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Abstract. Recently M. Haiman, N. Loehr and the author [J. Amer. Math. Soc.
18 (2005), 735–761] proved that for µ a partition of n, the modified Macdonald
polynomial H̃µ[z1, . . . , zn; q, t] can be expressed as a sum of monomials in the zi

times certain nonnegative integral powers of q, t with direct combinatorial descrip-
tions (i.e. statistics). These powers are generalizations of the classical permutation
statistics maj and inv. The result was first conjectured by the author [Proc. Nat.
Acad. Sci. U.S.A. 101 (2004), 16127–16131], and was partially motivated by a
conjectured formula for the character of the space of diagonal harmonics [Duke
J. Math. 126 (2005), 195–232]. Beyond giving a long-sought after combinatorial
formula for Macdonald polynomials, this result has many nice corollaries, includ-
ing a simple proof of Lascoux and Schützenberger’s formula, involving the statistic
cocharge, for Hall-Littlewood polynomials. In this paper we describe the sequence
of experimental steps and Maple calculations which led to the discovery of these
Macdonald polynomial statistics.

Riassunto. In un recente lavoro in collaborazione con M. Haiman, N. Loehr [J.
Amer. Math. Soc. 18 (2005), 735–761] dimostriamo che per una partizione di n, µ,
il polinomio di Macdonald modificato H̃µ[z1, . . . , zn; q, t] puo’ essere espresso come
un polinomio nelle variabili zi i cui cofficienti sono potenze non negative di q, t.
Questo risultato ha una diretta interpretazione combinatoria (o meglio statistica).
Gli esponenti dei coefficienti sono una generalizzazione delle classiche statistiche di
permutazione maj e inv. L’ipotesi di un tale risultato fu avanzata in [Proc. Nat.
Acad. Sci. U.S.A. 101 (2004), 16127–16131] e in parte fu motivata dalla formula,
in forma di congettura, per i caratteri dello spazio delle armoniche diagonali [Duke
J. Math. 126 (2005), 195–232]. Questo risultato non solo da’ un’interpretazione
combinatoria, cercata da lungo tempo, dei polinomi di Macdonald, ma permette
di derivare anche altri risultati rilevanti. Per esempio e’ possibile dare una di-
mostrazione semplificata della formula di Lascoux and Schützenberger riguardante
la statistica cocharge per i polinomi di Hall-Littlewood. In questo articolo descriv-
iamo la sequenza di passaggi sperimentali e di calcoli fatti utilizzando Maple che
portano alla scoperta della statistica dei polinomi di Macdonald.
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1. Introduction

Given a sequence µ = (µ1, µ2, . . .) of nonincreasing, nonnegative integers with∑
i µi = n, we say µ is a partition of n, denoted by either |µ| = n or µ ` n. By

adding or subtracting parts of size 0 if necessary, we will always assume partitions
of n have exactly n parts. We let n(µ) =

∑
i(i − 1)µi, and if λ is another par-

tition, set K̃λ,µ(q, t) = tn(µ)Kλ,µ(q, 1/t), where Kλ,µ(q, t) is Macdonald’s q, t-Kostka

polynomial [Mac95, p.354]. We call H̃µ[Z; q, t] =
∑

λ`|µ| sλK̃λ,µ(q, t) the modified

Macdonald polynomial, where sλ = sλ[Z] is the Schur function, the sum is over all
λ ` |µ|, and Z = z1, . . . , zn. The H̃µ[Z; q, t] can be easily transformed by a plethystic
substitution into Macdonald’s original symmetric functions Pµ[Z; q, t]. Macdonald
defined the Pµ in terms of orthogonality with respect to a scalar product, and conjec-
tured Kλ,µ(q, t) ∈ N[q, t] [Mac95, p. 355]. (From their definition, all one can infer is
that the Kλ,µ(q, t) are rational functions in q, t). This conjecture in turn led Garsia
and Haiman to the “n! conjecture” [GH93], which was proved by Haiman in 2000
[Hai01]. This result implies that K̃λ,µ(q, t) ∈ N[q, t], and moreover that H̃µ[X; q, t] is
the character of a certain Sn-module V (µ), and thus gives a representation-theoretical
interpretation for the coefficients of K̃λ,µ(q, t). Macdonald also posed the problem of
finding a combinatorial rule to describe the Kλ,µ(q, t), which is still open.

Recently the author introduced a conjectured combinatorial formula for the coef-
ficient of a monomial in H̃µ[Z; q, t] [Hag04a]. The formula, described in Section 2, is
manifestly in N[q, t, z1, . . . , zn]. Soon after its introduction, the conjecture was proved
by M. Haiman, N. Loehr and the author: the formula took much longer to find than
to prove. Some comments on the surprisingly short and elegant proof are made in Sec-
tion 3. As a corollary they obtain a new, short proof of a famous result of Lascoux and
Schützenberger, namely that the coefficients in the Schur function expansion of the
Hall-Littlewood polynomial H̃µ[Z; 0, t] can be expressed as a sum, over semi-standard
Young tableaux W , of q to a statistic known as cocharge(W ). This new proof is dis-
cussed in more detail in Section 4. Also, since the matrix expressing the Schur basis
in terms of the monomial basis is upper unitriangular, another consequence is a new
proof that the K̃λ,µ(q, t) ∈ Z[q, t]. In addition a simple formula for the K̃λ,µ(q, t) is
obtained when µ has two columns. It is hoped that further refinements will result in
combinatorial formulas for the K̃λ,µ(q, t) for general µ.

