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PROJECTIVE REPRESENTATIONS OF GENERALIZED SYMMETRIC
GROUPS

ALUN O MORRIS AND HUW I JONES

1. Introduction

The representation theory of generalized symmetric groups has been of interest over a
long period dating back to the classical work of W. Specht [28],[29] and M.Osima [22] —
an exposition of this work and other references may be found in [12]. Furthermore, the
projective representations of these groups have been considered by a number of authors,
much of the this work was not published or was published in journals not readily accessible
in the western world. The first comprehensive work on the projective representations of
the generalized symmetric groups was due to E. W. Read [24] which was followed later
by an improvement in the work of M. Saeed-ul-Islam, see, for example, [26]. Of equal
interest has been the representation theory of the hyperoctahedral groups, which are a
special case of the generalized symmetric groups. The projective representations of these
groups was considered by M. Munir in his thesis [20] which elaborated on the earlier
work of E. W. Read and M. Saeed-ul-Islam and also by J. Stembridge [31] who gave an
independent development which was more complete and satisfactory in many respects.
This approach later influenced that used by H. I. Jones in his thesis [13] where the use of
Clifford algebras was emphasized.

More recently, the generalized symmetric groups have become far more predominant in
the context of complex reflection groups and the corresponding cyclotomic Hecke algebras
where they and their subgroups form the infinite family G(m, p, n), see for example [3],[4]
and [5]. In view of this interest, it was thought worthwhile to present this work which
is based on the earlier work of H. I. Jones which has not been published. As this article
is also meant to be partially expository, a great deal of the background material is also
presented.

There are eight non-equivalent 2-cocycles for the generalized symmetric group
G(m, 1, n), which will be denoted by Bm

n in this paper. Thus, in addition to the or-
dinary irreducible representations, there are seven other classes of projective representa-
tions to be considered. However, the position is not too complicated in that all of the
non-equivalent irreducible projective representations can be expressed in terms of certain
’building blocks’. These are the ordinary and spin representations of the symmetric group
Sn, that is, the generalized symmetric group G(1, 1, n), which are well known and date
back to the early work of F.G. Frobenius and A. Young (see [12]) and I. Schur [30] re-
spectively. Also, required are basic spin representations P,Q and R of Bm

n for certain
2-cocycles. All of these can be constructed in a uniform way using Clifford algebras and
the basic spin representations of the orthogonal groups. Thus, we will present all of the
required information for constructing these building blocks.

The paper is organised as follows. In Section 2 we present all of the background informa-
tion and notation required later, there are short subsections on partitions, the projective
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representations of groups, the method of J. R. Stembridge on Clifford theory (A. H. Clif-
ford) for Z2

2-quotients [31] and Clifford algebras (W. K. Clifford) and their representations.
Section 3 contains all of the information required about the generalized symmetric groups
Bm

n ; a presentation, classes of conjugate elements and its linear characters are given. In
Section 4, the main aim is to construct the three classes of basic spin representations P,Q
and R of Bm

n mentioned above and some additional information required later — these
are mainly based on the authors earlier work, [17], [18], [19]. For the sake of complete-
ness we also include a brief description of the elegant construction of the irreducible spin
representations of the symmetric groups given by M. L. Nazarov [21]. The final section
then contains the construction of the irreducible projective representations for the eight
2-cocycles. In this section, we follow J. R. Stembridge’s work in the special case B2

n. Our
results are not as complete as his and an indication of proof only is given in some cases.
A detailed description, including the construction of the irreducible representations for
three closely connected subgroups will appear later.

2. Background and Notation

2.1. Partitions. The notation follows [14]. Let λ = (λ1, λ2, . . . , λk) be a partition of n,
then l(λ) = k is the length of λ and |λ| = n is the weight of λ. The conjugate of λ is
denoted by λ′. A partition λ is called an even(odd) partition if the number of even parts
in λ is even(odd). A partition is sometimes written as λ = (1a12a2 . . . nan), 0 ≤ ai ≤ n
indicating that ai parts of λ are equal to i, 1 ≤ i ≤ n, |λ| =

∑n
i=1 iai and l(λ) =

∑n
i=1 ai.

Let P (n) denote the set of all partitions of n, then DP (n) = {λ ∈ P (n) | λ1 >
λ2 > · · · > λk > 0} is the set of all partitions of n into distinct parts, DP+(n) =
{λ ∈ DP (n) | |λ| − l(λ) is even}, DP−(n) = {λ ∈ DP (n) | |λ| − l(λ) is odd},
OP (n) = {λ = (1α13α3 . . .)} is the set of all partitions of n into odd parts, EP (n) =
{λ = (2α24α4 . . .)} is the set of all partitions of n into even parts and SCP (n) = {λ ∈
P (n) | λ = λ′} is the set of self-conjugate partitions of n.

An m-partition of n is a partition comprising of m partitions (λ(1);λ(2); . . . ;λ(m))
such that λ(i) ∈ P (ni) , 1 ≤ i ≤ m and

∑m
i=1 ni = n. The partition λ(i) is writ-

ten as (λi1, λi2, . . . , λiki
), where ki = l(λ(i)) for 1 ≤ i ≤ m. The conjugate of

(λ(1);λ(2); . . . ;λ(m)) is the m-partition (λ′(1);λ
′
(2); . . . ;λ

′
(m)). An m-partition is said to be

even(odd) if the total number of even parts of (λ(1);λ(2); . . . ;λ(m)) is even(odd). An
m-partition is sometimes written in the form

((1α112α12 . . .); (1α212α22 . . .); . . . ; (1αm12αm2 . . .));

l(λ(1);λ(2); . . . ;λ(m)) = l(λ(1))+ l(λ(2))+ · · ·+ l(λ(m)) is the length of (λ(1);λ(2); . . . ;λ(m))
and |(λ(1);λ(2); . . . ;λ(m))| = |(λ(1))|+ |(λ(2)|+ · · ·+ |(λ(m))| is the weight of (λ(1);λ(2); . . . ;
λ(m)). We note that l(λ(1);λ(2); . . . ;λ(m)) = Σm

i=1Σ
n
j=1aij.

2.2. Projective representations. We present some basic background material on the
projective representations of groups which is required later.

Let G be a group with identity 1 of order |G|, C the field of complex numbers, C× =
C \ {0} and GL(n,C) the group of invertible n× n matrices over C.

A projective representation of degree n of G is a map P : G → GL(n,C) such
that for g, h ∈ G

P (g)P (h) = α(g, h)P (gh)
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and P (1) = In, where In is the identity n×nmatrix and α(g, h) ∈ C×. Since multiplication
in G and GL(n,C) is associative, it follows that

(2.1) α(g, h)α(gh, k) = α(g, hk)α(h, k)

for all g, h, k ∈ G. A map α : G × G → C× which satisfies (2.1) is called a 2-
cocycle(factor set) of G in C and we shall say that P is a projective representation
with 2-cocycle α.

Projective representations P and Q of degree n with 2-cocycles α and β respectively
are said to be projectively equivalent if there exists a map µ : G→ C× and a matrix
S ∈ GL(n,C) such that

Q(g) = µ(g)S−1P (g)S

for all g ∈ G. If P and Q are projectively equivalent, it follows that

(2.2) β(g, h) =
µ(g)µ(h)

µ(gh)
α(g, h)

for all g, h ∈ G. The corresponding 2-cocycles β and α are then said to be equivalent.
Let H2(G,C×) denote the set of equivalence classes of 2-cocycles; then H2(G,C×) is

an abelian group which is called the Schur multiplier of G. The Schur multiplier gives
a measure of the number of different classes of projectively inequivalent representations
which a group G possesses. If G is a finite group, then H2(G,C×) is a finite abelian group.

All projective representations of G may be obtained from ordinary representations of
a larger group; thus the problem of determining all the projective representations of a
group G is essentially reduced to that of determining ordinary representations of a larger
finite group.

A central extension (H,φ) of a group G is a group H together with a homomorphism
φ : H → G such that kerφ ⊂ Z(H), where Z(H) is the centre of H, that is,

1 → kerφ→ H
φ→ G→ {1}

is exact. Let A = kerφ, and let {γ(g) | g ∈ G} be a set of coset representatives of A in
H which are in 1− 1 correspondence with the elements of G; thus

H =
⋃
g∈G

Aγ(g).

Then, for all g, h ∈ G, let a(g, h) be the unique element in A such that

γ(g)γ(h) = a(g, h)γ(gh).

The associative law in H and G implies that

(2.3) a(g, h)a(gh, k) = a(g, hk)a(h, k)

for all g, h, k ∈ G. Now, let γ be a linear character of the abelian group A and put

α(g, h) = γ(a(g, h))

for all g, h ∈ G, then (2.3) implies that α is a 2-cocycle of G.
Now, let T be an ordinary irreducible representation of H of degree n put P (g) =

T (γ(g)) for all g ∈ G, then P is a projective representation of G with 2-cocycle α. A
projective representation P of G arising from an irreducible ordinary representation T of
H in this way is said to be linearized by the ordinary representation T .
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If G is a finite group, then there exists a central extension H of G with kernel H2(G,C×)
which linearizes every projective representation of G. Such a group H is called a repre-
sentation group of G; this implies that every finite group has at least one representation
group. Thus, the problem of determining all the irreducible projective representations of
G for all possible 2-cocycles is reduced to determining all the ordinary irreducible repre-
sentations of a representation group H.

In practice, we shall see that it will be sufficient to determine a complete set of irre-
ducible projective representations of a group G for a fixed 2-cocycle α whose values are
roots of unity. In that case, we can calculate in terms of a subgroup of the representation
group of G which will be called a α-covering group of G.

Let α be a 2-cocycle such that {α} has order n and let ω be a primitive n-th root of
unity, then α(g, h) = ωη(g,h) for some 0 ≤ η(g, h) < n. Suppose that {ν(g) | g ∈ G} is
a set of distinct symbols in one-one correspondence with the elements of G. Let G(α) =
{(αj, ν(g)) | 0 ≤ j < n, g ∈ G}, then it is easily verified that G(α) is a group with
composition defined by

(αj, ν(g))(αk, ν(h)) = (αj+k+η(g,h), ν(gh))

for all g, h ∈ G, 0 ≤ j, k < n.
If now P is a projective representation of G of degree n with 2-cocycle α, then define

T : G(α) → GL(n,C) by

T (αj, ν(g)) = ωjP (g),

then T is an ordinary representation of G(α). That is, P has been lifted to an ordinary
representation of G(α). Such a group G(α) is called an α-covering group of the group
G.

In the case of the generalized symmetric group, the 2-cocycles are of order two, thus we
shall then refer to the G(α) as double covers. As we are basically working with ordinary
representations of the G(α), we can apply all the usual results from representation theory.
However, we shall be interested in the non-ordinary projective representations, namely
the ones in which the central element −1 ∈ G(α) is represented faithfully, we refer to
these as spin representations of G with 2-cocycle α.

If C denotes a class of conjugate elements in G, let C(α) ∈ G(α) denote the inverse
image in G(α). If any g ∈ C(α) is conjugate to −g, then C(α) is a class of conjugate
elements in G(α), otherwise C(α) splits into two classes. The spin character will only
be non-zero on the splitting classes; thus it will be necessary to determine the splitting
classes for each 2-cocycle.

