1)
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Perhaps a few words are necessary here to assure that this is a well defined space.
To begin with, we shall view each formal power series Φ(x) as the formal sum

Φ = Φ(0) + Φ(1) + Φ(2) + · · · + Φ(k) + · · ·

with Φ(k) a polynomial in x1, x2, . . . , xn homogeneous of degree k. Moreover if
Q ∈ J[a ]G(m) has the decomposition

Q = Q0 + Q1 + · · · + Qh

with Qr homogeneous of degree r, then the equation

γQ(x, ∂x)Φ(x) = 0 (6.2)

simply means that we must have

h∑
r=0

γQr (x, ∂x)Φ
(r+k)(x) = 0 ( for all k ≥ 0). (6.3)

Thus no infinite sums are involved in checking containment in Γ[a ]G(m).
To deal with this space, we need an important ingredient which has been in

the background up to this moment but which nevertheless is the most significant tool
in the Theory of m-Quasi-Invariants. This is a formal power series Ψm(x, y) referred
to as the “Baker–Akhiezer function” of QIm(G). To use Ψm(x, y), we shall have
to state a number of facts whose original proofs are in a series of papers scattered
over several years. However, a reasonably self contained account of this material
with detailed proofs of everything we use here (except for the non-degeneracy of
the bilinear form) can be found in [8]. This is a monograph we have put together
for the benefit of future researchers in this area.

To begin with, it will be good to see how Ψm(x, y) is defined. Indeed, al-
though this definition will play no role here, the novice in this area has great diffi-
culty locating it in the literature. Remarkably, Ψm(x, y) may be given an explicit
(though quite forbidding) construction based on a truly remarkable family SDn
of “Shift-Differential” operators that act on polynomials by a combination of the
ordinary G-action followed by differentiation. These operators are of the form

A =
∑
σ∈G

aσ(x, ∂x)Tσ , (6.4)
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where
aσ(x, ∂x) =

∑
p

ap(x)∂px (∂px = ∂p1x1
∂p2x2

· · · ∂pn
xn

), (6.5)

with each ap(x) a special rational function in the ring SRn(x) generated by the
variables xi together with the fractions 1/(x, αs) for s ∈ Σ(G). It it is easily shown
that SDn is in fact an algebra since the algebra of differental operators of the form
given in (6.5) is invariant under conjugation by elements of G. The building blocks
of SDn are the m-Dunkl operators, which can be written in the form

∇i(m) = ∂xi
−m

∑
s∈Σ(G)

(αs, ei)
1

(x, αs)
(1− s) (for i = 1, 2, . . . , n), (6.6)

with ei the ith coordinate unit vector. For fixed m, the operators {∇i(m)}ni=1 are
a commuting set, and thus it makes perfectly good sense to evaluate a polynomial
at ∇1(m),∇2(m), . . . ,∇n(m). We adopt the notation

Q[∇(m)] = Q
(
∇1(m),∇2(m), . . . ,∇n(m)

)
(for all Q ∈ Q[Xn]).

Clearly, all these operators belong to the family SDn. But once they are written in
the form given in (6.4), we can simply “forget” the G action and set

ΓA =
∑
σ∈G

aσ(x, ∂x) .

It develops that this seemingly innocent operation can achieve miracles. For instance
one obtains that

Γ
n∑
i=1

∇i(m)2 = Lm(G). (6.7)

More generally, it can be shown that for each G-invariant Q we have the beautiful
identity

γQ(x, ∂x) = ΓQ[∇(m)]. (6.8)

This given, let us set
Om = Γ ΠG(∇(m))ΠG(x) ,

where “ΠG(x)” denotes the operator multiplication by ΠG(x). Remarkably, it can
be shown that we have the Opdam commutation relation

Lm(G)Om = OmLm−1(G) . (6.9)
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This given, the Baker–Akhiezer function Ψm(x, y) is simply defined by setting

Ψm(x, y) = OmOm−1 · · ·O1e
(x,y) . (6.10)

Since the definition in (I.6) gives that L0(G) = ∆2, we see that it follows from (6.9)
that

Lm(G)Ψm(x, y) = (y, y)Ψm(x, y) . (6.11)