The idea for this article was suggested by A. Garsia, who thought it would be
beneficial to have a detailed description of the sequence of steps which led the author
to the discovery of the formula. In Section 5 we overview the pioneering work of
Garsia, Haiman and others on the n! conjecture, the space of diagonal harmonics
DHn, and the q, t-Catalan numbers. These numbers were defined by Garsia and
Haiman as a complicated sum of rational functions in q, t, which they conjectured
simplified to a polynomial in N[q, t] [GH96]. We then discuss a series of discoveries
by the author, M. Haiman and others involving combinatorial formulas for the q, t-
Catalan numbers and other sequences connected to DHn, which culminated in the
introduction of the “shuffle conjecture” by Haglund, Haiman, Loehr, Remmel and
Ulyanov [HHL+05b], which gives a combinatorial formula for the character of DHn.
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In Section 6 we discuss how various special cases of the shuffle conjecture led the
author to suspect an analogous combinatorial formula for the monomial expansion of
H̃µ[X; q, t] could be found. We then include an explanation of the various stages and
Maple calculations in the experimental process which resulted in the discovery of the
statistics.

2. The Formula

We assign (row,column)-coordinates to squares in the first quadrant, obtained by
permuting the (x, y) coordinates of the upper right-hand corner of the square, so the
lower left-hand square has coordinates (1, 1), the square above it (2, 1), etc.. For a
square w, we call the first coordinate of w the row value of w, denoted row(w), and
the second coordinate of w the column value of w, denoted col(w). Given µ ` n, we
let µ also stand for the Ferrers diagram of µ (French convention), consisting of the
set of n squares with coordinates (i, j), with 1 ≤ i ≤ n, 1 ≤ j ≤ µi.

Let T be a finite set of squares in the first quadrant. A subset of squares of T
consisting of all those w ∈ T with a given row value is called a row of T , and a subset
of squares of T consisting of all those w ∈ T with a given column value is called a
column of T . Furthermore, we let T (i) denote the ith square of T encountered if we
read across rows from left to right, starting with the squares of largest row value and
working downwards. Given a square w ∈ T , define the leg of w, denoted leg(w), to
be the number of squares in T which are strictly above and in the same column as
w, and the arm of w, denoted arm(w), to be the number of squares in T strictly to
the right and in the same row as w. Also, if w has coordinates (i, j), we let south(w)
denote the square with coordinates (i− 1, j).

A word σ of length n in an alphabet A is a linear sequence σ1σ2 · · ·σn, with σi ∈ A.
Note that repeats are allowed. If the letter i occurs αi times in σ, for each i ≥ 1,
we say σ has content α, denoted content(σ) = α. We call a pair (σ, T ), where σ is
a word of positive integers and T is a set of squares in the first quadrant, a filling.
We represent (σ, T ) geometrically by placing σi in square T (i), for 1 ≤ i ≤ n. For
w ∈ T , we let σ(w) denote the element of σ placed in square w, and we call σ1 · · ·σn

the reading word of (σ, T ). A descent of (σ, T ) is a square w ∈ T , with south(w) ∈ T
and σ(w) > σ(south(w)).

Let Des(σ, T ) denote the set of all descents of (σ, T ). For partitions µ, define a
generalized major index statistic maj(σ, µ) via

maj(σ, µ) =
∑

w∈Des(σ,µ)

(1 + leg(w)).(1)

An inversion of (σ, T ) is a pair of squares (a, b) with a, b ∈ T , σ(a) > σ(b), and either{
row(a) = row(b) and col(a) < col(b), or

row(a) = row(b) + 1 and col(a) > col(b) .
(2)
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Let Inv(σ, T ) denote the set of all inversions of (σ, T ), and define the inversion statistic
inv(σ, T ) via

inv(σ, T ) = |Inv(σ, T )| −
∑

w∈Des(σ,T )

arm(w),(3)

where |T | denotes the cardinality of a set T . For example, if (σ, µ) is the filling in
Figure 1, then representing squares by their coordinates,

Des(σ, µ) = {(2, 1), (4, 2), (2, 2)},

Inv(σ, µ) = {((3, 1), (3, 2)), ((2, 2), (2, 3)), ((2, 2), (1, 1)), ((2, 3), (1, 1)), ((2, 3), (1, 2))},
(4)

so maj(σ, µ) = 3 + 1 + 3 = 7, inv(σ, µ) = 5− (2 + 0 + 1) = 2.

2
2 1
3 5 3
1 1 4

2

Figure 1. A filling of the partition (3, 3, 2, 2) by the word 2221353114.