2.3. Clifford theory for Z2
2-quotients. Let G be a group with a subgroup H of index

2 and let η be a linear character of G defined by

η(g) =

{
1 if g ∈ H
−1 if g 6∈ H.

If T is an irreducible representation of G with character χ, then η⊗T is also an irreducible
representation of G, if these representations are equivalent, then we say that T is self-
associate, but if not, they are said to be η-associate, and are denoted by T+ and T−,
their characters are denoted by χ+ and χ−; clearly χ−(g) = η(g)χ+(g) for all g ∈ G. If T
is self-associate, then the unique(up to sign) matrix S such that

T (g)S = η(g)ST (g)
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for all g ∈ G, is called the η-associator of T . If T is self-associate, then T |H decomposes
into two inequivalent irreducible representations of H of equal degree, say T1 and T2 with
characters χ1 and χ2 respectively, then the difference character ∆ηχ, is defined by

∆ηχ(g) = trST (g) = χ1(g)− χ2(g)

for all g ∈ H. Knowledge of the difference character then gives the corresponding char-
acters of H,

1

2
(χ±∆ηχ).

All the above results are classic [12] and date back to A. H. Clifford. Recently, J. R.
Stembridge [31] has extended this detailed analysis to the case where G/H ∼= Z2×Z2; we
briefly recall his results. Let L = {1, η, σ, ησ} be the four corresponding linear characters
of G. If T is an irreducible representation of G, then ν ⊗ T for all ν ∈ L is also an
irreducible representation of G. As before, the question is whether these are equivalent
or not. Let LT = {ν ∈ L|ν⊗T ∼ T}. Then, the following proposition gives the behavior
of T on restriction to H.

Proposition 2.1. Let T be an irreducible representation of degree d of G.
(i) If LT = {1}, then TH is an irreducible representation of degree d of H.
(ii) If LT = {1, ν}, where ν ∈ L, ν 6= 1, then TH is the direct sum of two inequivalent

irreducible representation of degree d/2 of H.
(iii) If LT = L, and R,S are the η, σ-associators of T respectively, then
(a) if RS = SR, then TH is the direct sum of four inequivalent irreducible representation

of degree d/4 of H,
(b) if RS = −SR, then TH is the direct sum of two copies of one irreducible represen-

tation of degree d/2 of H.

As in the above, knowledge of the difference characters enables one to write out the
irreducible representations of H, the only additional case which needs to be considered is
(iii)(b); in that case, the four irreducible characters are

1

4
(χ±∆ηχ±∆σχ±∆ησχ),

where an even number of the − signs occur.

2.4. Clifford algebras and their representations. Let C(n) be the Clifford algebra
generated by 1, e1, . . . , en subject to the relations

e2j = 1, ejek = −ekej, 1 ≤ j, k ≤ n, j 6= k.

If Pin(n) is defined to be the set of invertible elements s of C(n) such that (sα(st))
2

= 1,
where α is the natural Z2-grading on C(n) and t is the transpose, then we have the short
exact sequence

(2.4) 1 −→ Z2 −→ Pin(n)
ρn−→ O(n) −→ 1 ,

where ρn is defined by ρn(s)ej = α(s)ejs
−1, for all s ∈ Pin(n), 1 ≤ j ≤ n.

In fact, the Schur multiplier of O(n) is given by

H2(On,C∗) = Z2.(2.5)
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Furthermore, if Spin(n) = ρ−1
n (SO(n)), then we also have the classical double covering of

the special orthogonal (rotation) group SO(n)

(2.6) 1 −→ Z2 −→ Spin(n)
ρn−→ SO(n) −→ 1 ,

Clearly, Spin(n) is of index 2 in Pin(n); let η denote the corresponding linear character
of Pin(n).

We now construct the so-called basic spin representation of Clifford algebras. Let

E =

(
1 0
0 1

)
, I =

(
0 1
1 0

)
, J =

(
0 i
−i 0

)
, K =

(
1 0
0 −1

)
then

I2 = K2 = E, J2 = E, JI = −IJ = iK,

KI = −IK = iJ, KJ = −JK = I.

Then, if n = 2µ is even, we define an isomorphism Pn : Cn → C(2µ) by

(2.7)

{
Pn(e2j−1) = M2j−1 := K⊗(j−1) ⊗ I ⊗ E⊗(µ−j)

Pn(e2j) = M2j := K⊗(j−1) ⊗ J ⊗ E⊗(µ−j)

for 1 ≤ j ≤ µ and if n = 2µ+ 1 is odd, we define an isomorphism Pn,+ : Cn → C(2µ) by

(2.8)

{
Pn,+(ej) = Pn(ej)

Pn,+(e2µ+1) = Mn = K⊗µ

for 1 ≤ j ≤ 2µ. Furthermore, for 1 ≤ j ≤ n, put

Pn,−(ej) = −Pn,+(ej)

Then we note that

(2.9) M2
j = I, MjMk = −MkMj for 1 ≤ j, k ≤ n.

Then, if n is even, Pn is the unique irreducible complex representation of degree 2n/2 of
Cn and if n is odd, Pn,+ and Pn,− are the two inequivalent irreducible complex represen-
tations of degree 2n/2 of Cn which are clearly η-associate representations. From now on,
we denote these by P, P±. We shall refer to these as the basic spin representations of
the Clifford algebra. It is easily checked that an η−associator of P is K⊗µ. In [18], it was
proved that the basic spin representation of a Clifford algebra C(n) is irreducible when
restricted to the orthogonal group, or to be more precise, to its double cover Pin(n).
This restricted representation is called the basic spin representation of the orthogonal
group.

We now define a twisted outer product of spin representations. Let m and n be positive
integers such that m+ n = l. We show how to construct irreducible spin representations
of Pin(m,n) by taking a product of an irreducible spin representation of Pin(m) with an
irreducible spin representation of Pin(n).

Let P1 and P2 be irreducible spin representations of Pin(m) and Pin(n) respectively of
degrees d1 and d2 respectively. Then the twisted product P1⊗̂P2 is a spin representation
of the twisted product Pin(m,n) ∼= Pin(m)⊗̂Pin(n) (see [18]) defined as follows; there
are 3 cases to be considered.
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Case 1: If P1 and P2 are η-associate spin representations of Pin(m) and Pin(n) respec-
tively, then put

(P1⊗̂P2)(τ, σ) = E ⊗ P1(τ)⊗ P2(σ) if τ ∈ Spin(m), σ ∈ Spin(n),

(P1⊗̂P2)(τ, 1) = I ⊗ P1(τ)⊗ Id2 if τ ∈ Pin(m) \ Spin(m),

(P1⊗̂P2)(1, σ) = J ⊗ Id2 ⊗ P2(σ) if σ ∈ Pin(n) \ Spin(n);

the relation IJ = −JI ensures that P1⊗̂P2 is a spin representation of Pin(m)⊗̂Pin(n) of
degree 2d1d2. Furthermore, P1⊗̂P2 is self-associate, since tr(I) = tr(J) = 0 and so P1⊗̂P2

and η ⊗ (P1⊗̂P2) have equal characters.
Case 2: If P1 is a self-associate spin representation of Pin(m) with η-associator S1 and
P2 is an η-associate spin representation of Pin(n), then

S1P1(σ) =

{
P1(σ)S1 if σ ∈ Spin(m)
−P1(σ)S1 if σ ∈ Pin(m) \ Spin(m).

Now, define

(P1⊗̂P2)±(τ, σ) = P1(τ)⊗ P2±(σ) if τ ∈ Spin(m), σ ∈ Spin(n),

(P1⊗̂P2)±(τ, 1) = P1(τ)⊗ Id2 if τ ∈ Pin(m) \ Spin(m),

(P1⊗̂P2)±(1, σ) = S1 ⊗ P2±(σ) if σ ∈ Pin(n) \ Spin(n).

Then (P1⊗̂P2)± are η-associate irreducible spin representations of Pin(m)⊗̂Pin(n) of
degree d1d2.
Case 3: If P1 and P2 are both self-associate representations, then define (P1⊗̂P2)± as
in Case 2, but replacing P2± by P2, then (P1⊗̂P2)+ and (P1⊗̂P2)− are equivalent irre-
ducible spin representations of Pin(m)⊗̂Pin(n), thus (P1⊗̂P2)+ is a self-associate spin
representation of degree d1d2 in this case.

If we let χP1 , χP2 and χP1⊗̂P2
denote the characters of P1, P2 and (P1⊗̂P2) respectively,

and ∆P1 ,∆P2 and ∆P1⊗̂P2
denote the difference characters if P1, P2 or P1⊗̂P2 are self-

associate, then as a consequence of the above we have the following proposition.

Proposition 2.2. If P1 and P2 are spin representations of Pin(m) and Pin(n) respec-
tively and

(i) if P1 and P2 are η-associate representations then

χP1⊗̂P2
(τ, σ) =

{
2χP1(τ)χP2(σ) if τ ∈ Spin(m), σ ∈ Spin(n)
0 otherwise.

(ii) if one of P1 or P2 is self-associate, then

χP1⊗̂P2
(τ, σ) =

 χP1(τ)χP2(σ) if τ ∈ Spin(m), σ ∈ Spin(n)
∆P1(τ)χP2(σ) if τ ∈ Pin(m) \ Spin(m), σ ∈ Pin(n) \ Spin(n)
0 otherwise.

The above can be generalized, that is, we can define the twisted product P1⊗̂ · · · ⊗̂Pt,
where ⊗̂ is an associative ’multiplication’.

Let m1, . . . ,mt be positive integers such that m1 + · · · + mt = l and for 1 ≤ j ≤ t,
let Pj be an irreducible spin representation of Pin(mj) of degree dj. For simplicity, we
assume that Pj, 1 ≤ j ≤ r ≤ t, are self-associate representations and that the remaining
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s = t− r representations Pj are η-associate representations. Let ±Sj, 1 ≤ j ≤ r, be the
η-associators of the representations Pj, then

(2.10) Pj(σj) =

{
SjPj(σj) if σj ∈ Spin(mj)
−SjPj(σj) if σj 6∈ Spin(mj).

Let σj also denote the element 1⊗· · ·⊗1⊗σj⊗1⊗· · ·⊗1 in Pin(m1)⊗̂ · · · ⊗̂Pin(mt), with
σj in the j-th position, where σj ∈ Pin(mj), 1 ≤ j ≤ t. If σj ∈ Spin(mj), 1 ≤ j ≤ t, put

(2.11) P (σj) = I2bs/2c ⊗ Id1 ⊗ · · · ⊗ Idj−1
⊗ Pj(σj)⊗ Idj+1

⊗ · · · ⊗ Idt

and if σj 6∈ Spin(mj), put

(2.12) P (σj) =

 I2bs/2c ⊗ S1 ⊗ · · · ⊗ Sj−1 ⊗ Pj(σj)⊗ Idj+1
⊗ · · · ⊗ Idt if 1 ≤ j ≤ r,

Mj−r ⊗ S1 ⊗ · · · ⊗ Sr ⊗ Idr+1 ⊗ · · · ⊗ Idj−1
Pj(σj)⊗ Idj+1

⊗ · · · ⊗ Idt

if r + 1 ≤ j ≤ r + s = t.