The properties of Ψm(x, y) we will use here may be stated as follows:
(a) Symmetry: Ψm(x, y) = Ψm(y, x).
(b) γQ(x, ∂x)Ψm(x, y) = Q(y)Ψm(x, y) for all Q ∈ QIm(G). (6.12)
(c) For all σ ∈ G we have Ψm(xσ, y) = Ψm(x, yσ−1).
(d) We have the decomposition Ψm(x, y) = cm(G) +

∑
k≥1 Ψ(k)

m (x, y) with
(i) Ψm(0, 0) = Ψm(0, y) = Ψm(x, 0) = cm(G) 6= 0,
(ii) Ψ(k)

m (x, y) a polynomial homogeneous of degree k in the x ′s and y ′s

separately,
(iii) Ψ(k)

m (x, y) in QIm(G) in x1, x2, . . . , xn and y1, y2, . . . , yn.

We should note that (6.12) (d) (ii) immediately follows from the definition in (6.10)
and the fact that the operator Ωm = OmOm−1 · · ·O1 does not change degrees. In
fact, from the expansion of the exponential e(x,y) we derive that

Ψ(k)
m (x, y) =

∑
|p|=k

yp

p!
Ωmx

p .

Moreover, property (6.12) (d) (iii) is an immediate consequence of the following
remarkable fact which will also be needed in the sequel.

We have the relation Lm(G)P = Q with Q ∈ QIm(G) if and only if P ∈
QIm(G). (6.13)

We now have all the tools we need to proceed with our developments. We begin
with some basic properties of Γ[a ]G(m).

Proposition 6.1
(1) All the homogeneous components of every Φ ∈ Γ[a ]G(m) are in

QIm(G).
(2) The collection

{
Ψm(x, b)

}
b∈[a ]G

is a basis for Γ[a ]G(m).
(3) Γ[a ]G(m) is a G-module affording the regular representation of G.
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(4) Every element Φ ∈ Γ[a ]G may be written in the form

a) Φ(x) = γQΘ[a ]G(x) (for some Q ∈ QIm(G)),

where

b) Θ[a ]G(x) =
∑
b∈[a ]G

εbΨm(x, b) = cΠ(x)2m+1 + · · · .

Proof
We have seen in (6.7) that Lm(G) = γp2(x, ∂x) with p2(x) = (x, x). Since

(x, x) is G-invariant, it follows that the difference (x, x)−(a, a) belongs to Γ[a ]G(m).
Thus, from the definition in (6.1) it follows that

Lm(G)Φ = (a, a)Φ ( for all Φ ∈ Γ[a ]G(m) ). (6.14)

But if Φ(i) is the homogeneous component of degree i in Φ, then (6.14) yields that

Lm(G)Φ(0) = 0 , Lm(G)Φ(1) = 0 and Lm(G)Φ(i) = (a, a)Φ(i−2) for all i ≥ 2 .

Thus property (1) follows from (6.13). To show (2) we note first that property
(b) of the Baker–Akhiezer function implies that for all Q ∈ J[a ]G(m) we have
γQ(x, ∂x)Ψm(x, b) = 0 for all b ∈ [a ]G. Thus{

Ψm(x, b)
}
b∈[a ]G

⊂ Γ[a ]G(m) .

To show that this collection spans Γ[a ]G(m), we will use the polynomials {ψb(x)}[a ]G

defined in (1.8) with the specialization A = QIm(G) and B(x) = ΠG(x)2m. Since
(1.9) immediately gives the identity

1 ≡
∑
b∈[a ]G

ψb(x) (mod J[a ]G(m) )

we derive from the definition in (6.1) that, for all Φ ∈ Γ[a ]G(m) we have the decom-
position

Φ(x) =
∑
b∈[a ]G

Φb(x) , (6.15)
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with
Φb(x) = γψb

(x, ∂x)Φ(x) . (6.16)

We claim that the latter is none other than a scalar multiple of Ψm(x, b). To prove
this, note first that, for all Q ∈ QIm(G) we have the relation

Q(x)ψb(x) − Q(b)ψb(x) ≡ 0 (mod J[a ]G(m) ) (6.17)

Thus
γQ(x, ∂x)Φb(x) = γQ(x, ∂x)γψb

(x, ∂x)Φ(x)

(by (I.7)) = γQψb
(x, ∂x)Φ(x)

(by (6.17)) = Q(b)γψb
(x, ∂x)Φ(x) = Q(b)Φb(x).