Note that, if 1n denotes a column of n cells, then

maj(σ, 1n) =
∑

i∈Des(σ,1n)

i,(5)

the usual major index statistic on the word σ, while

inv(σ, (n)) =
∑

1≤i<j≤n
σi>σj

1,(6)

the usual inversion statistic.
For µ ` n, define

C̃µ[Z; q, t] =
∑

σ

tmaj(σ,µ)qinv(σ,µ)zσ,(7)

where zσ =
∏n

i=1 zσi
is the “weight” of σ and the sum is over all words σ of n positive

integers satisfying 1 ≤ σi ≤ n for 1 ≤ i ≤ n. The following result was conjectured by
the author [Hag04a] and proved by Haglund, Haiman, Loehr [HHL05a]).

Theorem 1. For all partitions µ,

C̃µ[Z; q, t] = H̃µ[Z; q, t].(8)

Given a set T of squares and a subset S ⊆ T , define

FT [Z; q, S] =
∑

σ
Des(σ,T )=S

qinv(σ,T )zσ.(9)

In [Hag04a] the following result is obtained.
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Theorem 2. For all S, T , FT [Z; q, S] is a symmetric function in the zi.

Given S ⊆ µ, let

P (S) =
∑
w∈S

(1 + leg(w)).(10)

Note that by the definition of maj(σ, µ),

C̃µ[Z; q, t] =
∑
S⊆µ

tP (S)Fµ[Z; q, S].(11)

In [HHL05a] it is shown that the FT [Z; q, t] are special cases of polynomials introduced
by Lascoux, Leclerc and Thibon [LLT97], commonly known as LLT polynomials.
These are symmetric polynomials whose description involves a tuple of arbitrary
skew shapes and whose coefficients depend on q. It has been an open conjecture of
theirs that the coefficients of these polynomials when expanded in the Schur basis
are in N[q]. Thus we now have the expansion of H̃µ[Z; q, t] into LLT polynomials,

and furthermore understanding the positivity of the coefficients of the K̃λ,µ(q, t) is
reduced to understanding the special case of the positivity of LLT polynomials (when
each skew-shape in the tuple is a ribbon).

Definition 1. Given a word σ of content (γ1, γ2, . . .), construct a permutation σ′, the
standardization of σ, by replacing the γ1 1’s in σ by the numbers 1, . . . , γ1, the γ2 2’s
in σ by the numbers γ1 + 1, . . . , γ1 + γ2, etc., in such a way that, for i < j, σi ≤ σj if
and only if σ′i < σ′j. For example, if σ = 224123114 then σ′ = 458167239.

Remark 1. At first glance it may seem that inv(σ, T ) may not always be nonnegative,
but given a square u ∈ Des(σ, T ), for each square v in the same row as u and to the
right of u, either σ(u) > σ(v), or σ(v) > σ(south(u)), or both. Assume for the moment
that σ has distinct entries. If we adopt the convention that for a square w /∈ T ,
σ(w) = ∞, it follows that inv(σ, T ) equals the number of triples of squares u, v, w,
where u ∈ T , v ∈ T , row(u) = row(v), col(u) < col(v), and south(u) = w, and if we
draw a circle through u, v, w, and read in the σ values of u, v, w in counterclockwise
order around the circle, starting at the smallest value, then the three values form a
strictly increasing sequence. If σ has repeated entries, first standardize then count
triples in (σ′, T ) as above.

3. The Proof

Let pk(Z) =
∑

i z
k
i be the kth power sum. Given a real parameter w, let pk[Z(1−

w)] =
∑

i z
K
i (1 − wk) and pk[Z/(1 − w)] =

∑
i z

k
i /(1 − wk). These are both special

cases of plethystic notation, indicated by the square brackets around Z(1 − w) and
Z/(1− w). For an arbitrary symmetric function F (Z), let F [Z(1− w)] (respectively
F [Z/(1 − w)]) be the result of first expressing F (Z) as a polynomial in the pk(Z),
then replacing each pk(Z) by pk[Z(1− w)] (respectively pk[Z/(1− w)]).

The polynomial H̃µ[Z; q, t] can be defined [Hai03] as the unique polynomial satis-
fying the following axioms, where λ ≤ µ refers to the dominance order λ1 + . . .+λi ≤
µ1 + . . . + µi − 1 for 1 ≤ i ≤ n:
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(M1) H̃µ[Z(q − 1)] =
∑

λ≤µ′ aλ,µmλ for some aλ,µ ∈ Q(q, t)

(M2) H̃µ[Z(t− 1)] =
∑

λ≤µ aλ,µmλ for some aλ,µ ∈ Q(q, t)

(M3) The coefficient of zn
1 in the expansion of H̃µ[Z; q, t] into monomials equals 1.

We call a filling of µ by arbitrary nonzero integers a “super filling”. We usually
represent negative letters, such as −2,−4,−7 by “barred letters” 2, 4, 7. Assume the
letters satisfy the ordering

1 < 1 < 2 < 2 < · · · < n < n.(12)

Given a super filling σ, we define the standardization σ′ of σ to be the unique per-
mutation satisfying σ′i < σ′j whenever σi < σj, or whenever i < j and σi = σj with σi

a positive letter, or whenever i > j and σi = σj with σi a negative letter. We then
extend the definition of maj and inv to super fillings by letting maj(σ, µ) = maj(σ′, µ)
and inv(σ, µ) = inv(σ′, µ). Furthermore, we let |σ| be the filling obtained by replacing
each σi by its absolute value.

