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THE CHARNEY-DAVIS QUANTITY FOR CERTAIN
GRADED POSETS

V. REINER, D. STANTON, AND V. WELKER

Abstract. Given a naturally labelled graded poset P with r
ranks, the alternating sum

W (P,−1) :=
∑

w∈L(P )

(−1)des(w)

is related to a quantity occurring in the Charney-Davis Conjecture
on flag simplicial spheres. When |P | − r is odd it vanishes. When
|P | − r is even and P satisfies the Neggers-Stanley Conjecture, it
has sign (−1)

|P |−r
2 .

We interpret this quantity combinatorially for several classes of
graded posets P , including certain disjoint unions of chains and
products of chains. These interpretations involve alternating mul-
tiset permutations, Baxter permutations, Catalan numbers, and
Franel numbers.

1. Introduction

We begin by recalling the Neggers-Stanley Conjecture; see [2, 14, 19]
for background and its current status. For any poset P on [n] :=
{1, 2, . . . , n}, with order relation denoted <P , let L(P ) be the set of
its linear extensions, that is, permutations w = (w1, . . . , wn), for which
i <P j implies w−1(i) < w−1(j). The P -Eulerian polynomial

W (P, t) :=
∑

w∈L(P )

tdes(w)

is the generating function for these linear extensions according to the
cardinality of their descent sets:

Des(w) := {i ∈ [n− 1] : wi > wi+1}
des(w) := |Des(w)|.

Key words and phrases. Charney-Davis conjecture, Neggers-Stanley conjecture,
alternating permutations, Baxter permutations, Catalan numbers, Franel numbers.
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Conjecture 1.1 (Neggers-Stanley). For any poset P on [n] the poly-
nomial W (P, t) has only real (non-positive) zeroes.

We will mainly be interested in the case where P is naturally la-
belled, that is i <P j implies i < j. For naturally labelled posets
Conjecture 1.1 was made originally by Neggers [13] and proposed in
the form above by Stanley in 1986 (see [19, §2]).

In [14], it is shown that if P is naturally labelled and graded with r
ranks (that is, every maximal chain has exactly r elements), then there
exists a simplicial convex polytope of dimension |P |−r whose boundary
complex ∆P has its h-polynomial equal to W (P, t). This implies that
W (P, t) is a polynomial in t of degree |P | − r with positive, symmetric
and unimodal coefficient sequence, and hence that W (P,−1) vanishes
for |P |− r odd. Furthermore, it turns out that in some cases (e.g. if P
has width at most 2; see [14, Thm. 3.23]) then ∆P is a flag (or clique)
complex. In this case, W (P, t) is related to a conjecture of Charney
and Davis [4, Conjecture D] which would imply that

(1.1) (−1)
|P |−r

2 W (P,−1) ≥ 0.

For this reason, we call this conjecturally non-negative quantity the
Charney-Davis quantity for any graded poset P . It is an easy conse-
quence (see [4, Lemma 7.5] or [14, Proposition 1.4]) of the symmetry
of W (P, t) that whenever the Neggers-Stanley Conjecture holds for P ,
the above Charney-Davis inequality (1.1) follows.

This suggests looking for a combinatorial interpretation for this non-
negative integer in these instances. We give such interpretations for
subfamilies of posets of two kinds: disjoint unions of chains (Section 2),
and products of two chains (Section 3).

We should remark that there has been recent interest in the quan-
tity analogous to W (P,−1) obtained by replacing the descent number
des(w) with the major index maj(w) or the inversion number inv(w);
see [18] and the references therein. We are not aware of any relation
between those results and ours.

We record here one fact that will be useful in what follows. For any
naturally labelled poset P on [n], define the order polynomial Ω(P, m)
to be the number of order-preserving maps from P to an m-element
chain m. Then it is known [16, Theorem 4.5.14] that

(1.2)
∑
m≥1

Ω(P, m)tm =
tW (P, t)

(1− t)|P |+1
.

For the naturally labelled posets which we consider, Ω(P, m) has a
simple enough form to make the above formula useful.
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2. Disjoint unions of chains

In [15], R. Simion gave the first non-trivial results on the Neggers-
Stanley Conjecture by proving it in the case P = r1 t · · · t rN is
a naturally labelled disjoint union of N chains ri, i ∈ [N ], where ri

denotes a chain of ri elements.
In this case, one can alternately interpret W (P, t) in terms of rear-

rangements of a multiset as follows. Let 1r1 · · ·N rN denote a multiset
of letters containing ri occurrences of the letter i for each i ∈ [N ], and
let S(1r1 · · ·N rN ) denote the set of all rearrangements w = w1w2 · · ·wn

of these letters, where n =
∑N

i=1 ri. Then there is an obvious bijec-
tion between L(r1 t · · · t rN) and S(1r1 · · ·N rN ), having the property
that descents in a permutation in L(P ) correspond to (strict) descents
wi > wi+1 in the rearrangement w. Thus

W (r1 t · · · t rN, t) =
∑

w∈S(1r1 ···NrN )

tdes(w).