(6.18)

Using this relation with Q(x) = Ψ(k)
m (x, y), we get

γ
Ψ

(k)
m

Φb
∣∣∣
x=0

= Ψ(k)
m (b, y)Φb(0). (6.19)

On the other hand, since γ
Ψ

(k)
m

decreases degrees by k, denoting by Φ(k)
b the kth

homogeneous component of Φb, it follows that

γ
Ψ

(k)
m

Φb(x)
∣∣∣
x=0

=
〈
Ψ(k)
m , Φ(k)

b

〉
m

=
〈
Φ(k)
b , Ψ(k)

m

〉
m

= γ
Φ

(k)
b

Ψ(k)
m (x, y)

∣∣∣
x=0

= γ
Φ

(k)
b

Ψm(x, y)
∣∣∣
x=0

(by (b) of (6.12) ) = Φ(k)
b (y)Ψm(x, y)

∣∣∣
x=0

(by (d) (i) of (6.12)) = Φ(k)
b (y)cm(G)

(6.20)

Combining (6.19) and (6.20) we get that

Ψ(k)
m (b, y)Φb(0) = Φ(k)

b (y)cm(G) .

This holding true for all k yields that

Ψm(b, y)Φb(0) = Φb(y)cm(G) .
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Solving for Φb(y) and using the symmetry of Ψm(x, y), we now obtain

Φb(y) =
Φb(0)
cm(G)

Ψm(y, b) , (6.21)

as desired. Combining (6.15) with (6.21) proves that
{
Ψm(x, b)

}
b∈[a ]G

spans
Γ[a ]G(m).

To complete the proof of (2), we need to show independence. To this end,
suppose that for some constants cb we have

Φ =
∑
b∈[a ]G

cbΨm(x, b) . (6.22)

Then the relations in (1.9) and (b) of (6.12) give, for b′ ∈ [a ]G,〈
ψb′ , Φ

〉
m

= γψb′Φ
∣∣∣
x=0

=
∑
b∈[a ]G

cb ψb′(b)Ψm(x, b)
∣∣∣
x=0

= cb′ cm(G) . (6.23)

Thus
Φ = 0 =⇒ cb = 0 for all b ∈ [a ]G ,

proving independence. Incidentally, (6.23) yields that the expansion in (6.22) may
be written in the form

Φ =
∑
b∈[a ]G

〈
ψb , Φ

〉
m

cm(G) Ψm(x, b) .

Finally, note that property (c) of Ψm(x, y) gives that

TσΨm(x, b) = Ψm(x, bσ−1) ( for all σ ∈ G ).

Thus the character χ of the action of G on the basis
{
Ψm(x, b)

}
b∈[a ]G

has the
expansion

χ(σ) =
∑
b∈[a ]G

Ψm(x, bσ−1)
∣∣∣
Ψm(x,b)

=
∑
b∈[a ]G

χ(bσ−1 = b) =

 |G| if σ = id,

0 if σ 6= id.

This gives (3).
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Finally, note that if

Φ(x) =
∑

be∈[a ]G

cbΨm(x, b) (6.24)

and we set
Q =

∑
b′∈[a ]G

cb′
εb′
ψb′(x)

then clearly Q ∈ QIm(G), and we also have from (6.24)

γQΘ[a ]G =
∑
b∈[a ]G

εb
∑

b′∈[a ]G

cb

εb′
γψb′Ψm(x, b)

(by (6.12) (b)) =
∑
b∈[a ]G

εb
∑

b′∈[a ]G

cb

εb′
ψb′(b)Ψm(x, b)

(by (1.9)) =
∑
b∈[a ]G

εb
cb

εb
Ψm(x, b) = Φ(x).

This proves (4) (a).
To prove (4) (b), note that from the definition of Θ[a ]G(x) it follows that for

any σ ∈ G we have
TσΘ[a ]G = det(σ) Θ[a ]G .

This forces all the homogeneous components of Θ[a ]G to be G-invariant multiples
of ΠG(x)2m+1. Thus we can write

Θ[a ]G(x) = A(x)ΠG(x)2m+1 + · · · (for some A(x) ∈ ΛG).