Using some general results about quasi-symmetric functions and the superization
of a symmetric function derived in [HHL+05b], one easily obtains the fact that

C̃µ[Z(q − 1); q, t] =
∑

σ

(−1)m(σ)qp(σ)+inv(σ,µ)tmaj(σ,µ)z|σ|(13)

C̃µ[Z(t− 1); q, t] =
∑

σ

(−1)m(σ)qinv(σ,µ)tp(σ)+maj(σ,µ)z|σ|(14)

where the sum is over all super fillings σ of µ, m(σ) is the number of negative letters
in σ, and p(σ) is the number of positive letters in σ.

We say two squares u, v of a Ferrers shape attack each other if they are either in
the same row, or if u is one row above v and in a column strictly to the right of v.
Otherwise u, v are said to be nonattacking. We call a super filling (σ, µ) nonattacking
if for all u, v ∈ µ, |σ(u)| = |σ(v)| implies u, v are nonattacking.

The first step in the proof of Theorem 1 involves the construction of a sign-reversing
involution on super fillings of µ which cancels most of the terms in (13). The involution
looks for an attacking pair of squares containing 1’s or 1’s. If more than one such
pair exists, it chooses the last such pair in the reading word, and switches the sign of
the first element of the pair in the reading word. One checks that the q, t-weights are
preserved. If no attacking pairs containing 1, 1’s exist, then you search for attacking
pairs containing 2, 2’s, etc. The fixed points are super fillings with no attacking pairs,
which are easily seen to satisfy the triangularity condition (M1).

So far we have assumed (12) holds, but in fact (13) and (14) hold for any fixed
total ordering of the alphabet of positive and negative letters. We now construct a
second involution assuming the ordering

1 < 2 < · · · < n < n < · · · < 2 < 1.(15)

Search for the first occurrence of a 1 or 1 in the reading word, ignoring any such letters
in the bottom row. If such a 1, 1 exists, then switch its sign. If there is no such 1
or 1, look for the first occurrence of a 2 or 2, ignoring any letters in the bottom two
rows, etc. As in the first involution, the q, t weights are preserved. The fixed points
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are now super fillings with no 1’s or 1’s above the bottom row, no 2’s or 2’s above the
bottom two rows, etc.. Hence the weight z|σ| must satisfy λ1 ≤ µ1, λ1 +λ2 ≤ µ1 +µ2,
etc., and (M2) is satisfied. The proof is completed by noting that if σ is the filling of
all 1’s, inv(σ, µ) = maj(σ, µ) = 0, which implies (M3).

4. The Cocharge Formula

In this section we briefly highlight two consequences of Theorem 1, which are
described in more detail in [HHL05a]. The first is the following famous result of
Lascoux and Schützenberger, where SSY T (λ, µ) denotes the set of a semi-standard
Young tableau of shape λ and weight µ, i.e. the set of fillings of λ by µ1-1’s, µ2-2’s,
etc., with entries that are weakly increasing across rows and strictly increasing up
columns.

Theorem 3.

H̃µ[Z; 0, t] =
∑

λ

sλ

∑
T∈SSY T (λ,µ)

tcocharge(read(T )),(16)

where the statistic cocharge is described (in the proof) below.

Proof. We begin by describing the set of fillings with no inversions. Let Mi be an
arbitrary multiset of µi positive integers, for 1 ≤ i ≤ µ′1, and consider those fillings
of µ where the elements of Mi are placed in the ith row of µ, in any arbitrary order,
for each i in the range 1 ≤ i ≤ µ′1. It turns out there is exactly one of these fillings
with no inversions. This filling can be constructed by first filling the bottom row of µ
with the elements of M1, in nondecreasing order left to right. Then in square (2, 1),
place the smallest integer in M2 which is strictly bigger than σM(1, 1), if it exists. If
all elements of M2 are less than or equal to σM(1, 1), then place the smallest element
of M2 in (2, 1). It is easy to see that this will force any triple of squares of the form
{(2, 1), (2, j), (1, 1)}, j ≥ 2, to form a clockwise circle in the sense of Remark 1. Next
remove σM(2, 1) from M2 to form M ′

2, and place the smallest element of M ′
2 larger

than σM(1, 2) in square (2, 2), if it exists. If not, place the smallest element of M ′
2

in square (2, 2). Now iterate the process, moving left to right, in each square of row
two placing the smallest remaining element larger than the element in the square just
below, if it exists, and otherwise placing the smallest remaining element in the square.
The same process is then applied to row 3, comparing elements of M3 to elements in
the second row of σM, then moving on to row 4, etc.. If µ = 5531, M1 = {1, 1, 3, 6, 7},
M2 = {1, 2, 4, 4, 5}, M3 = {1, 2, 3}, and M4 = {2}, then σM is the filling in Figure 2.