The relations (2.3) ensure that P is a spin representation of

Pin(m1, . . . ,mt) ∼= Pin(m1)⊗̂ · · · ⊗̂Pin(mt).

The degree of P is 2bs/2cd1 · · · dt.
The character of this representation was also calculated in [18] to give the following

proposition.

Proposition 2.3. Let ζ be the character of P and ζj, 1 ≤ j ≤ t, be the characters of Pj.
(i) If σj ∈ Spin(mj), 1 ≤ j ≤ t, then

ζ(σ1 · · ·σt) = 2bs/2cζ1(σ1) · · · ζt(σt).

(ii) If s is odd and ∆j is the difference character of the self-associate representations
Pj, 1 ≤ j ≤ r, and if σj ∈ Spin(mj), 1 ≤ j ≤ r, σj 6∈ Spin(mj), r + 1 ≤ j ≤ t, then

ζ(σ1 · · ·σt) = ±(2i)[s/2]∆1(σ1) · · ·∆r(σr)ζr+1(σr+1) · · · ζt(σt).

(iii) In all other cases
ζ(σ1 · · ·σt) = 0

The above proposition can be applied in particular to the special case where the Pi

are the basic spin representations of Pin(mi). Then, the assumption that the first r of
the representations are self-associate is equivalent to assuming that the mi are even for
1 ≤ i ≤ r and that themi are odd for r+1 ≤ i ≤ t. The degree of the representation P will
therefore be 2bs/2c2m1/2 · · · 2(mr+1−1)/2 · · · 2(mt−1)/2 = 2bs/2c2(l−s)/2 = 2bl/2c. Furthermore,
the explicit formulae of Proposition 2.3 could be used to give more explicit values for the
characters in terms of the eigenvalues of the elements σ1, . . . , σt. This will not be done at
this point, it is postponed for consideration later when these results are applied to certain
reflection groups.

3. The Generalized Symmetric Group Zn
m o Sn

3.1. Presentation. If Zm is the cyclic group of order m and Sn is the symmetric group of
order n!, the generalized symmetric group is the wreath product Zm oSn or the semi-direct
product Zn

m o Sn. This group is of order mnn!; in the sequel, it is denoted by Bm
n (when

m = 1, we have the symmetric group Sn or the Weyl group of type An−1 and when m = 2,
we have the hyperoctahedral group or the Weyl group of type Bn).
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If Sn is considered as a permutation group acting on the set {1, 2, . . . , n}, then Sn is
generated by si, 1 ≤ i ≤ n− 1 with relations

s2
i = 1, (sisi+1)

3 = 1, 1 ≤ i ≤ n− 2, (sisj)
2 = 1, |i− j| ≥ 2, 1 ≤ i, j ≤ n− 1,

where si is the transposition (i, i+ 1), 1 ≤ i ≤ n− 1 The group Bm
n can be considered as

the group generated by si, 1 ≤ i ≤ n− 1, wj, 1 ≤ j ≤ n with relations

s2
i = 1, wm

j = 1; (sisi+1)
3 = 1, 1 ≤ i ≤ n− 2, siwi = wi+1si, siwj = wjsi, j 6= i, i+ 1

(sisj)
2 = 1, |i− j| ≥ 2, 1 ≤ i, j ≤ n− 1, wiwj = wjwi, i 6= j, 2 ≤ i ≤ n− 1 .

Comparing this with the presentation of Sn , we see the natural embedding of Sn in
Bm

n ; also wi may be regarded as the mapping which takes i onto ζi, with {1, 2, . . . , i −
1, i + 1, . . . , n} fixed, where ζ is a primitive m-th root of unity. It can be verified that
wj = sj−1sj−2 · · · s1w1s1 · · · sj−2sj−1 for 1 ≤ j ≤ n. That is, Bm

n is the permutation group
acting on the set {1, 2, . . . , n}, but also with the ’sign’ changes wi which are written as

wi =
(

i
ζi

)
.

3.2. Classes of conjugate elements. The classes of conjugate elements of Sn are pa-
rameterized by the partitions (1n12n2 . . . nnn) of n, where ni ≥ 0, 1 ≤ i ≤ n.

The classes of Bm
n are defined similarly in terms of m-partitions (see, for example, [12]).

The elements of Bm
n permute the set {1, 2, . . . , n} and multiply each of the elements of

this set by a power of ζ. Thus the elements of Bm
n are of the form

x =

(
1 2 . . . n

ζk1b1 ζk2b2 . . . ζknbn

)
,

where {b1, b2, . . . , bn} is a permutation of the set {1, 2, . . . , n} and 1 ≤ ki ≤ m, 1 ≤ i ≤ n.
Any element of Bm

n can be uniquely expressed as a product of disjoint cycles x =
∏t

i=1 θi.
where

θi =

(
bi1 bi2 . . . bili

ζki1 bi2 ζki2 bi3 . . . ζ
kili bi1

)
,

where
∑t

i=1 li = n; put f(θi) =
∑li

j=1 kij .
Then the classes of conjugate elements of Bm

n correspond to the m-partitions of n

(1a112a12 . . . na1n ; 1a212a22 . . . na2n ; . . . ; 1am12am2 . . . namn),

where
∑n

i=1 aij = nj 1 ≤ j ≤ m, where apq denotes the number of cycles θi in the above
decomposition of σ of length q such that f(θi) ≡ p− 1 (mod m). The order of this class
is

(3.1)
mnn!∏

p,q apq!(qm)apq

We have, by definition, the short exact sequence

(3.2) 1 −→ Zn
m −→ Bm

n
υn−→ Sn −→ 1 ,

where υn is defined by υn(si) = si, υn(wi) = 1 for all 1 ≤ i ≤ n, where Zn
m = Zm⊗. . .⊗Zm,

(n copies), where the i-th copy of Zm should be regarded as the cyclic group generated
by wi. In the case where m is even, there is a corresponding short exact sequence

(3.3) 1 −→ Zn
m/2 −→ Bm

n
τn−→ B2

n −→ 1 ,
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where τn is defined by τn(si) = si, τn(wi) = wi for all 1 ≤ j ≤ n, where now the i-th
copy of Zm/2 should be regarded as the cyclic group generated by w2

i .
Under the homomorphism υn the class

(1a112a12 . . . na1n ; 1a212a22 . . . na2n ; . . . ; 1am12am2 . . . namn),

of Bm
n fuses to the class (1

∑m
i=1 ai12

∑m
i=1 ai2 . . . n

∑m
i=1 ain) of Sn and under the homomorphism

τn this class fuses to the class

(1

∑m
i=1
i odd

ai1

2

∑m
i=1
i odd

ai2

. . . n

∑m
i=1
i odd

ain

; 1

∑m
i=1

i even

ai1

2

∑m
i=1

i even

ai2

. . . n

∑m
i=1

i even

ain

)

of B2
n.

These two isomorphisms will allow us to use known results about the spin representa-
tions of the symmetric group Sn and the hyperoctahedral group B2

n to determine the spin
representations of Bm

n .
The group Bm

n has a total of 2m linear characters defined by

(3.4)

 σk(si) = 1, 1 ≤ i ≤ n− 1 σk(wj) = ζk, 1 ≤ j ≤ n
η(si) = −1, 1 ≤ i ≤ n− 1 η(wj) = 1, 1 ≤ j ≤ n
εk(si) = −1, 1 ≤ i ≤ n− 1 εk(wj) = ζk, 1 ≤ j ≤ n,

where 1 ≤ k ≤ m− 1, together with the identity character. In the special case k = m/2,
we write ε for εm/2 and σ for σm/2. The values of these characters for an element in the
class (λ(1);λ(2); . . . ;λ(m)) are as follows

η(λ(1);λ(2); . . . ;λ(m)) = (−1)
∑m

i=1 l(λ(i)),

σ(λ(1);λ(2); . . . ;λ(m)) = (−1)n−
∑m

i=2,i even l(λ(i)),

ε(λ(1);λ(2); . . . ;λ(m)) = (−1)n−
∑m−1

i=1,i odd l(λ(i)).

Then, we prove the following lemma which describes the kernels of some of the charac-
ters. The descriptions are given in terms of the classes of conjugate elements of Bm

n .

Lemma 3.1. (i) ker η = {x ∈ (λ(1);λ(2); . . . ;λ(m)) | (λ(1);λ(2); . . . ;λ(m)) is even},
(ii) ker σ = {x ∈ (λ(1);λ(2); . . . ;λ(m)) |

∑m
i=2 i even

∑n
j=1 aij is even },

(iii) ker ε = ησ = {x ∈ (λ(1);λ(2); . . . ;λ(m)) | (λ(1);λ(2); . . . ;λ(m)) is even and∑m
i=2 i even

∑n
j=1 aij is even , or (λ(1);λ(2); . . . ;λ(m)) is odd and

∑m
i=2 i even

∑n
j=1 aij is

odd }.

Proof. (i) Since η(wj) = 1 for 1 ≤ j ≤ n and η(sj) = −1 for 1 ≤ j ≤ n, then for
x ∈ ker η, the total number of the generators si in any expression for x must be even,
that is, the number of even cycles in this expression must be even, thus [λ(1);λ(2); . . . ;λ(m)]
is even.

(ii) Since σ(wj) = −1 for 1 ≤ j ≤ n and σ(sj) = 1 for 1 ≤ j ≤ n, then for x ∈ ker σ,
the total number of the generators wi in any expression for x must be even. In an
expression x =

∏t
i=1 θi of x as a product of cycles, the cycles θi for which f(θi is even

(odd) give rise to an even (odd) number of wj. Thus, for σ(x) = 1, we require an even
number of cycles θi with f(θi) odd. This can only occur if

∑m
i=2 i even

∑n
j=1 aij is even.

(iii) Since ε(wj) = −1 for 1 ≤ j ≤ n and ε(sj) = −1 for 1 ≤ j ≤ n, then for x ∈ ker σ,
the total number of the generators wi and si in any expression for x must be even. Then,
for similar reasons to those in the proof of (i) and (ii), there are two possible cases. Thus,
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either both (λ(1);λ(2); . . . ;λ(m)) and
∑m

i=2 i even

∑n
j=1 aij are even or both are odd which

results in the required conclusion.
If we now letM = ker η

⋂
ker σ

⋂
ker ε, thenM = {x ∈ (λ(1);λ(2); . . . ;λ(m)) | (λ(1);λ(2);

. . . ;λ(m)) is even and
∑m

i=2 i even

∑n
j=1 aij is even }. Then, the following lemma can be

proved.

Lemma 3.2. If m is even, the following is a short exact sequence

1 −→ M −→ Bm
n −→ Z2 × Z2 −→ 1 .

Proof. Define φ : Bm
n −→ Z2 × Z2 by

φ(x) = (1,−1)k1(−1, 1)k2 ,

where k1 and k2 are the number of the si and wi respectively in any expression for x in
terms of the generators of Bm

n . Then φ is well-defined. Clearly, the map φ is surjective
and it only remains to determine kerφ.