We are mostly interested in the case where P is a graded disjoint
union of chains, that is N chains each having r elements; call this poset
PN,r. Note that PN,r has an explicit formula for its order polynomial,
namely

Ω(PN,r, m) =

(
r + m− 1

m− 1

)N

=

(
r + m− 1

r

)N

.

Hence formula (1.2) yields in this case that
(2.1)

W (PN,r, t) = (1− t)Nr+1
∑
m≥0

(
r + m

m

)N

tm

= (1− t)Nr+1
NFN−1

(
r + 1, r + 1, · · · , r + 1

1, · · · , 1

∣∣∣∣ t

)
.

where rFs denotes the usual hypergeometric function [6, Chapter 2].
We start with small values of r. If r = 1 then PN,1 is an antichain

on [N ]. In this case W (PN,1, t) =
∑

w∈SN
tdes(w) is (essentially) the

classical Eulerian polynomial, whose exponential generating function

(2.2)
∑
N≥0

W (PN,1, t)
uN

N !
=

(1− t)eu(1−t)

1− teu(1−t)
.

is well-known, and can be derived easily from (2.1).



4 V. REINER, D. STANTON AND V. WELKER

Setting t = −1 gives the exponential generating function∑
N≥0

W (PN,1,−1)
uN

N !
=

∑
N≥0

∑
w∈SN

(−1)des(w)u
N

N !

=
2e2u

1 + e2u
= 1 + tanh(u).

This implies that for N odd (so |P | − r = N − 1 is even) the Charney-

Davis quantity (−1)
N−1

2 W (PN,1,−1) is the Euler number EN . The
Euler number EN counts the number of alternating permutations w ∈
SN , that is, those permutations with Des(w) = {2, 4, . . .}; see [16,
§3.16]. The authors thank Ira Gessel for pointing out the following
proof of this fact by a sign-reversing involution.

Proposition 2.1.
There is an involution ι : SN → SN satisfying:

• des(ι(w)) = des(w)± 1 if ι(w) 6= w,
• if N is even then ι has no fixed points, and
• if N is odd then ι(w) = w ⇔ w is an alternating permutation.

In particular, the following identity holds:

W (PN,1,−1) =
∑

w∈SN

(−1)des(w) =

{
(−1)

N−1
2 EN for N odd,

0 for N even.

Proof. We recall a standard encoding of permutations w ∈ SN as de-
creasing binary trees on vertex set [N ], that is planar binary trees in
which the labels along any path away from the root are decreasing (cf.
[16, §1.3]). In this encoding we choose the largest letter in w as the root
vertex and divide w into a left subword consisting of those letters to
the left of the largest letter and an analogously defined right subword.
The left and right subtree of the root are then obtained by applying
the same procedure recursively to the left and right subword.

Under this correspondence, complete binary trees (those in which
every non-leaf has both left and right subtrees non-empty) correspond
to alternating permutations. To define ι on each incomplete binary
tree, find the smallest labelled vertex having exactly one of its left and
right subtrees non-empty, and exchange the empty subtree for the non-
empty one. It is easy to see this either removes or creates exactly one
descent. �

An intriguing variation holds when r = 2. Generalizing the defini-
tion of alternating permutations from sets to multisets, call a multiset
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permutation w ∈ S(1r1 · · ·N rN ) alternating if

w1 ≤ w2 > w3 ≤ w4 > · · · ,

that is if Des(w) = {2, 4, . . .}. Such multiset permutations were studied
by Carlitz [3].

Theorem 2.2.
There is an involution ι : S(1222 · · ·N2) → S(1222 · · ·N2) satisfy-

ing:

• des(ι(w)) = des(w)± 1 if ι(w) 6= w, and
• ι(w) = w ⇔ w is an alternating permutation.

In particular, the following identity holds:

(−1)N−1W (PN,2,−1) = (−1)N−1
∑

w∈S(1222···N2)

(−1)des(w)

= #{alternating w ∈ S(1222 · · ·N2)}.

Note that the sign (−1)N−1 appearing in the proposition is the ap-

propriate sign (−1)
|P |−r

2 for the Charney-Davis quantity, as |P | − r =
2N − 2.