1
1

1 1

2
2

2
3

3 76
544

Figure 2. A filling with no inversions.
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We now construct a word associated to a filling σ we call the cocharge word
cword(σ). Initialize cword(σ) to the empty string, then scan through the reading word
of σ, starting at the beginning. Whenever a 1 is encountered, adjoin the number of
the row containing this 1 to the left of cword(σ). After reaching the end of the reading
word, scan through the reading word again, from the beginning, this time looking for
2’s. Whenever a 2 is encountered, adjoin the row number to the left of cword(σ) as
before. After finishing the 2’s, loop back and scan through the reading word for 3’s,
etc. For example, if σ is the filling in Figure 2, cword(σ) = 11222132341123.

Next we translate the statistic maj(σ, µ) into a statistic on cword(σ). Note that
σ(1, 1) corresponds to the rightmost 1 in cword(σ) - denote this 1 by w11. If σ(2, 1) >
σ(1, 1), σ(2, 1) corresponds to the rightmost 2 which is left of w11, otherwise it corre-
sponds to the rightmost 2 (in cword(σ)). In any case denote this 2 by w12. More gen-
erally, the element in cword(σ) corresponding to σ(i, 1) is the first i encountered when
travelling left from w1,i−1, looping around and starting at the beginning of cword(σ)
if necessary. To find the subword w21w22 · · ·w2µ′2

corresponding to the second column
of σ, we do the same algorithm on the word cword(σ)′ obtained by removing the
elements w11w12 · · ·w1µ′1

from cword(σ), then remove w21w22 · · ·w2µ′2
and apply the

same process to find w31w32 · · ·w3µ′3
etc..

Clearly σ(i, j) ∈ Des(σ, µ) if and only if wij occurs to the left of wi,j−1 in cword(σ).
Thus maj(σ, µ) is transparently equal to the statistic cocharge(cword(σ)) described
in [Man01, pp.48-49].

It is well known that for any word w of partition content,

cocharge (w) = cocharge (read(P (w))),

where read(P (w)) is the reading word of the insertion tableau P (w) under the RSK
algorithm [Man01, pp.48-49], [Sta99, p.417]. Also, the RSK algorithm induces a
bijection between certain two-line arrays of positive integers and pairs (P, Q) of SSYT
of the same shape. The two-line arrays have the property that the entries in the upper
row are nondecreasing, and below equal entries in the upper row the entries in the
lower row are also nondecreasing. Under this bijection, the content of the upper row
is the content of Q, and the content of the lower row is the content of P . The number
of different Q tableau of content ν matched to a given P tableau of shape λ is the
Kostka number Kλ,ν [Sta99, p.319].

We associate a two-line array to a filling σ with no inversions by letting the upper
row be nonincreasing with the same content as σ, and the lower row be cword(σ).
For example, to the filling in Figure 2 we associate the two-line array

7 6 5 4 4 3 3 2 2 2 1 1 1 1

1 1 2 2 2 1 3 2 3 4 1 1 2 3(17)

By construction, below equal entries in the upper row the entries in the lower row
are nondecreasing. As is, the upper row is nonincreasing instead of nondecreasing,
but we can get around this problem by replacing j by n − j + 1 in the upper row,
for 1 ≤ j ≤ n, where n is the size of µ. At the same time, we reverse the order
of the variables, replacing xj by xn−j+1 for 1 ≤ j ≤ n - this doesn’t change Cµ

since it is a symmetric function. Then xσ is the same as the content of Q, and since
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cocharge(cword(σ)) depends only on the P tableau,

C̃µ[X; 0, t] =
∑

ν

mν

∑
λ

∑
P∈SSY T (λ,µ)
Q∈SSY T (λ,ν)

tcocharge(read(P ))

=
∑

λ

∑
P∈SSY T (λ,µ)

tcocharge(read(P ))
∑

ν

mνKλ,ν

=
∑

λ

sλ

∑
P∈SSY T (λ,µ)

tcocharge(read(P )).(18)

�

For our second consequence of Theorem 1, we use the super filling interpretation
for H̃µ[Z(q− 1); q, t] from (13) to obtain a new formula for the expansion of Macdon-
ald’s symmetric function Jµ[Z; q, t] into monomials. We then show how our formula
immediately implies a result of Knop and Sahi for Jack symmetric functions.

By definition we have

Jµ[Z; q, t] = tn(µ)H̃µ[Z(1− t); q, 1/t]

= tn(µ)H̃µ[Zt(1/t− 1); q, 1/t]

= tn(µ)+nH̃µ′ [Z(1/t− 1); 1/t, q](19)

using the well-known relation H̃µ[Z; q, t] = H̃µ′ [Z; t, q]. The first involution from the
proof of Theorem 1 gives a combinatorial interpretation for (19) in terms of super
fillings of µ′. Say two super fillings σ, β are “companions” if |σ| = |β|. Note that
companionship forms an equivalence relation. By grouping fillings according to this
relation, one can easily derive the following result.