Now, from the definition of Θ[a ]G and (6.12) (b) we derive that

γΠ2m+1Θ[a ]G(x) =
∑

b∈[a]Sn

ε(b)ΠG(b)2m+1Ψm(x, b) = ΠG(a)2m+1
∑

b∈[a]Sn

Ψm(x, b) .

(6.25)
Since γΠ2m+1 decreases degrees by (2m+ 1)|Σ(G)|, we have

degree
(
γΠ2m+1A(x)ΠG(x)2m+1

)
= degree(A(x)) .

Thus,
degree

(
µ
(
γΠ2m+1Θ[a ]G(x)

))
≥ degree(A(x)) , (6.26)
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where, for each formal power series Φ, we let µ(Φ) denote the homogeneous compo-
nent of least degree in Φ. However, the right hand side of (6.25) (using (6.12) (d) (i))
yields that

µ
(
γΠ2m+1Θ[a ]G(x)

)
= ΠG(a)2m+1|G|cm(G) 6= 0 . (6.27)

Combining (6.26) with (6.27) forces A(x) to be a scalar.
Note that this argument also shows that for some constant C we must have

γΠ2m+1Π(x)2m+1 = C 6= 0 (6.28)

To introduce our next construct, we need further notation. To begin with,
we shall choose once and for all a degree lexicographic order of monomials. For
instance, the one which corresponds to the total order x1 > x2 > . . . > xn. It
will be convenient to denote this order by “<dl”. Recalling that µ(Φ) denotes the
homogeneous component of least degree in Φ, we will let l(Φ) denote the d-lex least
monomial in µ(Φ). We also set l(f) = l(Φ) when f = µ(Φ).
Remark 6.1

It will be convenient in our further developments to use the symbol “Φ
∣∣
=k

”
to denote the the homogeneous components of Φ of degree k. In the same vein, we
let “Φ

∣∣
<k

” and “Φ
∣∣
≤k” the sum of all the homogeneous components of Φ of degree

< k and ≤ k respectively. In our previous notation

Φ
∣∣
=k

= Φ(k) , Φ
∣∣
<k

=
k−1∑
i=0

Φ(i) and Φ
∣∣
≤k =

k∑
i=0

Φ(i) . (6.29)

Thus we have

µ(Φ) = Φ
∣∣
=k

if and only if Φ
∣∣
<k

= 0 and Φ
∣∣
=k
6= 0 .

Thus we clearly see that the map Φ 7→ µ(Φ) is not linear. Nevertheless, if µ(Φ1)
and µ(Φ2) have the same degree then

µ(Φ1) + µ(Φ2) 6= 0 implies µ(Φ1 + Φ2) = µ(Φ1) + µ(Φ2). (6.30)

Keeping this in mind, we let µ(Γ[a ]G(m)) denote the linear span of the ho-
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mogeneous components of least degree of elements of Γ[a ]G(m). In symbols

µ(Γ[a ]G(m)) = L
[
µ(Φ) : Φ ∈ Γ[a ]G(m)

]
. (6.31)

The following result shows the intimate relation between Γ[a ]G(m) and
µ(Γ[a ]G(m)).

Proposition 6.2
We can find in Γ[a ]G(m) a collection of formal power series

Φ1 , Φ2 , . . . , Φ|G| (6.32)

with the property that

l(Φ1) <dl l(Φ2) <dl · · · <dl l(Φ|G|) (6.33)

and such that each f ∈ µ(Γ[a ]G(m)) has a unique expansion of the form

f =
∑

l(Φi)≥dl l(f)

ci µ(Φi) . (6.34)

In particular, the collection

µ(Φ1) , µ(Φ2) , . . . , µ(Φ|G|) (6.35)

is a basis of µ(Γ[a ]G(m)) and we have

dim µ(Γ[a ]G(m)) = |G| . (6.36)

Proof
The collection in (6.32) satisfying (6.33) can be constructed by starting with

the basis {
Ψµ(x, b)

}
b∈[a ]G

,

then progressively reducing it to echelon form with respect to the degree-lexico-
graphic order of least monomials. This done, (6.33) yields that their minimum
components in (6.35) are linearly independent. In fact, more than that is true.
Note first that no element Φ ∈ Γ[a ]G(m) can have a least monomial that is different
from each of the monomials in (6.33). Indeed, such an element would necessarily be
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independent of the Φi’s, and then Γ[a ]G(m) would have dimension greater than |G|.
The existence of constants ci giving (6.34) may be established by descent induction
on the degree-lexicographic order of least monomials. To see this let

f = µ(Φ).