For x ∈ kerφ, then it is necessary for both k1 and k2 to be even. It now suffices to
check against the calculation of all the kernels in Lemma 3.1 to verify that kerφ is indeed
the subgroup M.

4. A Covering Group B̃m
n of Bm

n and its Basic Spin Representations

The Schur multiplier of Bm
n was obtained in [8]

H2(Bm
n ,C∗) =


Z2 = {γ} if m is odd, n ≥ 4,
Z2 × Z2 × Z2 = {(γ, λ, µ)} if m is even, n ≥ 4,
Z2 × Z2 = {(λ, µ)} if m is even, n = 3,
Z2 = {µ} if m is even, n = 2,
{1} otherwise,

(4.1)

where γ = λ = µ = ±1.
This means that if m is even Bm

n has eight 2-cocycles {(γ, λ, µ)|γ2 = λ2 = µ2 = 1}
and two 2-cocycles if m is odd, {(γ)|γ2 = 1}. A corresponding representation group is
denoted by B̃m

n which has a presentation

B̃m
n = < ti, 1 ≤ i ≤ n− 1, uj, 1 ≤ j ≤ n | t2i = 1, um

j = 1

(titi+1)
3 = 1, 1 ≤ i ≤ n− 2, tiui = ui+1ti, tiuj = λujti, j 6= i, i+ 1

(titj)
2 = γ1, |i− j| ≥ 2, 1 ≤ i, j ≤ n− 1,(4.2)

uiuj = µujui, i 6= j, 2 ≤ i ≤ n− 1〉,
where

γ2 = λ(2,m) = µ(2,m) = 1

and γ, λ, µ commute with each other and with the ti, uj.
For simplicity, from now on, we will fix a 2-cocycle [γ, λ, µ] ∈ (γ, λ, µ), with γ2 =

λ(2,m) = µ(2,m) = 1 and with the convention that λ = µ = 1 if m is odd; γ = 1 if m is
even and n = 3; γ = λ = 1 if m is even and n = 2; and γ = λ = µ = 1 if n = 1. Thus,
the 2-cocycles will be denoted by [±1,±1,±1]; we note that only the 2-cocycles [±1, 1, 1]
appear in the case m odd (and in particular for the group Sn).

The splitting classes for spin representations of Bm
n for all 2-cocycles were first given by

Read [23] (who in [24] was the first to determine all the irreducible spin representations
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of Bm
n for all 2-cocycles). Later, Stembridge [31] did the same for the hyperoctahedral

groups, the special case m = 2. He showed that the splitting classes are given as in
Table 1. This table is broken into four columns according to the four possible values of
η and σ. The entry indicates the splitting classes of Bn corresponding to the 2-cocycle.
For example, for the 2-cocycle [1,−1,−1], the splitting classes (λ, µ) of Bn for which
η = −1, σ = −1 are of the form (DOP ;DEP ), that is, λ has distinct odd parts and µ
has distinct even parts.

2-cocycle η = 1, σ = 1 η = −1, σ = 1 η = 1, σ = −1 η = −1, σ = −1

[1,−1, 1] (P ; P ) (EP ; ∅) (DOP ; DOP ) (∅; EP )

[−1, 1, 1] (OP ; OP ) (DP ; DP ) (OP ; OP ) (DP ; DP )

[−1,−1, 1] (OP ; OP ) (DEP ; ∅) (DP ; DP ) (∅; DEP )
[1, 1,−1] (OP ; ∅) ∅ (∅; DP ) (∅; DP )

[1,−1,−1] (OP ; ∅) (∅; DP ) (∅; OP ) (DOP ; DEP )

[−1, 1,−1] (OP ; EP ) ∅ (∅; DOP ) (∅; P )
[−1,−1,−1] (OP ; EP ) (∅; P ) (∅; P ) (OP ; EP )

Table 1. Splitting classes for B2
n

We now obtain splitting classes for the group Bm
n for all the 2-cocycles. Indeed, the

table in the case m even can be obtained directly from Table 1 using the homomorphism
Bm

n
τn−→ B2

n given in (3.3). Alternatively, these results can be proved directly without
invoking those obtained by Stembridge. Reinterpreting the results of Read [23] in our
notation, shows that our results are consistent with those obtained very much earlier by
him. We again note that only the second row of Table 2 is relevant in the case m odd.

2-cocycle η = 1, σ = 1 η = −1, σ = 1 η = 1, σ = −1 η = −1, σ = −1

[1,−1, 1] (P ; . . . ; P ) (EP ; ∅; . . . ; EP ; ∅) (DOP ; . . . ; DOP ) (∅; EP ; . . . ; ∅; EP )

[−1, 1, 1] (OP ; . . . ; OP ) (DP ; . . . ; DP ) (OP ; . . . ; OP ) (DP ; . . . ; DP )

[−1,−1, 1] (OP ; . . . ; OP ) (DEP ; ∅; . . . ; DEP ; ∅) (DP ; . . . ; DP ) (∅; DEP ; . . . ; ∅; DEP )
[1, 1,−1] (OP ; ∅; . . . ; OP ; ∅) ∅ (∅; DP ; . . . ; ∅; DP ) (∅; DP ; . . . ; ∅; DP )

[1,−1,−1] (OP ; ∅; . . . ; OP ; ∅) (∅; DP ; . . . ; ∅; DP ) (∅; OP ; . . . ; ∅; OP ) (DOP ; DEP ; . . . ; DOP ; DEP )

[−1, 1,−1] (OP ; EP ; . . . ; OP ; EP ) ∅ (∅; DOP ; . . . ; ∅; DOP ) (∅; P ; . . . ; ∅; P )
[−1,−1,−1] (OP ; EP ; . . . ; OP ; EP ) (∅; P ; . . . ; ∅; P ) (∅; P ; . . . ; ∅; P ) (OP ; EP ; . . . ; OP ; EP )

Table 2. Splitting classes for Bm
n

For example, for the 2-cocycle [−1, 1, 1], the splitting classes of Bm
n (or of B̃m

n ) in
the notation of this paper are classes of the m-partition form (OP,OP, . . . , OP ) and
(DP,DP, . . . , DP ).

4.1. Basic spin representations of generalized symmetric groups. Let W (Φ) be
the irreducible finite reflection group of rank l with root system Φ and simple system
Π = {α1, . . . , αl} and let τj = ταj

be the reflection corresponding to αj ∈ Π. Then the
group W (Φ) is generated by the simple reflections τj, 1 ≤ j ≤ l subject to the relations

τ 2
j = 1, 1 ≤ j ≤ l, (τjτk)

mjk = 1, 1 ≤ j, k ≤ l, j 6= k,

where mjk are positive integers such that mkj = mjk.
If the group W (Φ) of rank l is embedded in the orthogonal group O(n); say φ : W (Φ) ↪→

O(n) is an embedding of W (Φ) into an orthogonal group O(n), for some n, then let
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Mφ(Φ) = ρ−1
n (W (Φ)). Then we have the following (see [2] and [18] for the details including

notation)

(4.3)

1 −→ Z2 −→ Pin(n)
ρn−→ O(n) −→ 1xφ

1 −→ Z2 −→ Mφ(Φ)
ρn−→ W (Φ) −→ 1.

It is clear that the lower sequence in (4.3) is also an exact sequence, but to show that
Mφ(Φ) is a covering group of W (Φ), it is necessary to show that Mφ(Φ) is a stem extension
of W (Φ), that is, to verify that

Z2 ⊂ Z(Mφ(Φ)) ∩ (Mφ(Φ))′.

This will ensure that the basic spin representation of O(n) will still be a non-trivial
spin representation, that is, not projectively equivalent to an ordinary representation, on
restriction to the subgroup W (Φ). Furthermore, it was shown in [18], that if n = l the
basic spin representations P, P± remain irreducible on restriction to the finite irreducible
reflection groups W (Φ), where rank(Φ) = l.

This is now used to construct a number of basic spin representations of Bm
n for certain

2-cocycles. We first consider the natural embedding η : W (Φ) ↪→ O(l), where rankΦ = l.
In this case, put

M(Φ) = φ−1
l (W (Φ)).

Then, a presentation of M(Φ) is obtained. We have that

ρl(αj) = τj, 1 ≤ j ≤ l.

and if we let rj = αj/‖ αj ‖, 1 ≤ j ≤ l, then we also have

ρl(rj) = τj = τrj
, 1 ≤ j ≤ l.

If, in addition, z ∈ Pin(l), is such that ρl(z) = Il, then z ∈ Z2, that is, z2 = 1. Then, we
have that the group M(Φ) is generated by rj, 1 ≤ j ≤ l, z subject to the relations

(rjrk)
mjk = zmjk−1, 1 ≤ j, k ≤ l, z2 = 1, zrj = rjz, 1 ≤ j ≤ l.

We apply these results in particular to the reflection groups of type An−1 (the symmetric
group Sn), Bn (the hyperoctahedral group B2

n) and I2(2) (the dihedral group of order 4).
Type An−1. In order to apply the above, we use an embedding of the root system An−1

in Rn−1 where the simple system is given by

{αj =
√
j − 1ej−1 −

√
j + 1ej, 1 ≤ j ≤ n− 1},

(rather than the usual one) then

P (sj) =
1√
2j

(
√
j − 1Mj−1 −

√
j + 1Mj), 1 ≤ j ≤ n− 1

is the irreducible basic spin representation of Sn if n is odd and P± are the two associate
basic spin representation of W (An−1) if n is even. In the above, the generators τj have
been replaced by the corresponding ones in this setting. In fact, we obtain the presentation

Ãn−1 = 〈ti, 1 ≤ i ≤ n− 1, z | t2i = 1, z2 = 1, (titi+1)
3 = 1, 1 ≤ i ≤ n− 2,

(titj)
2 = z, tiz = zti, |i− j| ≥ 2, 1 ≤ i, j ≤ n− 1〉
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and thus, this representation, as was shown in [18] is the irreducible basic spin repre-
sentation of Sn for the 2-cocycle [-1,1,1]. Furthermore, the value of its character was
determined as given in the following proposition.

Proposition 4.1. Let ψ, (ψ±) be the character of the basic spin representation P, (P±).
(i) If x ∈ (ρ), ρ ∈ OP (n),then

ψ(x) = 2b
1
2
(l(ρ)−1)c.

(ii) If x ∈ (n), then

ψ±(x) = ±i 1
2
(n−2)

√
n/2 if n is even.

(iii)

ψ(x) = 0 otherwise.

These representations can in turn be lifted to give an irreducible basic spin represen-
tation of Bm

n again denoted by P which corresponds to the 2-cocycle [−1, 1, 1] using the
homomorphism υn defined in (3.2). This results in the following proposition.

Proposition 4.2. Let ψ, (ψ±) be the character of the basic spin representation P, (P±).
(i) If x ∈ (λ(1);λ(2); . . . ;λ(m)), λ(i) ∈ (OP (|λ(i)|), 1 ≤ i ≤ m, then

ψ(x) = 2b
1
2
(l(λ(1);λ(2);...;λ(m))−1)c.

(ii) If x ∈ (∅; . . . ; ∅;n; ∅; . . . ; ∅), then

ψ±(x) = ±i 1
2
(n−2)

√
n/2 if n is even,

where n can be in any one of m possible positions.
(iii)

ψ(x) = 0 otherwise.