Theorem 4. For any partition µ,

Jµ[Z; q, t] =
∑

nonattacking fillings (T, µ′)

zT qmaj(T,µ′)tn(µ)−inv(T,µ′)

×
∏
w∈µ′

T (w)=T (South(w))

(1− q1+leg(w)t1+arm(w))
∏
w∈µ′

T (w) 6=T (South(w))

(1− t).(20)

Remark 2. The (integral form) Jack polynomials Jα
µ [Z] can be defined as [Mac95,

p.381]

lim
t→1

(1− t)−|µ|Jµ[Z; tα, t].(21)

By setting q = tα in Theorem 4 and taking the limit as t → 1 of (21) we immediately
get the following formula of Knop and Sahi [KS97].

Jα
µ [Z] =

∑
nonattacking fillings (T, µ′)

zT
∏
w∈µ′

T (w)=T (South(w))

(1 + α(1 + leg(w)) + 1 + arm(w)).

(22)
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5. Diagonal Harmonics and the n! Conjecture

Assume µ ` n, w1, . . . , wn is an arbitrary ordering of the squares of µ, and set

∆µ(x1, . . . , xn, y1, . . . , yn) =
∣∣∣xrow(wj)

i y
col(wj)
i

∣∣∣
1≤i,j≤n

.(23)

For example,

∆221 =

∣∣∣∣∣∣∣∣∣∣
1 y1 x1 x1y1 x2

1

1 y2 x2 x2y2 x2
2

1 y3 x3 x3y3 x2
3

1 y4 x4 x4y4 x2
4

1 y5 x5 x5y5 x2
5.

∣∣∣∣∣∣∣∣∣∣
(24)

Note that ∆1n is, up to sign, the Vandermonde determinant in x1, . . . , xn.
Next define the Garsia-Haiman module V (µ) as the linear span over C of ∆µ and

its partial derivatives of all orders. An element σ = σ1 · · ·σn in the symmetric group
Sn acts on a polynomial f ∈ V (µ) via the “diagonal action”

(25) σf(x1, . . . , xn, y1, . . . , yn) = f(xσ1 , . . . , xσn , yσ1 , . . . , yσn).

Note that V (µ) =
⊕

i,j≥0 V (µ)(i,j), where V (µ)(i,j) is the portion of V (µ) of bihomo-

geneous (x, y)-degree (i, j), and that the diagonal action respects this bigrading.
In 2000 Haiman [Hai01] proved the “n! conjecture”, first posed in [GH93], which

says that the dimension of V (µ) equals |µ|!. It had previously been shown [Hai99] that
the n! conjecture implies the coefficient of qitj in K̃λ,µ(q, t) equals the multiplicity of
the irreducible Sn character χλ in the character of V (µ)(i,j) under the diagonal action,
or equivalently that H̃µ[Z; q, t] equals the image of the character of V (µ) under the

Frobenius map which sends χλ to sλ. Macdonald’s conjecture that K̃λ,µ(q, t) ∈ N[q, t]
follows.

The definition of the statistic |Inv(σ, µ)| was motivated by the “dinv” statistic
occurring in recent work on the combinatorics of the space DHn of diagonal harmonics
[HHL+05b], [HL05]. This space is defined [Hai94] as the linear span over Q of the set
of all polynomials f(x1, . . . , xn, y1, . . . , yn) satisfying

n∑
i=1

∂h
xi

∂k
yi

f = 0,∀h + k > 0.(26)

We can write DHn =
⊕

i,j≥0 DH
(i,j)
n , and the diagonal action (25) respects this

bigrading. The modules V (µ) are Sn-submodules of DHn.
Let ∇ be the linear operator on symmetric functions defined on the H̃µ[Z; q, t] basis

via

∇H̃µ[Z; q, t] = tn(µ)qn(µ′)H̃µ[Z; q, t].(27)

Another famous result of Haiman [Hai02] is that the bigraded character of DHn

under the diagonal action is given by ∇en, where en is the nth elementary symmetric
function. This was first conjectured by Garsia and Haiman in the early 1990’s, who
made a special study of < ∇en, s1n >, the coefficient of s1n in the expansion of ∇en

into Schur functions. They called < ∇en, s1n > the “q, t-Catalan sequence”, denoted
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Cn(q, t), since they were able to prove that Cn(1, 1) =
(
2n
n

)
/(n + 1), the nth Catalan

number. As in the case of K̃λ,µ(q, t), all one can infer from its definition is that
Cn(q, t) is a complicated sum of rational functions in q, t.

A Dyck path is a lattice path, consisting of north (0, 1) and east (1, 0) steps,
starting at (0, 0) and ending at (n, n), which never goes below the diagonal x = y.
The first major step in the path to the Macdonald polynomial statistics was made in
2000, when Haglund discovered empirically that Cn(q, t) appeared to be expressible
as the sum of qareatbounce over Dyck paths, for combinatorial statistics area, bounce
[Hag03]. Shortly after, this conjecture was independently discovered by Haiman in
the following form, which is more convenient for generalization.

Cn(q, t) =
∑
D

qdinv(D)tarea(D).(28)

Here area(D) is the number of complete squares below D but strictly above y = x.
We let ai = ai(D) denote the number of these squares in the ith row, from the bottom
of the square n× n grid, and define dinv(D), the number of “diagonal” inversions of
D, as the number of pairs (i, j) with

1 ≤ i < j ≤ n and ai = aj or ai = aj + 1.(29)

For example, for the path in Figure 3 (ignore the numbers in the grid for the moment),
we have area = 9, dinv = 13.