Now the result is immediate if l(f) = l(Φ|G|). In fact, let c be chosen so that l(Φ|G|)
does not occur in f − c µ(Φ|G|). Then the difference Φ− cΦ|G| must be identically
zero, for otherwise its degree-lexicographically least monomial would necessarily be
larger than l(Φ|G|) and this, as we have seen, is not possible. This gives

f = c µ(Φ|G|),

and we are done in this case. So assume by induction that the expansion in (6.34)
exists when l(f) >dl l(Φio). Let l(f) = l(Φio). Again chose c so that l(Φio) does
not occur in f − cΦio . Here there are two cases. If f = c µ(Φio) we are done. If, on
the other hand, this difference does not vanish identically, then, since l(f) = l(Φio)
implies that degree(µ(Φ)) = degree(µ(Φio)), we can use (6.30) with Φ1 = Φ and
Φ2 = −cΦio and conclude that

f = µ(Φ) = c µ(Φio) + µ(Φ− cΦio) .

Since now l(Φ− cΦio) >dl l(Φio), we can use the induction hypothesis and deduce
that, for some suitable constants ci, we must have

f = c µ(Φio) +
|G|∑

i=io+1

ci µ(Φi) .

This completes the induction and establishes (4.34). The remaining assertions are
immediate consequences of (6.34).

The following remarkable fact provides us with a new tool for studying m-
Harmonics.

Theorem 6.1
For all finite reflection groups G and all m ≥ 0 we have

µ
(
Γ[a ]G(m)

)
= HG(m). (6.37)
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Proof
In view of the fact that from Theorem 5.5 and Proposition 6.2 it follows

that these two spaces have the same dimension, to show the equality in (6.37) it is
sufficient to derive the containment

µ
(
Γ[a ]G(m)

)
⊆ HG(m) . (6.38)

This in turn immediately follows from Theorem 5.3 once we verify that

P ∈ µ
(
Γ[a ]G(m)

)
implies γqk

P (x) = 0 (for k = 1, 2, . . . , n) . (6.39)

This given, let Q(x) be a homogeneous G-invariant and note that since the difference
Q(x) − Q(a) vanishes throughout [a ]G, it follows from the definition in (6.1) that
we have

γQ(x, ∂x)Φ(x) = Q(a)Φ(x) ( for all Φ ∈ Γ[a ]G(m) ). (6.40)

Thus, if Q is of degree d, equating homogeneous components of both sides of (6.40),
we derive that

γQ(x, ∂x)Φ(k)(x) =


0 if k < d,

Q(a)Φ(k−d)(x) if k ≥ d.
(6.41)

Thus, if µ(Φ(x)) has degree do, then it follows from this that

γQ(x, ∂x)Φ(k)(x) = 0 for all k − d < do . (6.42)

In particular, we must have

γQ(x, ∂x)µ
(
Φ(x)

)
= 0 ,

and (6.39) then immediately follows from the definition in (6.31). This establishes
(6.38) and completes our proof.

We now have all the tools we need for the proof of Theorem I.2. The argu-
ment is based on the following two basic observations

Proposition 6.3
Let dmn = maxdegree

(
HG(m)

)
. Then
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Ob1 : To show that an element Φ ∈ Γ[a ]G(m) vanishes, it is sufficient to
check that all its homogeneous components of degree ≤ dmn vanish.

Ob2 : To show that a polynomial Q(x) ∈ QIm(G) belongs to J[a ]G(m), it is
sufficent to show that γQ(x, ∂x) kills the element Θ[a ]G(m) defined in
(4) of Proposition 6.1.