It was I. Schur [30] who first showed that the irreducible representations for this 2-
cocycle correspond to partitions λ ∈ DP (n). These were constructed in a remarkable
way by M. L. Nazarov [21] which is a generalization of the above construction which
corresponds to the partition (n). We briefly recall his results.

Let λ ∈ DP (n), the shifted diagram for λ is

Dλ = {(i, j) ∈ Z2 | 1 ≤ i ≤ l(λ); i ≤ j ≤ λi + i− 1}.
This is represented graphically where a point (i, j) ∈ Z2 is represented by the unit square
in the plane R2 with centre (i, j), the coordinates i and j increasing from top to bottom
and from left to right respectively. A shifted tableau of shape λ is a bijection ∆ : Dλ →
{1, 2, . . . , n}; a bijection is represented as a filling of the squares of Dλ with the numbers
1, 2, . . . , n, each of these numbers being used once only. A shifted tableau ∆ is standard
if the numbers increase down its columns and across its rows. Now, let Sλ denote the set
of all standard shifted tableaux of shape λ. Let ∆ ∈ Sλ and let k ∈ {1, 2, . . . , n} be fixed.
Let k and k+1 have the coordinates (i, j) and (i′, j′) in ∆. Put a = j−i+1, b = j′−i′+1.
Consider ∆ and sk∆, then sk∆ ∈ Sλ or sk∆ 6∈ Sλ. Assume a < b, otherwise work with
sk∆, even if sk∆ 6∈ Sλ. Put

f(a, b) =

√
2b(b− 1)

(a− b)(a+ b− 1)
,
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x = (−1)b+kf(a, b), y = (−1)a+kf(b, a), z =

√
1−x2−y2

2
and u =

√
(1− x2). Let

A =

(
x z
z y

)
, B =

(
−y z
z −x

)
and C =

(
x u
u −x

)
.

Let h be the number of rows in ∆ occupied by 1, 2, . . . , k + 1.Then, if ∆,∆′ ∈ Sλ, put

X
〈λ〉
± (sk) =

{
A⊗Mk−h+1 +B ⊗Mk−h if 1 < a < b
C ⊗Mk−h+1 if 1 = a < b

and if ∆′ 6∈ Sλ, replace the matrices A,B and C by the element which appears in the
(2, 2)-position. This is repeated for all the tableaux ∆ ∈ Sλ and we obtain the following
proposition.

Proposition 4.3. The X〈λ〉, λ ∈ DP+(n), X
〈λ〉
± , λ ∈ DP−(n) form a complete set

of irreducible spin representations of Sn of degree 2b
n−l(λ)

2
cgλ, where gλ is the number of

shifted standard tableaux of shape λ.

We note that the η-associator of X〈λ〉 is id⊗K⊗µ, where µ = bn/2c.
Type Bn. In order to apply the above, we use an embedding of the root system Bn in
Rn where the simple system is given by

{αj = ej−1 − ej, 1 ≤ j ≤ n− 1, αn = en},
then

Q(sj) =
1√
2
(Mj−1 −Mj), 1 ≤ j ≤ n− 1, Q(w1) = Mn

is the irreducible basic spin representation of W (Bn) if n is even and Q± are the two
associate basic spin representation of W (Bn) if n is odd. Here, we have replaced the
notation P (P±) by Q (Q±) for obvious reasons.

In this case, we obtain the presentation

B̃n = 〈ti, 1 ≤ i ≤ n− 1, uj, 1 ≤ j ≤ n | t2i = 1, u2
j = 1, (titi+1)

3 = 1,

1 ≤ i ≤ n− 2, tiui = ui+1ti, tiuj = λujti, j 6= i, i+ 1, (titj)
2 = γ,

|i− j| ≥ 2, 1 ≤ i, j ≤ n− 1, uiuj = µujui, i 6= j, 2 ≤ i ≤ n− 1〉,
where γ2 = λ(2,m) = µ(2,m) = 1 and γ, λ, µ commute with each other and with the ti, uj

(note that un−i = tn−iun−i+1tn−i, 1 ≤ i ≤ n − 1) for the covering group of Bn. From
this we deduce that this representation is the irreducible basic spin representation for the
2-cocycle [−1,−1,−1]. Furthermore, the value of its character can be determined [18] as
given in the following proposition.

Proposition 4.4. Let χ, (χ±) be the character of the basic spin representation Q, (Q±).
(i) If x ∈ (ρ; %), (ρ; %) ∈ (OP (|ρ|);EP (|%|)), then

χ(x) =

{
2

1
2
(l(ρ;%)) if n is even

2
1
2
(l(ρ;%)−1) if n is odd

(ii) If x ∈ (∅; %), % ∈ P (n), then

χ±(x) = ±i 1
2
(n−1)2

1
2
(l(%)−1) if n is odd,

(iii)
χ(x) = 0 otherwise.
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In the same way as above, these representations and characters are now lifted to Bm
n

using the homomorphism τn defined in (3.3) to give the following proposition.

Proposition 4.5. Let χ, (χ±) be the character of the basic spin representation Q, (Q±).
(i) If x ∈ (ρ1; %1; . . . ; ρm/2; %m/2), ρi ∈ OP ; %i ∈ EP, 1 ≤ i ≤ m/2, then

χ(x) =

{
2

1
2
(
∑m/2

i=1 l(ρi;%i)) if n is even

2
1
2
(
∑m/2

i=1 l(ρi;%i)−1) if n is odd

(ii) If x ∈ (∅, %1, . . . , ∅, %m/2), %i ∈ P, 1 ≤ i ≤ m/2, then

χ±(x) = ±i 1
2
(n−1)2

1
2
(
∑m/2

i=1 l(%i)−1) if n is odd,

(iii)

χ(x) = 0 otherwise.

In [19] it was shown how to determine an irreducible basic spin representation of Bm
n

for the 2-cocycle [1,−1, 1]. In fact, we use the embedding Bm
n ↪→ O(2) given by

(σ ⊕ η)(si) =

(
1 0
0 −1

)
, 1 ≤ i ≤ l − 1, (σ ⊕ η)(wl) =

(
−1 0

0 1

)
.

Now, if we use the exact sequence

1 −→ Z2 −→ Pin(2)
ρ2−→ O(2) −→ 1xσ ⊕ η

Bm
n /M

we ultimately, by putting

R(si) = M2 =

(
0 i

−i 0

)
, 1 ≤ i ≤ n− 1, R(wl) = M1 =

(
0 1
1 0

)
,

obtain an irreducible spin representation R of degree 2 of Bm
n corresponding to the 2-

cocycle [1,−1, 1]. The σ−, η− and ε−associators of this representation are J, I and K
respectively.

The character of this representation is given by the following proposition.

Proposition 4.6. If ξ denotes the character of R, then

ξ(x) =

{
2 if x ∈M
0 otherwise.

We have now constructed irreducible basic spin representations P,Q and R of Bm
n cor-

responding to the 2-cocycles [−1, 1, 1], [−1,−1,−1] and [1,−1, 1] (respectively) of degrees

2b
1
2
(n−1)c, 2

1
2
n or 2

1
2
(n−1) according as n is even or odd and 2 (respectively). These are

now shown to be absolutely fundamental in the construction of the irreducible projective
representations for the remaining 2-cocycles. But before proceeding to show how this is
done, following Stembridge [31], we apply Proposition 2.1 to obtain a general result which
proves to be extremely helpful in many of these cases.

The 2-cocycle of R is α = [1,−1, 1], let P be any projective representation of Bm
n with

2-cocycle β, then R⊗P is a projective representation of Bm
n with 2-cocycle αβ. Then we

have the following proposition.
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Proposition 4.7. Let P be an irreducible projective representation of degree d of Bm
n with

2-cocycle β.
(i) If LP = {1}, then R ⊗ P is an irreducible representation of degree 2d of Bm

n with
2-cocycle αβ.

(ii) If LP = {1, ν}, where ν ∈ L, then R ⊗ P is the direct sum of two inequivalent
irreducible projective representation of degree d of Bm

n with 2-cocycle αβ.
(iii) If LP = L, and U, V are the η, σ-associators of P respectively, then
(a) if UV = −V U , then R⊗P is the direct sum of four inequivalent irreducible projective

representation of degree d/2 of Bm
n with 2-cocycle αβ.

(b) if UV = V U , then R ⊗ P is the direct sum of two equivalent irreducible projective
representation of degree d of Bm

n with 2-cocycle αβ.

5. Irreducible spin representations of generalized symmetric groups.

5.1. The 2-cocycle [1,1,1] — ordinary representations. We first review the con-
struction of the irreducible ordinary representations of the generalized symmetric groups,
these are the ones corresponding to the 2-cocycle [1, 1, 1], see [12], but also for a treatment
which is more in line with our requirements, see the work of M. Saeed-ul Islam [27]. As
this work is not easily available a review of his presentation is given below. Furthermore,
H. Can [6] has given a description of the construction of the corresponding Specht mod-
ules and also in [7], he gives a description of these in the context of complex reflection
groups. For recent work on the calculation of the characters from a combinatorial point
of view, see [1].

Let X [λ] denote the irreducible representation of Sn corresponding to the partition λ of
n, let χ[λ] denote the corresponding irreducible character. The irreducible representations
of Bm

n are indexed by m-partitions (λ(1);λ(2); . . . ;λ(m)) of n, the corresponding represen-

tations and characters will be denoted by X [λ(1);λ(2);...;λ(m)] and χ[λ(1);λ(2);...;λ(m)] respectively.
If we let p0 = 0 and pi =

∑i
j=1 kj, 1 ≤ i ≤ m, then Bm

ki
is the generalized symmetric

group acting on the set of ki elements Pi = {pi−1 + 1, . . . , pi}, 1 ≤ i ≤ m, where∑m
i=1 ki = n. Then let Bm

(k1,...,km) = Bm
k1
×· · ·×Bm

km
be the corresponding generalized Young

subgroup. Recall that we have defined earlier the linear characters σk, 1 ≤ k ≤ m− 1 by

σk(si) = 1, 1 ≤ i ≤ n− 1; σk(wj) = ζk, 1 ≤ j ≤ n.

The representation X [λ;∅;...;∅] is obtained by lifting X [λ] from Sn to Bm
n , we define

X [∅;...;∅;λ;∅;...;∅], where λ is in the (k + 1)-th position, 1 ≤ k ≤ m − 1 to be σk ⊗X [λ;∅;...;∅].
If |λi| = ki 1 ≤ i ≤ m, define

X [λ(1);λ(2);...;λ(m)] = (X [λ(1);∅;...;∅] ⊗X [∅;λ(2);...;∅] ⊗ · · · ⊗X [∅;∅;...;λ(m)]) ↑ Bm
n ,

inducing from Bm
(k1,...,km) to Bm

n . If we let

χ(k1,...,km) = 1⊗ σ1 ⊗ · · · ⊗ σm−1,

then we have

X [λ(1);λ(2);...;λ(m)] = (χ(k1,...,km) ⊗X [λ(1);∅;...;∅] ⊗X [λ(2);∅;...;∅] ⊗ · · · ⊗X [λ(m);∅;...;∅]) ↑ Bm
n .