The Haglund-Haiman conjecture for Cn(q, t) was proved shortly after by Garsia
and Haglund [GH01], [GH02], by a complicated application of plethystic symmetric
function identities previously developed by Garsia, Bergeron and others through a
series of papers [GT96], [BGHT99], [GHT99]. More recently Haglund [Hag04b] used
the same techniques to prove a more general result conjectured by Egge, Haglund,
Kremer and Killpatrick [EHKK03] giving the coefficient of an arbitrary hook shape
in ∇en in terms of statistics on lattice paths with diagonal (1, 1) steps also allowed
(known as Schröder paths).

A consequence of Haiman’s formula for the character of DHn is the fact that
the dimension of DHn, as a Q-vector space, is (n + 1)n−1. This number is well-
known to equal the number of parking functions on n cars, which can be represented
geometrically by starting with a Dyck path D, then placing the numbers 1 through n
immediately to the right of the North steps of D, with strict decrease down columns.
Shortly after the proof of the combinatorial formula for Cn(q, t), Haglund and Loehr
[HL05] conjectured that the Hilbert series of DHn equals the sum of qdinv(P )tarea(P )

over all parking functions on n cars. Here the statistic area(P ) is simply area(D) for
the underlying Dyck path D. If we refer to the number j as carj, then dinv(P ) is the
number of pairs (i, j) which satisfy the conditions (29), and in addition, if ai = aj,
then the car in the jth row is larger than the car in the ith row, while if ai = aj + 1,
then the car in the jth row is smaller than the car in the ith row. The Haglund–Loehr
conjecture is still open.

The research into the combinatorics of DHn culminated with the discovery of the
“shuffle conjecture” about two years ago by Haglund et al. [HHL+05b]. This gives
a formula for ∇en in terms of statistics on “word parking functions”, which are
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placements of positive integers in the columns as before, but we allow repeats (but
still require strict decrease down columns, and require cars to be no larger than n). A
given object P of this type is weighted by zP qdinv(P )tarea(P ), where area(P ) is again the
area of the underlying Dyck path. The description of dinv(P ) involves the diagonal
reading word σ = σ(P ) of P , which is obtained by reading in the cars along diagonals
(lines parallel to y = x), outside to in and top to bottom. Next standardize σ as in
Remark 1, regard σ′ as the reading word of some P ′, then set dinv(P ) = dinv(P ′).
For example, if P is the word parking function in Figure 3, we have σ = 64641532,
σ′ = 74851632, area = 9, and dinv = 6, with inversion “pairs” (i, j) of rows equal
to (3, 8), (4, 8), (1, 7), (2, 7), (5, 6) and (3, 4) each contributing 1 to dinv. Also, zP is
defined as zσ.

2

3

5

1
4

6

6

4 1

1
2
1
2
2
0

0

Figure 3. A word parking function with the ai on the right

Conjecture 1 (The shuffle conjecture - [HHL+05b]).

∇en =
∑

P

zP qdinv(P )tarea(P ),(30)

where the sum is over all word parking functions P with n cars.

An equivalent formulation of the conjecture is that the coefficient of the monomial
zλ1
1 zλ2

2 · · · in ∇en equals the sum of qdinvtarea over all parking functions whose diagonal
reading word is a shuffle of increasing sequences of lengths λ1, λ2, . . ., hence the phrase
“shuffle conjecture”. As is well known, the Hilbert series is the coefficient of z1 · · · zn in
the expansion of the character into monomials, hence the shuffle conjecture contains
Haglund and Loehr’s conjectured formula for the Hilbert series of DHn as a special
case. In [HL05] it is shown that it also implies the formula for Cn(q, t), as well as the
formula for hook shapes in terms of Schröder paths.

6. The Empirical Method

Recall that H̃µ[Z; q, t] is the character of the Sn module V (µ), which is a submodule
of DHn. Thus we could hope that some version of the shuffle conjecture would hold
for H̃µ[Z; q, t]. Furthermore, since the statistics in the shuffle conjecture are defined
solely in terms of the statistics for the Hilbert series of DHn, together with the simple
operation of standardization, we could hope that discovering statistics for the Hilbert
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series of V (µ) would result in a combinatorial formula for the monomial expansion of
H̃µ[Z; q, t] through a similar standardization process.

Let Hilbµ(q, t) denote the bigraded Hilbert series of V (µ). The problem of finding
a combinatorial description of Hilbµ(q, t) was studied by Garsia and Haiman, who
obtained statistics when µ has two rows or is a hook shape [GH95]. The author had
also made some previous unsuccessful attempts at this problem, but the reasoning in
the above paragraph increased the stakes dramatically, and so the author decided to
give a more determined attack on the problem.

Since the dimension of V (µ) is n!, it is natural to view the problem in terms
of searching for a pair of permutation statistics, which depend on µ, to generate
Hilbµ(q, t). Since µ has n squares, permutations are in bijection with fillings of µ by
distinct integers, and furthermore from a result of Macdonald [Mac95, p.365,Ex.6]
one can easily deduce that

Hilbµ(1, t) =
∑
σ∈Sn

tmaj(σ,µ).(31)

We now assume that there exists some q-statistic to match with this maj t-statistic,
and try to find it.