Proof
Suppose that Φ ∈ Γ[a ]G satisfies

Φ(k) = 0 (for k ≤ dmn), (6.43)

and suppose if possible that Φ 6= 0. Now we have shown that that for any Φ ∈ Γ[a ]G

we have µ(Φ) ∈ HG(m). Thus (6.43) gives µ(Φ) = 0. But this is absurd since by
definition Φ 6= 0 implies µ(Φ) 6= 0. This proves Ob1. Note next that the equation
γQΘ[a ]G = 0 together with (6.12) (b) yields the identity∑

b∈[a ]G

ε(b)Q(b)Ψm(x, b) = 0 .

However, the independence of
{
Ψm(x, b)

}
)b∈[a ]G then forces Q(b) = 0 for all b ∈

[a ]G, But that is Q ∈ J[a ]G(m). This proves Ob2.

We shall now establish Theorem I.2 by proving a bit more.

Theorem 6.2
Let B ∈ QIm(G) yield a homogeneous basis for the quotient QIm(G)/JG(m),

and let Bk be the subset of elements of degree k in B. Then the collection{
γb(x, ∂x)ΠG(x)2m+1

}
b∈Bk

is a basis of H=k

(
HG(m)

)
.

Proof
We shall have to use two facts, namely that

dmn = degree
(
ΠG(x)2m+1

)
(6.44)

and that the Hilbert series FHG(m)(t) is palindromic. That is, we have

dim
(
Hk(H[a ]G

)
= dim

(
Hdmn−k(H[a ]G

)
. (6.45)
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We should note that (6.44) immediately follows from the definition of the
polynomial ψb(x) given in (1.8), since we proved there that the maximum degree of
the ordinary G-harmonics is equal to the degree of the discriminant ΠG(x).

As for (6.45) we have to refer to the paper of Felder–Veselov [5] for a proof.
This given, we shall prove our result by induction on k. More precisely we

shall assume that

1k : P (∂x)Φ[a]) |<dmn−k = 0 implies that P is congruent mod J[a ]G(m)
to a polynomial Q of degree ≤ k;

and
2k :

{
γb(x, ∂x)ΠG(x)2m+1

}
b∈Bk

is a basis for H=dmn−k
(
HG(m)

)
;

hold true for all k < ko and complete the induction by showing that 1ko
and 2ko

must hold as well.
To this end, note first that, since dim

(
H0(H[a ]G

)
= 1, it follows from (6.39) that

we also have
dim

(
Hdmn

(
H[a ]G

))
= 1 . (6.46)

Since the polynomial ΠG(x)2m+1 is in QIm(G) and is clearly killed by all G-
invariant differential operators, it follows that it lies in Hdmn

(
H[a ]G

)
. But then

(6.44) yields that every element of Hdmn

(
H[a ]G

)
is necessarily a multiple of

ΠG(x)2m+1. This proves 20. To start, we need also check the validity of 10. Note
that 10 says that any P such that

γP (x, ∂x)Θ[a ]G |<dmn = 0 (6.47)

must be congruent to a constant mod J[a ]G(m). Note that if γP (x, ∂x)Θ[a ]G |=dmn

also vanishes then Ob1 gives that γP (x, ∂x) kills Θ[a ]G , and then Ob2 yields that
P is congruent to zero mod J[a ]G(m). On the other hand, if γP (x, ∂x)Θ[a ]G |=dmn

does not vanish, then, since the homogeneous elements of degree dmn in H[a] are all
multiples of ΠG(x)2m+1, from (4) b) of Proposition 6.1 we derive that

γP (x, ∂x)Θ[a ]G |=dmn
= c µ(Θ[a ]G)

for a suitable constant c. But then all the homogeneous components of degree dmn
or less in

(γP (x, ∂x)− c) Θ[a ]G
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must vanish, and Ob1 and Ob2 again yield that P − c ∈ J[a ]G(m). This gives 10.
We are thus in a position to proceed with our induction, and we shall assume

that 1k and 2k hold for all k < ko. We start by proving 2ko
. To this end, note

that by (6.45) for k = ko we need only show that
{
γb(x, ∂x)ΠG(x)2m+1

}
b∈Bko

is an
independent set. So, let there be constants cb such that∑

b∈Bko

cb γb(x, ∂x)ΠG(x)2m+1 = 0 , (6.48)

and set
P (x) =

∑
b∈Bko

cb b(x) . (6.49)

Now, (4.48) implies that

γP (x, ∂x)Θ[a ]G |≤dmn−ko = 0 .