We can now prove the following lemma and theorem.
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Lemma 5.1. χ(k1,...,km) is a linear character of Bm
(k1,...,km) such that

χg
(k1,...,km)(x) 6= χ(k̃1,...,k̃m)(x) for some x ∈ ker υn and for all g ∈ Bm

n unless (k1, . . . , km) =

(k̃1, . . . , k̃m) in which case this holds for all g ∈ Bm
n \Bm

(k1,...,km).

Proof. If (k̃1, . . . , k̃m) 6= (k1, . . . , km), assume without loss of generality that k̃i > ki

for some i, that is, Pi ⊂ P̃i. If g ∈ Bm
n is such that υn(g)Pi = Pi, if j ∈ P̃i\Pi, then

υn(j) ∈ Pl, l 6= i and we put x = (
1
1

) · · · ( j
ζj

) · · · ( n
n

).

If υn(g)Pi 6= Pi, then there exists j ∈ Pi ⊂ P̃i such that υn(j) ∈ Pl, 1 ≤ l ≤ m, l 6= i
and for this j, we define x as above.

In each case, χ(k̃1,...,k̃m)(x) = ζ i, but

χg
(k1,...,km)(x) = χ(k1,...,km)(υn(g)xυn(g)−1) = ζ l, l 6= i.

If (k̃1, . . . , k̃m) = (k1, . . . , km) and g ∈ Bm
n \Bm

(k1,...,km), then there exists at least one index

i, 1 ≤ i ≤ m and an integer j ∈ Pj such that υn(j) ∈ Pl, 1 ≤ l ≤ m, l 6= i. Once again
we define x ∈ ker υn as above for this particular j. Clearly,

χg
(k1,...,km)(x) = ζ l 6= ζ i = χ(k̃1,...,k̃m)(x),

which completes the proof of the lemma.

Theorem 5.2. A complete set of inequivalent irreducible (ordinary) representations of
Bm

n is given by the X [λ(1);λ(2);...;λ(m)], where (λ(1);λ(2); . . . ;λ(m)) is any m-partition of n.

Proof. Let (k1, . . . , km) and (k̃1, . . . , k̃m) be two arbitrary m-tuples of n and let

X [λ(1),λ(2),...,λ(m)] = X [λ(1);∅;...;∅] ⊗ X [∅;λ(2);...;∅] ⊗ · · · ⊗ X [∅;∅;...;λ(m)] and X [λ̃(1),λ̃(2),...,λ̃(m)] =
X [ ˜λ(1);∅;...;∅]⊗X [∅; ˜λ(2);...;∅]⊗· · ·⊗X [∅;∅;...; ˜λ(m)] be two corresponding representations ofBm

(k1,...,km)

and Bm
(k̃1,...,k̃m)

with characters χ[λ(1),λ(2),...,λ(m)] and χ[λ̃(1),λ̃(2),...,λ̃(m)] respectively as defined

above. We will prove that

(χ[λ(1);λ(2);...;λ(m)], χ[λ̃(1);λ̃(2);...;λ̃(m)])Bm
n

= 0

unless ki = k̃i, 1 ≤ i ≤ m, in which case it is equal to 1.
By Frobenius’ reciprocity theorem and Mackey’s subgroup theorem, the above inner

product is equal to

(χ[λ(1),λ(2),...,λ(m)], (χ[λ̃(1);λ̃(2);...;λ̃(m)]) ↓ Bm
(k1,...,km))Bm

(k1,...,km)

=
∑

x

(χ[λ(1),λ(2),...,λ(m)], (χ[λ̃(1),λ̃(2),...,λ̃(m)] ↓ Hx) ↑ Bm
(k1,...,km))Bm

(k1,...,km)

=
∑

x

(χ[λ(1),λ(2),...,λ(m)] ↓ Hx, (χ
[λ̃(1),λ̃(2),...,λ̃(m)])x ↓ Hx)Hx ,

where Hx = Bm
(k1,...,km)

⋂
x−1Bm

(k̃1,...,k̃m)
x, (χ[λ̃(1),λ̃(2),...,λ̃(m)])x(x−1gx) =

(χ[λ̃(1),λ̃(2),...,λ̃(m)])(g) for all g ∈ Bm
(k̃1,...,k̃m)

and x ranges over the double coset representatives

of the generalized Young subgroups Bm
(k1,...,km) and Bm

(k̃1,...,k̃m)
in Bm

n .

We now show that each term in the above summation is zero except in the case noted
above. If for some x,∑

x

χ[λ(1),λ(2),...,λ(m)] ↓ Hx =
∑

x

(χ[λ̃(1),λ̃(2),...,λ̃(m)])x ↓ Hx
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have an irreducible component in common, then so do∑
x

χ[λ(1),λ(2),...,λ(m)] ↓ ker υn =
∑

x

(χ[λ̃(1),λ̃(2),...,λ̃(m)])x ↓ ker υn,

since ker υn ⊂ Hx. Then, using the alternative form for X [λ(1),λ(2),...,λ(m)] given above,
we see that these respectively coincide with χ(k1,...,km) ↓ ker υn and χx

(k̃1,...,k̃m)
↓ ker υn.

Since both of these are irreducible, they are equal on ker υn and so, by Lemma 5.1, we
have (k1, . . . , km) = (k̃1, . . . , k̃m) and x ∈ Bm

(k1,...,km). Now, using this information, an
elementary inner product calculation shows that

(χ[λ(1),λ(2),...,λ(m)], χ[λ̃(1),λ̃(2),...,λ̃(m)])Bm
(k1,...,km)

= (χλ1 · · ·χλm , χλ̃1 · · ·χλ̃m)S(k1,...,km)
,

which is non-zero only if these two characters are equal and we have the desired result.

5.2. The 2-cocycle [-1,1,1]. The approach in this section follows closely that of the
previous section and thus the proof is only outlined, but now the irreducible spin repre-
sentations of Sn are used in place of the ordinary representations.

As constructed in Proposition 4.3, if λ ∈ DP (n)+, X〈λ〉 are the irreducible spin repre-

sentation of Sn and if λ ∈ DP (n)−, X
〈λ〉
± are the two η-associate irreducible spin repre-

sentations. The corresponding spin characters are denoted by χ〈λ〉, χ
〈λ〉
± .

We show that the irreducible representations of Bm
n for the 2-cocycle [-1,1,1] are in-

dexed by m-partitions (λ(1);λ(2); . . . ;λ(m)) of n, where λ(i) ∈ DP (|λ(i)|), 1 ≤ i ≤ m, the
corresponding representations and characters will be denoted by

X〈λ(1);λ(2);...;λ(m)〉 (X
〈λ(1);λ(2);...;λ(m)〉
± )and χ〈λ(1);λ(2);...;λ(m)〉 (χ

〈λ(1);λ(2);...;λ(m)〉
± )(if they are

η-associate) respectively.
The representation X〈λ;∅;...;∅〉 is obtained by lifting X〈λ〉 from Sn to Bm

n , we define
X〈∅;...;∅;λ;∅;...;∅〉, where λ is in the (k + 1)-th position, 1 ≤ k ≤ m− 1 to be σk ⊗X〈λ;∅;...;∅〉.
If |λi| = ki 1 ≤ i ≤ m, define

X〈λ(1);λ(2);...;λ(m)〉 = (X〈λ(1);∅;...;∅〉⊗̂X〈∅;λ(2);...;∅〉⊗̂ · · · ⊗̂X〈∅;∅;...;λ(m)〉) ↑ Bm
n ,

inducing from Bm
(k1,...,km) to Bm

n , where ⊗̂ is the twisted tensor product [18],[9]. Then we
have

X〈λ(1);λ(2);...;λ(m)〉 = (χ(k1,...,km) ⊗X〈λ(1);∅;...;∅〉⊗̂X〈λ(2);∅;...;∅〉⊗̂ · · · ⊗̂X〈λ(m);∅;...;∅〉) ↑ Bm
n .

There are similar statements for the η-associate representations and characters.
The representationX〈λ(1);λ(2);...;λ(m)〉 can be written down explicitly using formulae (2.11)

and (2.12) by simply replacing the representation Pj by the representation X〈∅;...;∅;λj ;∅;...;∅〉.
Furthermore, using Proposition 2.3 we get a far more explicit formula for the character
χ〈λ(1);λ(2);...;λ(m)〉, in fact this formula is obtained by a slight modification of the one in
Proposition 2.3 and will not thus be repeated.

Theorem 5.3. A complete set of inequivalent irreducible spin representations of Bm
n for

the 2-cocycle [−1, 1, 1] is given by the

X〈λ(1);λ(2);...;λ(m)〉 if n− l(λ(1);λ(2); . . . ;λ(m)) is even

and

X
〈λ(1);λ(2);...;λ(m)〉
± if n− l(λ(1);λ(2); . . . ;λ(m)) is odd,

where (λ(1);λ(2); . . . ;λ(m)) is an m-partition of n, with λ(i) ∈ DP (|λ(i)|), 1 ≤ i ≤ m.
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The details of the proof will not be given in that it now follows very closely the structure
of the proof of Theorem 5.2 in the previous section. The only major difference will be in
the character calculations.

From now on in this paper we assume that m is even as the remaining
2-cocycles only exist in this case.

5.3. The 2-cocycle [-1,-1,-1]. Let Q, Q± be the basic spin representation of Bm
n for the

2-cocycle [-1,-1,-1] constructed in Section 4.1. Then, for them-partition of n (λ(1); ∅;λ(3); ∅;
. . . ;λ(m−1); ∅), put

QX [λ(1);∅;λ(3);∅;...;λ(m−1);∅] = Q⊗X [λ(1);∅;λ(3);∅;...;λ(m−1);∅] (n even)

and

Q±X
[λ(1);∅;λ(3);∅;...;λ(m−1);∅] = Q± ⊗X [λ(1);∅;λ(3);∅;...;λ(m−1);∅] (n odd).

Then, we prove the following theorem.

Theorem 5.4. A complete set of inequivalent irreducible spin representations of Bm
n for

the 2-cocycle [−1,−1,−1] is given by the
QX [λ(1);∅;λ(3);∅;...;λ(m−1);∅] (n even) and Q±X

[λ(1);∅;λ(3);∅;...;λ(m−1);∅] (n odd),
where [λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅] is an m-partition of n.

Proof. We shall give a proof in the case n even only, the odd case is dealt with similarly.
If we consider the representation X [λ(1);∅;λ(3);∅;...;λ(m−1);∅], for any element of cycle type

(P (|λ(1)|), 0, P (|λ(3)|), 0, . . . , P (|λ(m−1)|), 0) in Bm
n , by dividing each partition into its odd

and even parts, we obtain classes of Bm
n of type (OP (|ρ1|), EP (|%1|), . . . , OP (|ρm/2|),

EP (|%m/2|)), where |ρi| + |%i| = |λ(2i−1)|, 1 ≤ i(odd) ≤ m − 1. If ζ is the character
of Q, then by Proposition 4.4, we have that ζ(ρ1, %1, . . . , ρm/2, %m/2) are nonzero on the
classes of type (OP (|ρ1|), EP (|%1|), . . . , OP (|ρm/2|), EP (|%m/2|)), thus it follows that the

characters (ζχ[λ(1);∅;λ(3);∅;...;λ(m−1);∅]) are linearly independent.
Conversely, from Table 2 in Section 4 we see that the splitting classes of Bm

n for the
2-cocycle [−1,−1,−1] are of the form (OP,EP, . . . , OP,EP ) and (P, ∅, P, ∅, . . . , P, ∅); it
can be shown that the latter only occurs for n odd. Thus, for the case n even, the above
characters span the space of spin characters. It only remains to show that these characters
are irreducible.