For a given Dyck path D, let tarea(D)FD(Z; q) denote the restriction of the sum on
the right-hand-side of (30) to those word parking functions for D. It is proved in
[HHL+05b] that FD(Z; q) is a symmetric function, and moreover is a constant power
of q times an LLT polynomial (as described in [HHL+05b], LLT polynomials can be
parameterized by tuples of skew shapes; in the case of the FD the elements of the
tuple are vertical columns associated with the lengths of the vertical segments of
D). Let µ be a partition, and abbreviate µ1 by `. While working with the FD, the
author proved that if D = D(µ) is the special type of path consisting of µ′` vertical
steps, followed by µ′` horizontal steps, followed by µ′`−1 vertical steps, followed by µ′`−1

horizontal steps, etc., then

FD(µ)(Z; q) = qn(µ)
∑
λ`n

sλKλ′,µ′(q),(32)

where Kλ,µ(q) = qn(µ)K̃λ,µ(q−1) is the charge version of the polynomial from Section
4. This can be proved from recurrences for the FD(µ), obtained by placing the largest
car n at the top of columns, then showing these recurrences are equivalent to those
obtained by Garsia and Procesi [GP92] for the Hall-Littlewood polynomials. (This
fact also follows from statements in [SSW03], where it is deduced from recurrences of
this type for general LLT polynomials).

Since

H̃µ[Z; 0, q] =
∑

λ

sλK̃λ,µ(q),(33)

and since by (32) the monomial expansion of∑
λ`n

sλKλ′,µ′(q)(34)
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can be obtained by summing q−n(µ)+dinv(T )zT over word parking functions for D(µ),
one could hope that the power of q to insert into (31) involves dinv in some way. A
parking function σ for D(µ) can be transformed into a filling σ of µ by pushing all
squares in the ith column from the left down i−1 squares, removing all empty columns,
and finally rotating 180 degrees, as in Figure 4. Furthermore this sends dinv(σ) to
|Inv(σ, µ)|. Note that area gets sent to maj, since we have descents everywhere. We
are thus led to ∑

σ∈Sn

tmaj(σ,µ)q−n(µ)+|Inv(σ,µ)|(35)

as a candidate for the Hilbµ(q, t).

5
2

1

7

8
4

6
3

5
2 1

4
8

3
6
7

7
6
3

8
4
1

5
2

Figure 4. Transforming a parking function into a filling

Maple computations verified that (35) correctly predicts the coefficient of tn(µ) (the
highest power of t) in Hilbµ(q, t), and that the coefficient of t0 would be correct if
we didn’t have the −n(µ) in the q-power. This led to the hypothesis that |Inv(σ, µ)|
formed an upper bound for the correct q-statistic, and that the key was to find the
right thing to subtract from it, something possibly depending on the descent set.
The final stage involved a series of Maple calculations, each testing a different idea
for something to subtract. Many things worked up through n = 4 and for various
special cases like µ = 2, 1, 1, 1, ..., but continually failed for n = 5. Here is a sample
of the author’s daily journal summarizing the experiments;

Journal entry:
On 3/29/04, ran pistolbad.map, which computes inversion in columns for tstat

and dinv minus mindinv for qstat. Bombs for µ = [2, 2, 1]. See bomb.out. Tried a
modification, where comaj of the columns replaced the tstat, same qstat. This also
bombed in general, but surprisingly works for µ = 221, µ = 222, µ = 2221, and
µ = 2222. Bombs for µ = 2211 though.

Journal Entry:
On 4/2/04 ran pistolbbad.map, which computes inversions in columns for tstat and

dinv minus mindinv for qstat, where mindinv is defined as the sum over all descents,
of the number of entries to the left of the top element of the decent pair. Seems to
work for µ having two rows, but bombs for µ = 2, 2, 1.
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At this point the author planned to drop the problem, and return to less speculative
projects. The idea of subtracting the arm of each descent occurred to him, however,
and he decided to run one last experiment, which successfully generated Hilbµ(q, t) for
all |µ| ≤ 8. A subsequent calculation a few days later extended this to |µ| ≤ 9, and
moreover verified that applying the Hilbert series statistics to the standardization
of words generated the entire monomial expansion of the H̃µ[Z; q, t]. In a phone
conversation a few months later after the conjecture was made public A. Garsia told
the author “You found water on Mars”.

Journal Entry:
Also on 4/2/04, ran pistolb.map, which computes maj on columns for tstat, and

uses mindinv as described in paragraph just above. Surprisingly, works for all µ with
|µ| <= 8! The run for n = 9 took over a week, but finally finished successfully.

Journal Entry:
On 4/6/04 ran program pistolc.map, which computes the Macdonald poly from

shuffles using the Hilbert series inv and maj stats. Correctly generates the Macdonald
poly H̃µ for all µ with |µ| ≤ 8! From 4/7 thru 4/16 ran tempc.map, which extends
this computation through n = 9.
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