Proof. Given w ∈ S(1222 · · ·N2), append a 0 to its right, creating a
multiset permutation ŵ ∈ S(011222 · · ·N2) that ends with 0. As in the
proof of Proposition 2.1, encode ŵ ∈ S(01222 · · ·N2) as a decreasing
binary tree on vertices labelled 0, 1, 1, 2, 2, . . . , N, N , with root labelled
by the rightmost occurrence of the largest value, defining left and right
subtrees recursively. Here decreasing is modified to mean that labels
only weakly decrease along edges from a parent to its left-child, but
strictly decrease along edges from a parent to its right-child.

One can then define an involution ι as in the proof of Proposition 2.1,
by finding the smallest labelled vertex having only a left or right-subtree
but not both, in which it is possible to switch it from left to right or
vice-versa. When this is possible, it is easy to see that this creates or
destroys exactly one descent.

As before, the alternating permutations w exactly correspond to
complete decreasing binary trees; the 0 vertex will always occur to the
far right, creating an extra descent w2N > 0 as a right-child to w2N .
But there will also be other fixed points w. These will correspond to
incomplete trees in which there is at least one non-leaf vertex, labelled
i for some i ∈ [N ], which cannot do the switch required for ι because
of one of two possible types of violations:

Type 1: i has left-child also labelled i, and empty right subtree,
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Type 2: i has 0 contained somewhere in its right subtree, and empty left
subtree.

It is possible to pair up Type 1 and Type 2 violations as follows. Note
that it is impossible for a value i to label both a Type 1 and Type 2
violator. Let i be the smallest labelled vertex among all violators of
both types.

If i labels a Type 1 violator, contract the edge between the parent
and left-child vertices labelled i, while inserting a vertex labelled i at
the appropriate place in the decreasing sequence of right-children one
encounters in reading downward to the right from the root N to the
0 vertex. This adds one descent to w arising from this decreasing
sequence, while affecting no other descents.

If i labels a Type 2 violator, remove the vertex labelled i which has
0 in its right subtree, replacing it with an edge directly connecting its
former parent to its former right child. Meanwhile, replace the other
vertex labelled i with an edge between a parent labelled i and left-child
labelled i, giving both of its former subtrees to the left-child i, and
giving no right subtree to the parent i. This removes one descent. �

Remark 2.3. In light of Proposition 2.1 and Theorem 2.2, one might
hope that for general N, r the Charney-Davis quantity

(−1)
r(N−1)

2

∑
w∈S(1r2r···Nr)

(−1)des(w)

could be interpreted as{
#{alternating perms w ∈ S(1r2r · · ·N r)} for r(N − 1) even,

0 for r(N − 1) odd.

Unfortunately, this fails already for r = 3, N = 3.

Having looked at cases where r is small, we turn to those where N
is small. If N = 1, then PN,r is a chain, so everything is trivial. When
N = 2, one has the following proposition.

Proposition 2.4.

W (P2,r, t) =
r∑

k=0

(
r

k

)2

tk,

and

W (P2,r,−1) =

{
(−1)

r
2

(
r
r
2

)
for r even,

0 for r odd.
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Proof. Although various easy combinatorial proofs can be given for
both assertions (e.g. [12, Vol. 1, §144, p. 169]), they also follow from
(2.1) and Lemma 4.1 with a1 = a2 = 1. �

For N = 3, one has the following result.

Theorem 2.5.

W (P3,r,−1) = (−1)r

r∑
k=0

(
r

k

)3

.

Proof. This follows from (2.1) and Lemma 4.2 with a1 = a2 = a3 =
1. �

Remark 2.6. The sum of the cubes of the binomial coefficients ap-
pearing in Theorem 2.5 have appeared in the literature under the name
Franel numbers [8, 9]. We remark that Proposition 2.4 can be phrased

in suggestively similar terms, using the identity
(

r
r
2

)
=

∑ r
2
k=0

( r
2
k

)2
. How-

ever, for N = 4, there does not appear to be a connection between the
quantities ∑

w∈S(1r2r3r4r)

(−1)des(w) and
r∑

k=0

(
r
2

k

)4

.

Remark 2.7. MacMahon gave two generating functions for the poly-
nomials W (r1 t · · · t rN, t), which we state here; the authors thank
Ira Gessel for pointing out these results. Recall that the elementary
symmetric function in N variables is denoted ek(x1, · · · , xN).

Proposition 2.8. [12, pp. 186, 212] W (r1t· · ·trN, t) is the coefficient
of xr1

1 · · ·x
rN
N in

(1−
N∑

k=1

ek(x1, · · · , xN)(t− 1)k−1)−1,

and it is also the same coefficient in
N∏

i=1

(x1 + · · ·+ xi + t(xi+1 + · · ·+ xN))ri .