For, the case n even, using Proposition 4.4, we have that

||ζχ[λ(1);∅;λ(3);∅;...;λ(m−1);∅]||2

=
∑

ρi∈OP,%i∈EP

1≤i≤m/2

1

zρ1,%1,...,ρm/2,%m/2

|ζχ[λ(1);∅;λ(3);∅;...;λ(m−1);∅](ρ1, %1, . . . , ρm/2, %m/2)|2

=
∑

ρi∈OP,%i∈EP

1≤i≤m/2

1

zρ1,%1,...,ρm/2,%m/2

2l(ρ,%))|χλ(1)(ρ1 ∪ %1) · · ·χλm−1(ρm/2 ∪ %m/2)|2

=
∑

ρi∈OP,%i∈EP

1≤i≤m/2

1

zρ1,%1 , · · · , zρm/2,%m/2

m/2∏
i=1

2l(ρi,%i))|
m/2∏

i(odd)

χλ(2i−1)(ρi ∪ %i)|2 = 1
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using the corresponding result, Theorem 9.2, in [31] and where zρ1,%1,...,ρm/2,%m/2
is the order

of the centralizer of that class in Bm
n .

5.4. The 2-cocycle [1,-1,-1]. In this case, a similar process to that used in the previous
section is applied to the representations

QX〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉 = Q⊗X〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉,

QX
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± = Q⊗X

〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± ,

Q±X
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉 = Q± ⊗X〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉

or

Q±X
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± = Q± ⊗X

〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± ,

where (λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is an m-partition of n, with λ(i) ∈ DP (|λ(i)|),
1 ≤ i ≤ m− 1 as the case may be. These representations have 2-cocycle [1,−1,−1].

We prove the following theorem.

Theorem 5.5. A complete set of inequivalent irreducible spin representations of Bm
n for

the 2-cocycle [1,−1,−1] is given by the
(i) if n is even

QX〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉 if n− l(λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is even

and

QX
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± if n− l(λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is odd,

and
(ii) if n is odd

Q±X
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉 if n− l(λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is even

and

Q±X
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± if n− l(λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is odd,

where (λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is an m-partition of n, with λ(i) ∈ DP (|λ(i)|), 1 ≤ i ≤
m− 1.

The proof follows along the same lines as the one given in the previous section, we note
that the splitting classes in this case are

(OP ; ∅; . . . ;OP ; ∅), (DOP ;DEP ; . . . ;DOP ;DEP ),

(∅;OP ; . . . ; ∅;OP ) and (∅;DP ; . . . ; ∅;DP ),

the latter two again only occur in the case n odd. In the even case, we use the well
known one-one correspondence between the sets OP (n) and DP (n) (which is used in the
case of Schur’s theory for irreducible spin representations osf Sn) and the clear one-one
correspondence between the sets DP (n) and DOP (k), DEP (n−k) (separate the odd and
even parts), for all values of k.
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5.5. The 2-cocycle [1,-1,1]. The following lemma is required.

Lemma 5.6. If X [λ(1);λ(2);...;λ(m)] is an ordinary representation of Bm
n with character

χ[λ(1);λ(2);...;λ(m)] corresponding to the m-partition (λ(1);λ(2); . . . ;λ(m)) of n, then

(i) ηχ[λ(1);λ(2);...;λ(m)] = χ[λ′
(1)

;λ′
(2)

;...;λ′
(m)

],

(ii) σχ[λ(1);λ(2);...;λ(m)] = χ
[λ( m

2 +1);...;λ(m);λ(1);...;λ( m
2 )],

(iii) εχ[λ(1);λ(2);...;λ(m)] = χ
[λ′

( m
2 +1)

;...;λ′
(m)

;λ′
(1)

;...;λ′
( m

2 )
]
,

where η, σ, ε = ζσ are linear characters of Bm
n .

Proof Using the well-known fact [12] that ηχ[λ] = χ[λ′], where χ[λ′] is the character of
Sn η−associate to χ[λ] and noting that

χ[λ(1);λ(2);...;λ(m)] = χ[λ(1);∅;...;∅] ⊗ (σ1 ⊗X [λ(2);∅;...;∅])⊗ · · · ⊗ (σm−1 ⊗X [λ(m);∅;...;∅])

then (i) follows. Furthermore, since by definition

σχ[λ;∅;...;∅] = σm/2 ⊗ χ[λ;∅;...;∅] = χ[∅;...;∅;λ;∅;...;∅],

(ii) also follows. (iii) is now a direct consequence of (i) and (ii).
Recall that the subgroup M of Bm

n is defined by M = ker η
⋂
ker σ

⋂
ker ε, thus we

have the following corollary.

Corollary 5.7.

χ
[λ(1);λ(2);...;λ(m)]

M = χ
[λ′

(1)
;λ′

(2)
;...;λ′

(m)
]

M = χ
[λ( m

2 +1);...;λ(m);λ(1);...;λ( m
2 )]

M

= χ
[λ′

( m
2 +1)

;...;λ′
(m)

;λ′
(1)

;...;λ′
( m

2 )
]

M .

If we now define ξ[λ(1);λ(2);...;λ(m)] = ξ ⊗ χ[λ(1);λ(2);...;λ(m)], where ξ is the character of the
irreducible basic spin representation R of Bm

n for the 2-cocycle [1,−1, 1], then it follows
from Proposition 4.5 that

ξ[λ(1);λ(2);...;λ(m)] = ξ[λ′
(1)

;λ′
(2)

;...;λ′
(m)

] = ξ
[λ( m

2 +1);...;λ(m);λ(1);...;λ( m
2 )]

= ξ
[λ′

( m
2 +1)

;...;λ′
(m)

;λ′
(1)

;...;λ′
( m

2 )
]
.

If we now putRX [λ(1);λ(2);...;λ(m)] = R⊗X [λ(1);λ(2);...;λ(m)] for eachm-partition (λ(1);λ(2); . . . ;

λ(m)) of n, then the RX [λ(1);λ(2);...;λ(m)] are spin representations of Bm
n with 2-cocycle

[1,−1, 1]. We use Proposition 4.7 to show that the irreducible spin representations of
Bm

n for this 2-cocycle appear as constituents of these.

Theorem 5.8. The representation RX [λ(1);λ(2);...;λ(m)] is
(i) is a sum of two equivalent irreducible representations if λ(i) = λ(m

2
+i) ∈ SCP, 1 ≤

i ≤ m
2

and n ≡ 0 (mod 4),
(ii) is a sum of four inequivalent irreducible spin representations of equal degrees if

λ(i) = λ(m
2

+i) ∈ SCP, 1 ≤ i ≤ m
2

and n ≡ 2 (mod 4),
(iii) is a sum of two inequivalent representations of equal degrees if λ(i) ∈ SCP, 1 ≤ i ≤

m or λ(i) = λ(m
2

+i) or λ(i) = λ′(m
2

+i), 1 ≤ i ≤ m
2

but not λ(i) = λ(m
2

+i) ∈ SCP, 1 ≤ i ≤ m
2
.

In all other cases, the four representations

RX [λ(1);λ(2);...;λ(m)], RX [λ′
(1)

;λ′
(2)

;...;λ′
(m)

], RX
[λ( m

2 +1);...;λ(m);λ(1);...;λ( m
2 )], RX

[λ′
( m

2 +1)
;...;λ′

(m)
;λ′

(1)
;...;λ′

( m
2 )

]

are equivalent irreducible spin representations of Bm
n .
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5.6. The 2-cocycle [-1,-1,1]. The procedure in this case follows that of the previous
section, but now we consider the representations

RX〈λ(1);λ(2);...;λ(m)〉 = R⊗X〈λ(1);λ(2);...;λ(m)〉 (RX
〈λ(1);λ(2);...;λ(m)〉
± = R⊗X

〈λ(1);λ(2);...;λ(m)〉
± )

if n − l(λ(1);λ(2); . . . ;λ(m)) is odd (even), where (λ(1);λ(2); . . . ;λ(m)) is an m-partition of

n, with λ(i) ∈ DP (|λ(i)|), 1 ≤ i ≤ m. Then the RX〈λ(1);λ(2);...;λ(m)〉, RX
〈λ(1);λ(2);...;λ(m)〉
± are

spin representations of Bm
n with 2-cocycle [−1,−1, 1].

In this case the following lemma is required.

Lemma 5.9. If χ〈λ(1);λ(2);...;λ(m)〉, χ
〈λ(1);λ(2);...;λ(m)〉
± are the spin character of Bm

n then

(i) ηχ
〈λ(1);λ(2);...;λ(m)〉
± = χ

〈λ′
(1)

;λ′
(2)

;...;λ′
(m)

〉
∓ ,

ηχ〈λ(1);λ(2);...;λ(m)〉 = χ〈λ
′
(1)

;λ′
(2)

;...;λ′
(m)

〉,

(ii) σχ〈λ(1);λ(2);...;λ(m)〉 = χ
〈λ( m

2 +1);...;λ(m);λ(1);...;λ( m
2 )〉,

σχ
〈λ(1);λ(2);...;λ(m)〉
± = χ

〈λ( m
2 +1);...;λ(m);λ(1);...;λ( m

2 )〉
± ,

(iii) εχ
〈λ(1);λ(2);...;λ(m)〉
± = χ

〈λ′
( m

2 +1)
;...;λ′

(m)
;λ′

(1)
;...;λ′

( m
2 )

〉
∓ ,

εχ〈λ(1);λ(2);...;λ(m)〉 = χ
〈λ′

( m
2 +1)

;...;λ′
(m)

;λ′
(1)

;...;λ′
( m

2 )
〉
,

where ζ, σ, ε = ζσ are linear characters of Bm
n .

Proof From [30] we have that ηχ
〈λ〉
± = χ

〈λ〉
∓ , and noting that

χ〈λ(1);λ(2);...;λ(m)〉 = χ〈λ(1);∅;...;∅〉 ⊗ (σ1 ⊗X〈λ(2);∅;...;∅〉)⊗ · · · ⊗ (σm−1 ⊗X〈λ(m);∅;...;∅〉)

then (i) follows. Furthermore, (ii) follows using the same argument as in Lemma 5.6 (ii)
and (iii) is now a direct consequence of (i) and (ii).

Corollary 5.10.

χ
〈λ(1);λ(2);...;λ(m)〉
±M = χ

〈λ′
(1)

;λ′
(2)

;...;λ′
(m)

〉
∓M = χ

〈λ( m
2 +1);...;λ(m);λ(1);...;λ( m

2 )〉
±M

= χ
〈λ′

( m
2 +1)

;...;λ′
(m)

;λ′
(1)

;...;λ′
( m

2 )
〉

∓M .