However, this brings us into 1ko−1 and by induction we can find a polynomial Q
of degree < ko congruent to P modulo J[a ]G(m). But now, since degree P = ko >

degree Q and P is homogeneous, we deduce that P ∈ gr J[a ]G(m). Now we have
seen in (5.25) that gr J[a ]G(m) = JG(m), so it follows that P ∈ JG(m). But this
together with (6.49) contradicts the independence of B modJG(m). This forces the
vanishing of all the coefficients cb in (6.49). Thus 2ko

must hold true as desired.
Next we show 1ko

. So let

γP (x, ∂x)Θ[a ]G |<dmn−ko = 0 . (6.50)

If γP (x, ∂x)Θ[a ]G = 0, then by Ob2 we must have P ∈ J[a ]G(m) and we are done.
If γP (x, ∂x)Θ[a ]G does not vanish, then (6.50) gives that

degree µ
(
γP (x, ∂x)Θ[a ]G

)
= dmn − k1 ( with k1 ≤ ko ) .

By 2k1 , which is now available up to and including ko, we can find a homogeneous
polynomial Q1 of degree k1 such that

µ
(
γP (x, ∂x)Θ[a ]G

)
= γQ1(x, ∂x) ΠG(x)2m+1 . (6.51)

This in turn implies that for a suitable constant c

γP−cQ1(x, ∂x)Θ[a ]G |≤dmn−k1 = 0 .
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However, since k1 ≤ ko, this brings us down into the domain of 1ko−1, so we can use
the induction hypothesis and conclude that P − cQ1 is congruent mod J[a ]G(m) to
a polynomial Q2 of degree at most ko − 1. In other words, we have shown that P
is congruent mod J[a ]G(m) to the polynomial Q = cQ1 +Q2 which is of degree at
most ko, which is precisely what we needed to show. This completes the induction
and our proof.

REFERENCES

[1] Yu. Berest, Huygens principle and the byspectral problem, CRM Proc. and
Lecture Notes 13, Amer. Math. Soc., R.I., 1998, pp. 11–30.

[2] O. A. Chalykh and A. P. Veselov, Commutative Rings of Partial Differential
Operators and Lie Algebras, Comm. Math. Phys. 126 (1990), 597–611.

[3] P. Etingof and V. Ginzburg, Om m-quasi-invariants of a Coxeter group,
Mosc. Math. J. 2 (2002), 555–566.

[4] P. Etingof and E. Strickland, Lectures on quasi-invariants of Coxeter groups
and the Cherednik algebra, Enseign. Math. (2) 49 (2003), 35–65.

[5] G. Felder and A. P. Veselov, Action of Coxeter Groups on m-harmonic poly-
nomials and Knizhnik–Zamolodchikov equations, Mosc. Math. J. 3 (2003),
1269–1291.

[6] M. Feigin and A. P. Veselov, Quasi-invariants of Coxeter groups and m-
harmonmic polynomials, Int. Math. Res. Not. 2002, no. 10, 521–545.

[7] A. Garsia and M. Haiman, Some Natural bigraded Modules and the q, t-
Kostka coefficients, The Foata Festschrift. Electronic J. Combin. 3 (1996),
Research Paper 24, 60 pp.

[8] A. Garsia and N. Wallach, Shift Differential Operators and the Theory of
m-Quasi-Invariants, UCSD lecture notes, 2004.

[9] A. Garsia and N. Wallach, Combinatorial aspects of the Baker–Akhiezer func-
tion for S2, to appear in the European Journal of Combinatorics.



Orbit Harmonics and m-Quasi-Invariants 47

[10] J. Humphreys. Reflection Groups and Coxeter Groups, Cambridge Studies
in Advanced Mathematics 29, Camb. Univ. Press, 1990, p. 62.

[11] E. M. Opdam, Some applications of Shift Operators, Invent. Math. 98 (1989),
1–18.

[12] R. Steinberg, Differential Equations Invariant under finite reflection Groups,
Trans. Amer. Math. Soc. 112 (1964), 392–400.

Department of Mathematics, University of California, San Diego, 9500 Gilman
Drive, Dept 0112, La Jolla, CA 92093-0112 USA.