Thus W (P3,r,−1) is the coefficient of xryrzr in

(x + y + z)r(x + y − z)r(x− y − z)r or (1− e1 + 2e2 − 4e3)
−1.

One would like a simple bijective proof of Theorem 2.5, perhaps via

the fact that
∑r

k=0

(
r
k

)3
is the coefficient of xryrzr in

(x + y)r(x + z)r(y + z)r,

but we have no such proof so far.
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3. Direct Product of Chains

The direct product P = r×s of chains of size r, s is a prime example
of a Gaussian poset [16, Exercise 4.25]. Brenti proved the Neggers-
Stanley conjecture for naturally labelled Gaussian posets [2, Theorem
5.6.5], using the fact that their order polynomial has the following
simple expression in terms of their rank function r(x):

(3.1) Ω(P, m) =
∏
x∈P

m + r(x)

1 + r(x)
.

In this subsection, we examine combinatorial interpretations for the
Charney-Davis quantity of P = r× s for small values of s.

For these particular Gaussian posets, combining (1.2) with (3.1)
yields the expression

(3.2) W (s× r, t) = (1− t)rs+1
∑
m≥0

s∏
i=1

(i + m)r

(i)r

tm

where (a)r := (a)(a + 1) · · · (a + r − 1).
If s = 1 then s× r ∼= r is a chain, so everything is trivial.
If s = 2, renaming r = n, the identity

W (2× n, t) =
n−1∑
k=0

1

n

(
n

k

)(
n

k + 1

)
tk

can be deduced either from (3.2) and the first equality in Lemma 4.1
specialized to a1 = 2, a2 = 1, or using the standard interpretation for
the Narayana number 1

n

(
n
k

)(
n

k+1

)
as the number of lattice paths from

(0, 0) to (n, n) taking north or east steps which stay weakly above the
diagonal y = x and have exactly k right turns [17, Problem 6.36]. The
Charney-Davis quantity in this case can be evaluated using the second
equality of Lemma 4.1 specialized to a1 = 2, a2 = 1 (see also [10, §4]):

Proposition 3.1.

W (2× n,−1) =

{
0 for n even,

(−1)mCm for n = 2m + 1 odd.

where Cm = 1
m+1

(
2m
m

)
is the Catalan number.

For s = 3, Baxter permutations come into play. A permutation
π = π1 · · ·πn ∈ Sn is called a Baxter permutation if for all 1 ≤ i < j <
k < l ≤ n the following two conditions are satisfied:

. if πi + 1 = πl and πj > πl then πk > πl,

. if πl + 1 = πi and πk > πi then πj > πi.
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In [5] it was shown that there are exactly

Baxter(n) : =
1(

n+1
1

)(
n+1

2

) n−1∑
m=0

(
n + 1

m

)(
n + 1

m + 1

)(
n + 1

m + 2

)
= 3F2

(
1− n, −n, −1− n

2, 3

∣∣∣∣− 1

)
Baxter permutations in Sn.

The following result was discovered by computer experimentation.

Theorem 3.2.

W (3× n,−1) = (−1)n−1 Baxter(n− 1).

Proof. When s = 3, one has from (3.2) that

tW (3× n, t)

(1− t)3n+1
=

∑
m≥1

tm
(m)n(m + 1)n(m + 2)n

(1)n(2)n(3)n

= t 3F2

(
n + 3, n + 2, n + 1

2, 3

∣∣∣∣ t

)
.

Applying Lemma 4.2 with a1 = 3, a2 = 1, a3 = 2 we have

W (3× n,−1) = (−1)n−1
3F2

(
2− n, 1− n, −n

2, 3

∣∣∣∣− 1

)
= (−1)n−1 Baxter(n− 1).

�

Remark 3.3.
The previous theorem begs for a combinatorial proof. W (3×n, t) is the
generating function for standard Young tableaux of shape 3×n counted
by their number of descents. Dulucq and Guibert [7] have shown that
Baxter(n−1) counts those standard Young tableaux of shape 3×(n−1)
having no consecutive values in the same row. We were unable to find
a combinatorial proof based on these tempting facts.

Remark 3.4.
From (2.1) and (3.2), one can write down explicit double sums for the
polynomials W (P, t) when P = PN,r or P = r×n. Unfortunately, even
when one sets t = −1, these double sums involve alternating signs, and
hence don’t explain the sign of the associated Charney-Davis quantity
W (P,−1). More temptingly, both for P = P4,r and P = 4 × r, it is
possible to re-express W (P,−1) in terms of a single sum, provable using
the WZ-method. We state here (without proof) the explicit answer for
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P = P4,r. If r is odd then W (P4,r,−1) = 0. For r even, setting R = r
2
,

one has

W (P4,r,−1) = (−1)R

r∑
k=0

(−1)k 22r−2k

(
r + k

k, k, r − k

)(
r + 2k

R, k, R + k

)
.