If we now define ξ〈λ(1);λ(2);...;λ(m)〉 = ξ ⊗ χ〈λ(1);λ(2);...;λ(m)〉, where ξ is the character of the
irreducible basic spin representation R of Bm

n for the 2-cocycle [1,−1, 1], then it follows
from Proposition 4.6 that

ξ
〈λ(1);λ(2);...;λ(m)〉
± = ξ

〈λ′
(1)

;λ′
(2)

;...;λ′
(m)

〉
∓ = ξ

〈λ( m
2 +1);...;λ(m);λ(1);...;λ( m

2 )〉
±

= ξ
〈λ′

( m
2 +1)

;...;λ′
(m)

;λ′
(1)

;...;λ′
( m

2 )
〉

∓ .

Theorem 5.11. The representation RX〈λ(1);λ(2);...;λ(m)〉 is
(i) is a sum of two irreducible equivalent representations if λ(i) = λ(m

2
+i), 1 ≤ i ≤ m

2

and l(λ(1);λ(2); . . . ;λ(m)) is even ,
(ii) is a sum of four inequivalent irreducible representations of equal degrees if λ(i) =

λ(m
2

+i), 1 ≤ i ≤ m
2

and l(λ(1);λ(2); . . . ;λ(m)) is odd,
(iii) is a sum of two inequivalent representations of equal degrees if

n− l(λ(1);λ(2); . . . ;λ(m))

is even, but λ(i) 6= λ(m
2

+i), for some 1 ≤ i ≤ m
2
.
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If n− l(λ(1);λ(2); . . . ;λ(m)) is odd, the four representations

RX
〈λ(1);λ(2);...;λ(m)〉
± , RX

〈λ(1);λ(2);...;λ(m)〉
∓ ,

RX
〈λ( m

2 +1);...;λ(m);λ(1);...;λ( m
2 )〉

± , RX
〈λ( m

2 +1);...;λ(m);λ(1);...;λ( m
2 )〉

∓

are equivalent irreducible spin representations of Bm
n .

5.7. The 2-cocycle [-1,1,-1]. In this case, for the m-partition of n (λ(1); ∅;λ(3); ∅; . . . ;
λ(m−1); ∅), if n is even, put

RQX [λ(1);∅;λ(3);∅;...;λ(m−1);∅] = R⊗QX [λ(1);∅;λ(3);∅;...;λ(m−1);∅]

and if n is odd, put

RQ±X
[λ(1);∅;λ(3);∅;...;λ(m−1);∅] = R⊗Q±X

[λ(1);∅;λ(3);∅;...;λ(m−1);∅].

Then, these representations have factor set [−1, 1,−1] and we prove the following theorem.

Theorem 5.12. The representation RQX [λ(1);∅;λ(3);∅;...;λ(m−1);∅] is
(i) is a sum of two equivalent irreducible representations if λ(i) ∈ SCP, 1 ≤ i(odd) ≤ m
and n is even
(ii) is a sum of two inequivalent representations of equal degrees if λ(i) ∈ SCP, 1 ≤
i(odd) ≤ m and n is odd or λ(i) 6∈ SCP, for some 1 ≤ i(odd) ≤ m and n is even.

If λ(i) 6∈ SCP, 1 ≤ i(odd) ≤ m and n is odd, the representations RQ±X
[λ(1);∅;λ(3);∅;...;λ(m−1);∅],

RQ±X
[λ′

(1)
;∅;λ′

(3)
;∅;...;λ′

(m−1)
;∅], RQ±X

[λ( m
2 );∅;...;λ(m−1);∅;...;λ(1);∅;...;λ( m

2 −1);∅],

RQ±X
[λ′

( m
2 )

;∅;...;λ′
(m−1)

;∅;...;λ′
(1)

;∅;...;λ′
( m

2 −1)
;∅]

are equivalent irreducible spin representations of
Bm

n .

For the proof of this theorem, the lemma below will be needed in a similar way to the
preceding sections; we denote the character of QX [λ(1);∅;λ(3);∅;...;λ(m−1);∅] by
ζχ[λ(1);∅;λ(3);∅;...;λ(m−1);∅].

Lemma 5.13. If n is even, then

(i) η(ζχ[λ(1);∅;λ(3);∅;...;λ(m−1);∅])=ζχ[λ′
(1)

;∅;λ′
(3)

;∅;...;λ′
(m−1)

;∅],

(ii) σ(ζχ[λ(1);∅;λ(3);∅;...;λ(m−1);∅])=ζχ[λ′
(1)

;∅;λ′
(3)

;∅;...;λ′
(m−1)

;∅],
(iii) ε(ζχ[λ(1);∅;λ(3);∅;...;λ(m−1);∅])=ζχ[λ(1);∅;λ(3);∅;...;λ(m−1);∅].

If n is odd, then

(i) η(ζ±χ
[λ(1);∅;λ(3);∅;...;λ(m−1);∅])=ζ∓χ

[λ′
(1)

;∅;λ′
(3)

;∅;...;λ′
(m−1)

;∅],

(ii) σ(ζ±χ
[λ(1);∅;λ(3);∅;...;λ(m−1);∅])=

{
ζ±χ

[λ( m
2 +1);∅;...;λ(m−1);∅;λ1;∅;...;λ( m

2 −1);∅]if m ≡ 0 (mod 4)

ζ±χ
[∅;λ( m

2 +2);...;λ(m−1);∅;λ1;∅;...;∅;λ( m
2 )] if m ≡ 2 (mod 4)

(iii) ε(ζ±χ
[λ(1);∅;λ(3);∅;...;λ(m−1);∅])=

{
ζ±χ

[λ′
( m

2 +1)
;∅;...;λ′

(m−1)
;∅;λ′1;∅;...;λ′

( m
2 −1)

;∅]
if m ≡ 0 (mod 4)

ζ±χ
[∅;λ′

( m
2 +2)

;...;λ′
(m−1)

;∅;λ′1;∅;...;∅;λ′
( m

2 )
]

if m ≡ 2 (mod 4)
where ζ, σ, ε = ζσ are linear characters of Bm

n .

From this lemma, we obtain, as before in Section 5.5, the following corollary.

Corollary 5.14. If n is even, then

ζχ
[λ(1);∅;λ(3);∅;...;λ(m−1);∅]
M = ζχ

[λ′
(1)

;∅;λ′
(3)

;∅;...;λ′
(m−1)

;∅]
M .

If n is odd, then

ζχ
[λ(1);∅;λ(3);∅;...;λ(m−1);∅]
M = ζχ

[λ′
(1)

;∅;λ′
(3)

;∅;...;λ′
(m−1)

;∅]
M
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=

{
ζ±χ

[λ( m
2 +1);∅;...;λ(m−1);∅;λ1;∅;...;λ( m

2 −1);∅]if m ≡ 0 (mod 4)

ζ±χ
[∅;λ( m

2 +2);...;λ(m−1);∅;λ1;∅;...;∅;λ( m
2 )] if m ≡ 2 (mod 4)

=

{
ζ±χ

[λ′
( m

2 +1)
;∅;...;λ′

(m−1)
;∅;λ′1;∅;...;λ′

( m
2 −1)

;∅]
if m ≡ 0 (mod 4)

ζ±χ
[∅;λ′

( m
2 +2)

;...;λ′
(m−1)

;∅;λ′1;∅;...;∅;λ′
( m

2 )
]

if m ≡ 2 (mod 4)
.

In turn, this leads to the corresponding results for the characters ξζχ
[λ(1);∅;λ(3);∅;...;λ(m−1);∅]
M

and in turn to the proof of Theorem 5.12.

5.8. The 2-cocycle [1,1,-1]. In this case, let (λ(1); ∅;λ(3); ∅; . . . ; λ(m−1); ∅) be the m-
partition of n with λ(i) ∈ DP (|λ(i)|), 1 ≤ i ≤ m.
If n is even and n− l(λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is even, put

RQX〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉 = R⊗QX〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉

and if n− l(λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is odd, put

RQX
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± = R⊗QX

〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± ;

and if n is odd and n− l(λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is even, put

RQ±X
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉 = R⊗Q±X

〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉

and if n− l(λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is odd, put

RQ±X
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± = R⊗Q±X

〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± .

These representations have 2-cocycle [1, 1,−1].

Theorem 5.15. The representation RQX〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉 is
(i) is a sum of two equivalent irreducible representations if n−l(λ(1); ∅;λ(3); ∅; . . . ;λ(m−1);

∅) is even and n is even ,
(ii) is a sum of two inequivalent representations of equal degrees if n−l(λ(1); ∅;λ(3); ∅; . . . ;

λ(m−1); ∅) is even and n is odd or if n− l(λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is odd and n is even.
If n− l(λ(1); ∅;λ(3); ∅; . . . ;λ(m−1); ∅) is odd and n is odd, the representations

RQ±X
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± and RQ±X

〈λ( m
2 );∅;...;λ(m−1);∅;...;λ(1);∅;...;λ( m

2 −1);∅〉
± are equivalent ir-

reducible spin representations of Bm
n .

In this case, we merely state the corresponding lemma to Lemma 5.13.

Lemma 5.16. If n is even, then

(i) η(ζχ
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± ) = ζχ

〈λ(1);∅;λ(3);∅;...;λ(m−1);∅]
∓ ,

(ii) σ(ζχ
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± )=ζχ

〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
∓ ,

(iii) ε(ζχ
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
± )=ζχ

〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉
∓ .

If n is odd, then
(i) η(ζ±χ

〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉)=ζ∓χ
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉,

(ii) σ(ζ±χ
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉)=

{
ζ∓χ

〈λ( m
2 +1);∅;...;λ(m−1);∅;λ1;∅;...;λ( m

2 −1);∅〉if m ≡ 0 (mod 4)

ζ∓χ
〈∅;λ( m

2 +2);...;λ(m−1);∅;λ1;∅;...;∅;λ( m
2 )〉 if m ≡ 2 (mod 4)

(iii) ε(ζ±χ
〈λ(1);∅;λ(3);∅;...;λ(m−1);∅〉)=

{
ζ∓χ

〈λ( m
2 +1);∅;...;λ(m−1);∅;λ1;∅;...;λ( m

2 −1);∅〉if m ≡ 0 (mod 4)

ζ∓χ
〈∅;λ( m

2 +2);...;λ
′
(m−1)

;∅;λ1;∅;...;∅;λ( m
2 )〉 if m ≡ 2 (mod 4)

where ζ, σ, ε = ζσ are linear characters of Bm
n .
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[4] Broué, M.; Malle, G.; Rouquier, R. On complex reflection groups and their associated

braid groups. Representations of groups (B.N.Allison and G.H.Cliff, eds.), CMS conference
Proceedings, vol. 16,AMS,Providence, 1995, pp. 1-13.

[5] Broué, M.; Malle, G.; Rouquier, R. Complex reflection groups, braid groups, Hecke algebras.
J. reine angew. Math. 1998 500, 127-190.

[6] Can, H. Representations of the generalized symmetric groups. Beiträge zur Algebra und
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