Note that this single sum of integer terms involves alternating signs.
However, an anonymous referee pointed out that this can be rewritten.
Applying a 3F2(1) = 4F3(1) hypergeometric transformation, which is a
limit of Singh’s q-quadratic 4φ3-transformation [11, (III.21), p. 243]),
one obtains

W (P4,r,−1) = (−1)R

(
r

R

) R∑
k=0

(
r

2k

) (
1

k!

(
r + 1

2

)
k

22k

)2

22r−4k,

a summation with positive integer summands. Unfortunately, we have
no conjecture for a combinatorial interpretation in this case. Similarly,
for W (r1 × · · · × rN,−1) with N ≥ 3, we have no such combinatorial
interpretation.

4. Appendix: Hypergeometric lemmas

In this appendix we collect the lemmas for the proofs in the previous
sections.

Lemma 4.1. Let r, a1, and a2 be non-negative integers with r+a2−1 ≥
a1 − a2 ≥ 0. Then

pr(t) =(1− t)2r+2a2−1
2F1

(
r + a1, r + a2

1 + a1 − a2

∣∣∣∣ t

)
=

(
r + a2 − 1

a1 − a2

)−1 r+a2−1∑
s=0

(
r − a2 + 1

s

)(
r + a2 − 1

a1 − a2 + s

)
ts

=

(r+2a2−a1−1)/2∑
s=0

(
r + 2a2 − a1 − 1

2s

)
×

(2s)!

s!(1 + a1 − a2)s

ts(1 + t)r+2a2−a1−1−2s.

Proof. The first statement is Euler’s transformation [6, p. 105, (2)]
while the second is a quadratic transformation [6, p. 113, (35)]. �

Lemma 4.2. Let r, a1, a2, and a3 be non-negative integers with

a1 ≥ a3 ≥ a2, r + a2 + a3 ≥ a1 + 1.
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If

fr(t) =

(1− t)3r−2−a1+2a2+2a3
3F2

(
r + a1, r + a2, r + a3

1 + a1 − a2, 1 + a1 − a3

∣∣∣∣ t

)
,

then fr(t) is a polynomial in t of degree 2r − 2 − 2a1 + 2a2 + 2a3.
Moreover

fr(−1) =

C 3F2

(
1 + a1 − 2a2 − r, 1− a2 − r, 1− a3 + a1 − a2 − r

1 + a1 − a2, 1 + a3 − a2

∣∣∣∣− 1

)
,

where

C = (−1)r+a1+a2+a3+1 (1 + a3 − a2)r+a3+a2−a1−1

(1 + a1 − a3)r+a3+a2−a1−1

.

Proof. If we apply the well-poised 3F2 transformation [6, p. 190, (1)]
we have

fr(t) = (1− t)2r−2−2a1+2a2+2a3×

3F2

(
(r + a1)/2, (r + a1 + 1)/2, 1 + a1 − a2 − a3 − r

1 + a1 − a2, 1 + a1 − a3

∣∣∣∣ −4t

(1− t)2

)
,

which establishes polynomiality of fr(t), and shows that fr(−1) is a

3F2(1).
We apply two 3F2(1) transformations to derive the second part of

Lemma 4.2. First use [1, p. 98, Ex. 7]

3F2

(
a, b, c

d, e

∣∣∣∣ 1

)
=

Γ(e)Γ(e + d− a− b− c)

Γ(e− c)Γ(d + e− a− b)
3F2

(
d− a, d− b, c

d, d + e− a− b

∣∣∣∣ 1

)
with

a = (r + a1)/2

b = (r + a1 + 1)/2

c = 1 + a1 − a2 − a3 − r

d = 1 + a1 − a2

e = 1 + a1 − a3.

Then use the terminating transformation [1, p. 21, (1)]

(d)N 3F2

(
a, b, −N

c, 1− d−N

∣∣∣∣ 1

)
= (a+d)N 3F2

(
a, c− b, −N

c, a + d

∣∣∣∣ 1

)
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with
a = 1 + a1/2− a2 − r/2

b = 1 + a1 − a2 − a3 − r

N = r/2 + a2 − a1/2− 1/2

c = 1 + a1 − a2

1− d−N = 3/2 + a1 − a2 − a3 − r.

�
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